








50 
 

 

Figure II-12. Concatenated Raman and NIR spectra for optimized spectral range for 
glucose using Transformation 4 (top) and Transformation 5 (bottom). 
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Figure II-17. Comparison of PLS (red) and NAS (blue) calibration vectors for urea from 
NIR spectra (top) and Raman spectra (bottom). 
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Figure II-18. PLS calibration vectors for combined Raman spectra (blue) and NIR spectra 
(red) for glucose (top), lactate (middle) and urea (bottom) in Transformation 
2. 
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Figure II-19. Relationship between NAS-SNR and SEP values where blue dots 
correspond to values determined from individual NIR spectra, red dots 
correspond to models generated from individual Raman spectra and green dots 
are derived from models from concatenated NIR and Raman models with 
Transformation 2. 
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CHAPTER III 

COMPARISON AND COMBINATION OF SIMULATED 

NEAR-INFRARED AND RAMAN SPECTRA FOR PLS AND NAS 

QUANTITATION OF GLUCOSE, UREA AND LACTATE 

Introduction 

In Chapter II, Raman and NIR spectra collected in the laboratory for a set of sixty 

ternary mixtures were used to assess the utility of combining these types of spectral data 

to improve the prediction ability of PLS calibration models for the measurements of 

glucose, urea, and lactate. Results indicate that improvement can be realized compared to 

individual PLS models generated from Raman spectra alone, but the predication ability of 

the combined Raman-NIR models is inferior to models based on NIR spectra alone. 

Analysis of the multivariate SNR provides some insight into the cause of these findings. 

A fundamental relationship is described between the NAS-SNR and the SEP of the 

resulting calibration models. Furthermore, analysis of the NAS-SNR from the 

experimental Raman and NIR spectra indicates that combining spectra of high SNR (NIR 

spectra in Chapter II) with spectra of low SNR (Raman spectra in Chapter II) will 

produce models that are inferior to those generated by the high SNR spectra alone.   

In this chapter, Raman spectra and NIR spectra are simulated as a means to verify 

and expand the findings reported in Chapter II. The ability to control noise levels within 

the simulated spectra provides a valuable tool to examine the impact of noise on the final 

calibration models. 

Experimental Section 

Molar absorptivity values for glucose, urea and lactate were taken from 

Amerov.
35

 Absorbance values were computed according to Equation III-1 which takes 

into account absorptions by the analyte and water. As described in detail elsewhere, the 

effect of water displacement within the optical volume of the measurement is relevant 
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owing to the non-zero absorption properties of water.
35

 All NIR spectra were created 

assuming an optical path length of 1 mm and a point spacing of 1.9 cm
-1

. Simulated 

absorbance spectra for 1 mM concentrations of pure solutions of glucose, urea and lactate 

are presented in Figure III-1.   

 

        ∑        ∑                                           Equation III-1 

 

Simulated Raman spectra were generated from the pure component Raman 

spectra described in the previous chapter. Pure emission spectra for glucose, urea, and 

lactate were generated by subtracting averaged buffer spectra from averaged spectra 

collected for the 27 mM pure solutions of each analyte, respectively. The baseline was 

further corrected to zero by subtracting a first polynomial fitted baseline function 

computed over the 700-1700 cm
-1

 spectral range. Noise was removed from the resulting 

spectral baseline by assigning zero for wavenumber values where no emission bands 

were evident. Point spacing for the simulated Raman spectra was set to 2 cm
-1

. The 

resulting pure component spectrum for each analyte was divided by 27 to normalize to 1 

mM and this concentration normalized spectrum was used to simulate mixtures assuming 

a linear relationship between emission intensity and molar concentration. The final 

concentration normalized pure component simulated Raman spectra for glucose, urea and 

lactate are presented in Figure III-1.  

Noise was generated as Gaussian distributed random numbers with the MATLAB 

function ‘randn’ with a distribution centered at zero. Magnitude of the noise was adjusted 

by multiply these random numbers with an appropriate factor. The noise was added to the 

simulated spectra to form spectra with a given level of noise.  

For simulated Raman and NIR spectra, the ternary mixture spectra were generated 

with the same concentrations of glucose, urea and lactate represented in the sixty 

mixtures described in Chapter II. For the NIR simulated spectra, a multiplication factor of 
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7.6×10
5
 was applied. This multiplication factor is similar to the value used in 

Transformation 2 described in Chapter II and corresponds to the value required to match 

the lengths of the concentration normalized NAS calibration vectors for the Raman and 

NIR spectral data. Two levels of spectral noise were investigated. Initially, a noise level 

of ± 150 arbitrary units was used to match the relative noise levels observed in the Raman 

spectra described in Chapter II. Subsequently, the impact of noise was evaluated by 

doubling the noise level to ± 300. Examples of simulated NIR and Raman spectra with ± 

150 noise levels for 27 mM pure component solutions of glucose, lactate and urea are 

presented in Figure III-2. NAS-based multivariate parameters of NAS vector length, 

NAS-noise, and NAS-SNR are listed below in Tables III-1 and III-2 for each analyte and 

for each noise level. 

Results and Discussion 

PLS models for the simulated Raman and NIR spectra were built as described in 

Chapter II. Results for the individual PLS models based on simulated Raman and NIR 

spectra at the two noise levels are tabulated in Table III-3. The optimized ranges are the 

same as the optimized ranges reported in Chapter II.  

The number of factors is 3 for each of the PLS model reported in Table III-3 and 

the SEC and SEP values are similar for models based on Raman spectra and NIR spectra 

when the same noise level is used for each. As expected, doubling the noise level 

increases the standard errors by a factor of two. Both PLS and NAS calibration vectors 

are presented in Figures III-3, III-4 and III-5 for the individual analytes. The NAS and 

PLS regression vectors are similar in structure and magnitude, as expected when the PLS 

models originate from the target analyte. 

PLS models were established for combined Raman and NIR spectra, in an 

analogous fashion to that described in Chapter II and the results are presented in Table 

III-4. Again, the spectral ranges used for the concatenated spectra are the optimized  
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Table III-1. NAS calibration parameters for simulated NIR and Raman spectra over the 
optimized spectral ranges with a noise level of ± 150. 

 NIR Models Raman Models 

 NAS Length 

NAS 

Noise 

NAS 

SNR 

SEP 

(mM) NAS Length 

NAS  

Noise 

NAS 

SNR 

SEP  

(mM) 

Glucose 192.34 32.37 5.94 0.27 191.97 31.24 6.14 0.19 

Lactate 189.15 39.35 4.80 0.30 155.90 33.53 4.64 0.31 

Urea 292.69 41.53 7.04 0.25 233.89 34.17 6.84 0.18 

 

 

 

Table III-2. NAS calibration parameters for simulated NIR and Raman spectra over the 
optimized spectral ranges with noise levels of ±300. 

 NIR Models Raman Models 

 NAS Length 

NAS 

Noise 

NAS 

SNR 

SEP 

(mM) NAS Length 

NAS  

Noise 

NAS 

SNR 

SEP  

(mM) 

Glucose 192.46 88.48 2.17 0.57 193.15 65.95 2.92 0.51 

Lactate 193.44 96.45 2.00 0.62 160.74 70.92 2.26 0.56 

Urea 327.26 90.61 3.61 0.39 239.25 76.44 3.12 0.47 
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Table III-3. Results from individual PLS calibration models based on simulated Raman 
and NIR spectra. 

 Noise level Rank SEC (mM) SEP (mM) 

  Raman NIR Raman NIR Raman NIR 

Glucose ±150 3 3 0.24 0.26 0.19 0.27 

 ±300 3 3 0.52 0.52 0.51 0.57 

Lactate ±150 3 3 0.32 0.29 0.31 0.30 

 ±300 3 3 0.66 0.57 0.56 0.62 

Urea ±150 3 3 0.20 0.16 0.18 0.25 

 ±300 3 3 0.41 0.25 0.47 0.39 

 

 

 

Table III-4. Results of PLS calibration models based on concatenated simulated Raman 
and NIR spectra. 

Methods
a
 Glucose Lactate Urea 

Rank SEC SEP Rank SEC SEP Rank SEC SEP 

(1) 3 0.15 0.13 3 0.21 0.20 3 0.09 0.08 

(2) 3 0.30 0.36 3 0.42 0.43 3 0.20 0.25 

(3) 3 0.25 0.23 3 0.37 0.37 3 0.16 0.15 

(4) 3 0.23 0.27 3 0.31 0.27 3 0.15 0.19 
a
 (1) Raman and NIR spectra with noise levels of ± 150, (2) Raman and NIR spectra with 

noise levels of ± 300, (3) Raman spectra with noise levels of ± 150 and NIR spectra with 

noise level of ± 300, and (4) Raman spectra with noise levels of ± 300 and NIR spectra 

with noise levels of ± 150. 

 

 



63 
 

ranges for Raman and NIR spectra described in Chapter II. Four different combinations 

of the Raman and NIR spectra are indicated in Table III-4 where: 1) the combined Raman 

and NIR spectra have noise levels of ± 150; 2) the Raman and NIR spectra have noise 

levels of ± 300; 3) the Raman spectra have a noise level of ± 150 and the NIR spectra 

have a noise level of ± 300; and 4) and the Raman spectra have a noise level of ± 300 and 

the NIR spectra have a noise level of ± 150. 

When the Raman and NIR spectra have the same noise of ±150, the SEC and SEP 

values in the combined model are lower than the corresponding SEC and SEP values in 

the individual models with the same noise level. The SEC and SEP in these models are 

dictated by the magnitude of the spectral noise. This finding indicates that if the SNR of 

the Raman spectra and NIR spectra are at the same level, concatenating individual spectra 

improves the prediction ability of the multivariate models relative to models based on 

individual Raman or NIR spectra.  

For the method combining Raman and NIR spectra with the same noise level of ± 

300, the SEC and SEP values in the concatenated model are lower than the corresponding 

SEC and SEP values in the individual model with the same noise level. This result further 

indicates that if the SNR of the Raman spectra and NIR spectra are at the same level, the 

prediction ability of the combined Raman and NIR model is better than the individual 

Raman or NIR model. PLS regression vectors from concatenated models are presented in 

Figure III-6 for each analyte. Because of the multiplication factor of 7.6 × 10
5
 applied to 

the NIR spectra, magnitudes of the Raman and NIR portions of the total regression vector 

are the same. The concentration correlation plots for the concatenated Raman and NIR 

PLS models with noise levels of ± 150 for each of component are presented in Figure 

III-7. These plots show good calibration and prediction ability of the PLS models with 

prediction values closely distributed along the ideal unity line. 

When the noise level for the Raman spectra is lower (± 150 compared to ± 300 for 

the NIR spectra) or when the noise level for the NIR spectra is lower (± 150 compared to 
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± 300 for the Raman spectra), the model performance is between the two extremes. As 

indicated in Table III-4, SEC and SEP values are between the cases where the noise is ± 

150 and ± 300 for both spectral types within the modeled data set. This finding implies 

that adding low SNR spectra to high SNR spectra has an adverse effect on the prediction 

ability of the combined model and is consistent with the findings determined in Chapter 

II. 

Table III-5 summarizes the NAS vector length, NAS noise and NAS-SNR and the 

corresponding SEP values from the PLS models of the four different combined models. 

The NAS-SNR is plotted relative to the SEP in Figure III-8. As was found in Chapter II, 

a decreasing trend is observed for SEP with an increase in NAS-SNR. For the combined 

Raman-NIR models with different noise levels, the SEC and SEP values are higher or 

similar with the individual PLS model with the lower SEC and SEP values but lower than 

the individual PLS model with high SEC and SEP. 

Conclusions 

Models generated from simulated spectra show that the prediction ability of the 

PLS model improves when the NAS-SNR of the two spectra are similar. This finding 

means that both the magnitude of the NAS vector length and the noise level should be 

similar for the combined data sets. If there is a significant difference in the NAS vector 

magnitude, the model would be dominated by the spectra with higher magnitude. The 

SEC and SEP values fall between the individual models if the two spectra have different 

NAS-SNR values. This finding indicates that adding low NAS-SNR spectra to high 

NAS-SNR spectra will make the prediction ability of the combined model worse than 

that generated by the high NAS-SNR spectral data. Under conditions of constant noise, 

higher NAS magnitudes correspond to greater sensitivity and improved analytical 

measurements. Likewise, for constant sensitivity (NAS magnitude) lower NAS-noise 

provides superior response. 
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Table III-5. NAS calibration parameters for concatenated simulated NIR and Raman 
spectra for the optimized spectral range with different noise levels. 

Methods
a
 Analyte NAS length NAS noise NAS SNR SEP 

(1) Glucose 329.09 33.60 9.79 0.13 

 Lactate 250.08 31.74 7.87 0.20 

 Urea 459.51 35.99 12.76 0.08 

(2) Glucose 337.13 73.77 4.57 0.36 

 Lactate 255.84 76.04 3.36 0.43 

 Urea 459.22 84.21 5.45 0.25 

(3) Glucose 332.07 55.16 6.02 0.23 

 Lactate 251.09 56.29 4.46 0.37 

 Urea 458.29 52.25 8.77 0.15 

(4) Glucose 330.78 62.52 5.29 0.27 

 Lactate 257.64 47.97 5.37 0.27 

 Urea 457.69 57.86 7.91 0.19 
a
  (1) Raman and NIR spectra with noise levels of ± 150, (2) Raman and NIR spectra 

with noise levels of ± 300, (3) Raman spectra with noise levels of ± 150 and NIR spectra 

with noise level of ± 300, and (4) Raman spectra with noise levels of ± 300 and NIR 

spectra with noise levels of ± 150. 
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Figure III-1. Simulated pure component NIR absorbance spectra (top) and Raman spectra 
(bottom) normalized to 1mM for glucose (red), lactate (blue), and urea 
(green). 
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Figure III-2. Simulated pure component NIR absorbance spectra (top) and Raman spectra 
(bottom) with noise levels of ± 150 for 27 mM concentrations of glucose (red), 
lactate (blue), and urea (green) with noise. 
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Figure III-3. Comparison of PLS (red) and NAS (blue) calibration vectors for glucose 
from NIR spectra (top) and Raman spectra (bottom). 

 

 

4260 4280 4300 4320 4340 4360 4380 4400 4420 4440
-12

-10

-8

-6

-4

-2

0

2

4

6

8
x 10

-4

Wavenumber(cm
-1

)

R
e

g
re

s
s
io

n
 C

o
e

ff
ic

ie
n

t 
(m

M
/A

U
)

800 900 1000 1100 1200 1300 1400 1500
-8

-6

-4

-2

0

2

4

6

8

10
x 10

-4

Wavenumber(cm
-1

)

R
e

g
re

s
s
io

n
 C

o
e

ff
ic

ie
n

t(
m

M
/I
n

t.
)



69 
 

 

Figure III-4. Comparison of PLS (red) and NAS (blue) calibration vectors for lactate 
from NIR spectra (top) and Raman spectra (bottom). 
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Figure III-5. Comparison of PLS (red) and NAS (blue) calibration vectors for urea from 
NIR spectra (top) and Raman spectra (bottom). 
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Figure III-6. PLS calibration vectors for combined Raman spectra and NIR spectra for 
glucose (top), lactate (middle) and urea (bottom). 
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Figure III-7. Concentration correlation plots for combined Raman and NIR spectra PLS 
calibration models for glucose (top), lactate (middle) and urea (bottom). 
Calibration data are represented by blue circles, and prediction data are 
represented by red circles. The black solid line is the ideal correlation. 
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Figure III-8. Relationship between NAS-SNR and SEP for simulated individual NIR 
models (blue), simulated individual Raman spectra (red) and simulated 
concatenated Raman-NIR models (green). 
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CHAPTER IV 

FUTURE WORK 

The research in this thesis focuses on combining NIR and Raman spectra in an 

attempt to improve the prediction ability of resulting PLS calibration models for the 

measurement of glucose in aqueous solution. The results presented in Chapter II illustrate 

that PLS calibration models can be improved, but only when the combined spectra 

provide an improvement in the overall SNR of the analyte specific multivariate 

calibration vector. For the spectral data presented in Chapter II, the NIR spectral data has 

a higher NAS-SNR compared to the Raman spectral data. In this case, combining the 

Raman and NIR data sets results in SEC and SEP values in between those produced from 

models generated from the individual Raman and NIR data sets alone. The simulated data 

presented in Chapter III suggest that combining NIR and Raman spectra with the same 

NAS-SNR can improve the prediction ability of the corresponding PLS model. The 

relationship between the NAS-SNR and SEP of PLS calibration models is defined in both 

Chapters II and III for both actual experimental data and simulated data.   

The sample matrix for the experiments performed in this thesis consisted of three 

components (glucose, urea, and lactate) in an aqueous solvent. The generality of the 

conclusions noted above must be verified in other, more complex matrices, such as whole 

blood. Because the sample matrix was fairly simple for the work described in Chapters II 

and III, the SEC and SEP values for the PLS models are low. By exploring more complex 

matrices, more challenging PLS models will be required, and the benefits of combining 

spectral data types might be accentuated.  

Strategies for combining the two techniques can be expanded further and the 

benefits of searching for optimized spectral ranges within the combined NIR and Raman 

spectra might prove useful. In addition, the underlying problem for the real spectra data 

presented in Chapter II was the NAS-SNR of the Raman spectra is lower than that for the 
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NIR spectra. Improvements can be made to reduce the noise level of the Raman 

spectroscopy. 

The ultimate goal is to obtain noninvasive measurements of glucose in human 

subjects. If the combination of Raman and NIR spectra is to be realized for this 

application, the spectral characteristics of human skin must be established. Recently, the 

characterization of rat and human skin has been reported for NIR spectroscopy.
13

 These 

same types of skin characterization experiments must be performed with Raman 

spectroscopy and the resulting NAS-SNR values compared. As indicated in this thesis, 

the NAS-SNR must be comparable to realize any benefits from combining these spectral 

types for noninvasive glucose measurements. For subcutaneous Raman measurements, 

the impact of auto-fluorescence from skin and blood on the NAS-NSR for glucose must 

be established. Alternatively, ultrafiltration probes can be used to filter out larger 

molecules in blood, thereby simplifying Raman spectra, improving NAS-SNR, and 

enabling the use of portable Raman instrumentation.
50
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