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Figure 5.30: Smallpox Reproductive Number Estimates - Intervention Model

Table 5.12: Posterior Parameter Summary - Abakaliki Smallpox (Intercept Model)

Quantiles
Mean SD 2.5% 25% 50% 75% 97.5%

Intercept -2.182 0.277 -2.731 -2.363 -2.174 -1.995 -1.659
Spatial Parameter 0.448 0.198 0.146 0.296 0.418 0.574 0.894
Gamma EI 0.203 0.047 0.122 0.171 0.199 0.232 0.303
Gamma IR 0.157 0.031 0.103 0.135 0.155 0.177 0.226



136

Figure 5.31: Smallpox Reproductive Number Estimates - Intercept Only Model
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5.2.4 MRSA in Iowa

As discussed in Section 4.5.1.3, the MRSA data represents not only a large,

single location epidemic process, but also provides an opportunity to exhibit the

application of spatial SEIR modeling techniques to artificial populations. As the

data are derived from medical claims from a single insurer, they represent only a

partial observation of the total number of MRSA diagnoses in the state. Thus, we

defined an artificial population to be the number of individual physician visits over

the study period, and tracked the number of such visits associated with a MRSA

diagnosis.

For an idea of the diagnosis distribution, note the pattern evident the raw case

counts by month between 2004 and 2013 exhibited by Figure 5.32. Interestingly, there

is an apparent exponential growth period beginning in 2004, which largely levels off

and may even begin to decrease in 2009. From this data alone, it is unclear whether

such behavior is primarily driven by diagnostic and screening factors, or whether it

reflects underlying changes in MRSA epidemic behavior.

Having visualized the aggregated cases, we next weigh a range of possible

models for this statewide incidence data. Beginning with an intensity intercept only

model, and progressively considering 1, 2, 3, and 5 degree of freedom temporal spline

basis functions, Figure 5.33 depicts estimates of R0(t) and R(EA)(t). It quickly be-

comes clear that a single linear term is the best choice. All of the models explored

present similar trends between the two reproductive numbers, however there is little

change in overall trend beyond a single degree of freedom, except to introduce minor
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oscillations indicative of overfitting.

Upon evaluating the parameter estimates in Table 5.13, the interpretation

remains unchanged; these models indicate a decrease in MRSA infection activity.

While interesting, these data are somewhat removed from the precise case counts

needed to make strong predictions about the future. Such limitations arise both

from the disconnect between pathogen presence and the presentation of symptoms,

as well as the claim based population; the results are nevertheless interesting, and

spatial work is ongoing to examine the distribution of the observed negative trend.

On the other hand, our results are consistent with recent observations by the United

States Centers for Disease Control and Prevention (CDC, 2014), indicating that SEIR

models may be gainfully applied to this type of case based surveillance data.

Table 5.13: Posterior Parameter Summary: MRSA Linear Intensity Model

Mean SD 2.5% 25% 50% 75% 97.5%
Intercept -1.534 0.312 -1.682 -1.581 -1.527 -1.472 -1.372
Linear Intensity -0.909 0.149 -1.205 -1.009 -0.903 -0.812 -0.639
Gamma EI 0.432 0.042 0.354 0.403 0.432 0.459 0.518
Gamma IR 0.126 0.012 0.105 0.118 0.126 0.133 0.149

5.2.5 Epidemic and Pandemic Influenza

The West North Central (WNC) United States Census region encompasses

North and South Dakota, Minnesota, Nebraska, Iowa, Kansas, and Missouri. While

spatial analyses incorporating the other eight census regions are underway, we here
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Figure 5.32: Monthly MRSA Cases Observed in Iowa Claims Data
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Figure 5.33: MRSA Single Location Analysis Reproductive Number Estimates
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restrict our attention to this portion of the United States Midwest. As mentioned

in Section 4.5.1.4, and reminiscent of the artificial population seen in our analysis

of MRSA information, influenza cases are generally reported on a scale somewhat

removed from actual infections: the proportion of physician visits per 100,000 which

exhibited Influenza Like Illness (ILI). This scale, in addition to the inhomogeneity in

annual epidemic size seen in Figure 5.34 emphasizes the complex nature of influenza

spread; a number of related pathogens are constantly undergoing selection, with im-

plications for the susceptibility of the population (Finkenstädt et al., 2005). Our early

work on this problem focused on modifying the scale to reflect actual cases; we at-

tempted to incorporate a smoothed version of the corresponding influenza laboratory

confirmation data discussed in Section 4.5.1.4 along with aggregate prior information

about the average proportion of the US population infected with a form of Influenza

each year to come up with reasonable case count estimates. While the resulting

derived data appeared reasonable at a glance, we encountered serious convergence

issues when attempting to fit spatial and non-spatial SEIRS models to it. As a re-

sult, we have employed the same modified population approach of (Finkenstädt et al.,

2005), assuming that the data represents case counts for a hypothetical population

of 100,000 individuals. Such an assumption recognizes the fundamental difference

between physician visit proportions and case incidence rates in a real population.

Figure 5.34 provides a view of several recent years of ILI in the WNC re-

gion. Perhaps its most dramatic feature is the large spike in cases observed during

2009; this is, of course, a reflection of the 2009 H1N1 swine-flu pandemic (Bartolotti,
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Figure 5.34: West North Central Census Region - Influenza Like Illness
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2010). In order to examine the degree to which a change in susceptibility affected

the unusual number of cases observed in 2009, we attempted to fit a wide variety

of SEIRS models to this data. The most obvious choice for useful basis functions

are trigonometric, sine functions in particular. We have explored a number of such

techniques. All such models exhibited extremely slow convergence behavior, and re-

quired a different MCMC regime than the rest of the analyses considered thus far;

while automatic tuning for a desired acceptance ratio worked well under simulation

and in the spatial and non-spatial SEIR models presented, such techniques applied to

these data resulted in infinitesimal chain updates and infeasible computation times.

We therefore abandoned such tuning for these models, and instead fixed Metropolis

tuning parameters at the beginning of each analysis.

The analytical difficulties in this setting are not limited to convergence: the

inclusion of very strong prior information about the E to I, I to R, and magnitude of

the R to S transitions was required to prevent the selection of biologically impossible

transition regimes. Particularly with respect to reinfection, when unconstrained, these

models tend to predict that reinfection occurs with very high probability throughout

the epidemic. For these data, the implication would be that individuals generally

retain their immunity for only one week after infection, which is clearly untrue.

After extensive experimentation, the final selected models employ a reinfection

basis composed of a series of shifted sine functions with period equal to one year (see

Figure 5.35), in addition to an intercept term. While such an approach might be

expected to model annual trends in population susceptibility to epidemic influenza,
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it would be difficult for such a structure to capture the irregular introduction of pan-

demic strains, such as H1N1. Therefore, the second model we introduce allows an

extra introduction of susceptibles, starting on May 1, 2009 and decaying exponen-

tially by week. In both cases, the intensity process depends on an intercept, a linear

temporal term, and average monthly temperature in the WNC region (pictured at

the bottom of Figure 5.34).

Figure 5.35: Influenza Reinfection Basis
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Figure 5.36: Reinfection and Exposure Probabilities - No H1N1 Term
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Figure 5.37: Reinfection and Exposure Probabilities - With H1N1 Term
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Interestingly, we were able to achieve convergence for the model with no ad-

ditional H1N1 reinfection term after 23 million iterations and 45 hours of computing

time, far in excess of the required runtime experienced in previous analyses. The

H1N1 model, on the other hand, did not adequately converge after even more ex-

treme sampling runs. Initial investigations indicate that the difference may relate to

a decrease in the efficacy of the decorrelation sampler experienced when this term is

introduced. Even so, we examine output from both analyses in order to gain insight

into potential causes of their computational infeasibility. As the principle difference

between this setting and our previous work is the introduction of reinfection, an

obvious starting point for such comparisons is the implied reinfection probabilities.

The most obvious difference between the two models can be seen by comparing

the reinfection probability curves in Figure 5.36 and Figure 5.37. In the second

analysis, the added H1N1 reinfection component is strongly positive, and produces

a marked increase in the rate at which individuals become susceptible prior to the

onset of the H1N1 pandemic. We also notice that the overall reinfection probability

is considerably higher for the non-H1N1 analysis, though all three MCMC chains for

the reinfection intercept exhibited a negative trend at the time of termination, so this

may be spurious. Interestingly, while the corresponding exposure probabilities appear

quite similar, the scale is distinct. This indicates a relationship between intensity and

reinfection; in the presence of fewer susceptible individuals, observed epidemic spread

must be explained by a correspondingly higher exposure intensity.

Considering reproductive number estimates for both models, we observe other
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worrying indicators. In Figure 5.38, not only are the REA and R0(t) curves dif-

ferent in shape, but both are negatively biased. These are both strong indicators

for model underspecification, as seen in Section 5.2.1. Such a specification problem

would help explain the extremely slow convergence behavior observed in this mod-

estly sized analysis problem. To investigate such a possibility in more detail, we

examine the posterior distribution of the number of new infections conditional on the

non-compartmental parameters: P (I∗|β, β(RS), γei, γir). In Figure 5.39, the observed

ILI count is pictured in red along with a series of predicted epidemics made over the

posterior distribution of these parameters in the non H1N1 analysis. Clearly, while

the model correctly identifies some of the periodicity of the observed sequence of epi-

demics, the chosen basis is not sufficiently nuanced to reproduce the observed data.

This is, of course, a strict standard for model utility. Even without the ability to

reproduce the data, such techniques have promising application in the prediction of

epidemic peak times and the discovery of associations between explanatory covari-

ates and intensity. Nevertheless, the observed data are improbable under the specified

model, demonstrating the difficulty of valid probabilistic inference about such chaotic

processes. Indeed, it may be for exactly this reason that much of the compartmental

modeling research performed on Influenza either emphasizes best fit simulations (van

Boven et al., 2010; Shaman et al., 2010), or restricts focus to single location, single

season epidmics (Nishiura, 2011).

We have demonstrated that fully Bayesian SEIRS models produce valid com-

partmental and non-compartmental parameter estimates and confidence intervals un-



149

Figure 5.38: Empirically Adjusted and Traditional Reproductive Numbers - Influenza
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Figure 5.39: Influenza - Conditional Posterior Epidemic Distribution and Observed

Epidemic Curve
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der simulation (Section 5.1.4), however serious computational challenges remain for

the analysis of real data. As might be expected, model identifiability is negatively

impacted by the increased flexibility of SEIRS models, a problem exacerbated in sit-

uations where the data are noisy and the true model unknown. As such, this final

analysis type offers the most room for improvement in both our methodology and

software. Particularly, there likely exists a combination of interpretable and parsimo-

nious basis functions and explanatory covariates which provide an adequate fit to ILI

data as presented here. As currently implemented, however, thorough exploration of

such models is computationally infeasible. We nevertheless believe that despite these

difficulties, there are several promising avenues for improvement. These are discussed

in the next chapter. In the meantime, researchers should remain cautious about the

application of reinfection in such models, pay careful attention to measures of model

fit, and work to include scientifically justified prior constraints on transition behavior,

with a careful consideration of the biological reasonability of the resulting estimates.
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CHAPTER 6
DISCUSSION

In this work, we have developed, tested, and used a new spatial approach to

epidemic modeling. Grounded in classic compartmental modeling techniques, but mo-

tivated by fully probabilistic inference, we believe this model class and its associated

computational tools will be of great use to statisticians, biostatisticians, epidemiolo-

gists, and other researchers interested in modeling the spread of infectious diseases.

While many of the presented results are specific to the data and simulations to which

they belong, there are a number of general findings about our analytical approach

and development which apply more broadly.

6.1 Contributions to Epidemic Modeling

First, we believe that the flexible parameterization of intensity, reinfection, and

contact structures presented in Chapter 2 strikes a helpful balance between simplic-

ity and flexibility which has applications in hierarchical modeling far beyond spatial

epidemic models. Note the huge range of hypotheses which can be expressed in terms

of linear predictors, both time varying and invariant. This flexibility is enhanced

in cases which include complex spatial correlation structures, for the distance ma-

trix collection specification we have developed provides innumerable options while

remaining intuitive and easy to construct.

Despite their generality, these implementation choices certainly entail limits

on the general expressive power of hierarchical techniques. Even so, we believe both
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that our approach strikes a reasonable balance for a wide array of diseases, and that

similar options exist in other problem domains. Careful consideration of researcher

needs and interests can result in tools which allow sufficient flexibility while also

eliminating much of the fixed cost usually associated with developing such models.

This is particularly true for the study of infectious diseases: the number of researchers

capable of effectively and accurately employing compartmental modeling techniques

far exceeds the number with the time and expertise to develop the requisite tools.

Second, the development of the empirically adjusted reproductive number in

Chapter 3 represents a reconsideration of pathogen reproductive behavior with mean-

ingful application to any discrete time compartmental model. While many researchers

have defined stochastic compartmental models as simple approximations of determin-

istic continuous time formulations, this work demonstrates that probabilistic develop-

ment has implications for population mixing with both natural interpretation, poten-

tial applications in model selection, and the ability to describe the difference between

expected pathogen behavior in particular, finite populations and hypothetical large

ones.

6.2 Best Practices and Lessons Learned

While we are confident in the set of modeling tools and techniques established

by this dissertation, there are definite strengths and weaknesses. The best case sce-

nario for fully Bayesian inference in the spatial SEIR and SEIRS setting is clearly

a setting in which cases of a particular pathogen are well traced, and the observed
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data is very closely related to the number of newly infectious individuals at each time

point. Moreover, it is important in this framework that a sufficiently rich basis is

available to model temporal changes in population and pathogen behavior.

These conditions are most difficult to meet in the SEIRS setting, which invites

the joint study of periodic epidemics. While such analyses are tempting, finding a

sufficiently flexible yet parsimonious basis to describe epidemic evolution over mul-

tiple cycles can be quite difficult. When specific and detailed case and population

information is available and temporal variability in infection and susceptibility is well

understood, we have shown that stochastic SEIRS models are an effective tool. In the

absence of such a structure, however, many of the computational techniques which

allow these models to run in a reasonable time become ineffective. In such cases, the

true estimation problem is semi-parametric; there is no known functional form of the

intensity and/or reinfection processes upon which we can reasonably condition our

inference, and they would therefore be best estimated by adaptive techniques.

6.3 Continuing Methodological Development

In addition to the future software improvements discussed in Chapter 4, the

inclusion of additional data models described in Chapter 2, and the continued devel-

opment of model selection measures based on the Empirically Adjusted Reproductive

Number mentioned in Chapter 3, there are several noteworthy areas of continued

methodological work. Here we briefly discuss current efforts to apply Approximate

Bayesian Computation to spatial SEIRS models, and avenues for relaxation of the
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common exponential assumption on compartment membership time.

6.3.1 Departure from MCMC: Approximate Bayesian Computation and

Associated Techniques

MCMC techniques have a number of attractive properties. In particular, they

allow fully Bayesian inference in complicated model settings, lend themselves to the

generation of predictions as well as parameter estimates, and are theoretically guar-

anteed to converge to the target distribution under relatively minimal assumptions.

As we have seen, however, the convergence rate can both vary dramatically even be-

tween separate instances of the same model (Section 5.1), and be difficult to assess

in a sensitive fashion (Section 5.2.5). These issues are only exacerbated in high di-

mensions, as the geometry of high dimensional posterior distributions may be highly

multi-modal.

As a response to these drawbacks, a number of alternate inferential approaches

have been developed. One family of such techniques, Approximate Bayesian Compu-

tation (ABC) (Sunn̊aker et al., 2013; Beaumont et al., 2002) provides an approximate

inferential framework directly applicable to spatial SEIRS models, as well as a con-

ceptual starting point for additional posterior approximation techniques.

As generally implemented, ABC requires that, conditional on a set of param-

eters, Θ, one can produce simulated data according to the generation mechanism

assumed to be at work for the observed data (Sunn̊aker et al., 2013). The ‘closeness’

of these simulated draws to the observed data, measured directly using a measure of
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distance or indirectly as a function of informative summary statistics, is used to infer

the reasonableness of the currently selected parameter values. Parameter values are

accepted or rejected based on the comparison of these measures to a chosen threshold

ε value.

As we have parameterized them, spatial SEIRS model fit nicely into this cate-

gory. Recall the set of non-compartmental parameters presented in Equation 6.1. For

a review of the contribution of each parameter vector to the posterior distribution,

see the development in Chapter 2.

Θ = [βSE,βRS,ρ, γei, γir] (6.1)

Combined with the large amount of structural information required for the

specification of these models, this relatively small set of parameters forms a convenient

basis for simulating epidemics; indeed, we have repeatedly made use of the ability to

simulate such data in order to evaluate the estimation performance of these models

and the accompanying software (Chapters 4, 5). Furthermore, while such a partition

is most naturally applied to the degenerate data model in which the new infectious

counts are assumed to be observed without error, the addition of measurement error

is straightforward to include as overdispersion. This structure can be immediately

adapted to ABC inferential approaches by comparing such simulated epidemics to the

observed data with respect to L1 or L2 measures of distance in the observed count

data, (Sunn̊aker et al., 2013). Alternatively, such temporal curves have a number

of intuitive summary statistics which may form a basis for comparison: peak time,
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number of peaks, epidemic duration, and cumulative epidemic size, among others.

This partition additionally suggests direct posterior approximation, particu-

larly because we are able to evaluate functions proportional to the posterior distri-

bution with reasonable computational efficiency - our MCMC samplers have often

run into the tens of millions of iterations, each of which requires considerably more

computation than a single evaluation of Equation 2.3. Instead of simulating a single

epidemic for each realized value Θ(i) of Θ, and accepting or rejecting based on a

measure of distance from the observed data, several such simulations combined with

evaluations of 2.3 could be used to approximate the posterior probability of Θ(i)

marginalized over S,E, I,R,S∗,E∗, I∗,R∗. Sampling schemes could be devised which

employ samples from the prior for Θ, a carefully chosen grid of values over the support

of these parameters (Martins et al., 2013), or any of the numerous objective function

interrogation techniques commonly used in the optimization literature.

Both traditional ABC approaches and these posterior marginalization tech-

niques are obviously computationally intensive. Beyond even the required use of

simulation techniques, a high dimensional latent space is known to adversely affect

the efficiency of ABC (Beaumont et al., 2002). Even so, these techniques retain a key

advantage over MCMC: parallelizability. Conditional upon the fully specified SEIRS

model, each Θ(i) may be evaluated independently of other realizations, whether under

simulation from priors or over a grid expansion of the parameter space. We are well

positioned to exploit this independence between samples using the existing OpenCL

infrastructure described in Chapter 4, which provides a promising interface to highly
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parallel hardware such as Graphics Processing Units.

6.3.2 Exponential Assumption Relaxation

As discussed in Chapter 3, the use of a constant discrete time probability term

to describe transition events between the exposed and infectious, and the infectious

and removed compartments implies a geometrically distributed compartment mem-

bership time, and corresponds to a continuous compartment membership time which

is exponentially distributed. While such assumptions are computationally convenient,

and well represented in the applied compartment modeling literature, (Shaman et al.,

2010; Lekone and Finkenstädt, 2006; Lloyd and May, 1996; Boys and Giles, 2007),

they are often not biologically reasonable; exponential assumptions imply that the

probability of a transition between compartments does not depend on the time an

individual has already spent in a particular compartment.

A number of approaches to exponential assumption relaxation are represented

in the literature, and the construction of models which generalize this transition is

far from new (Porter and Oleson, 2013; Boys and Giles, 2007). As such, there are a

number of options available for generalization. One approach is presented by Boys

and Giles (2007), who introduce a model and associated MCMC scheme which em-

ploys a step function in time to allow changing transition rates as an epidemic evolves.

This development is specifically intended to apply to epidemics in which intervention

efforts are seen to ‘remove’ infectious individuals from the epidemic process - a sub-

tle difference from the intensity parameterization we have chosen. To illustrate the
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difference, recall the Smallpox data analyzed in Section 5.2.3. The authors address

the same epidemic from the perspective of removal times, and show that, in this

case, model fit is improved by allowing the removal rate to change. In contrast, as

discussed in Chapter 4, we define the Smallpox rash onset data to reflect exposed

to infectious transition times, and model the effect of public health interventions by

letting them affect the intensity process. While both approaches might be expected

to effectively capture such variability, the latter approach may make more sense for

incurable diseases such as Ebola, where treatment can partially decrease the chance

of infection, though not the infectious duration. For example, note the transmission

of Ebola to health care professionals (Frieden et al., 2014). Even so, this distinction

bears additional consideration, and simulation studies designed to compare the rela-

tive effectiveness of the two approaches to modeling epidemic containment would be

helpful. A temporally varying linear predictor for the removal process is currently

only available in our software for the removal time data type, but may be may be a

worthwhile addition more generally.

Beyond modeling temporal changes in the variability of latent and infectious

category membership times, it is of interest to incorporate non-exponential compart-

ment membership times for biological reasonability alone. The path-specific devel-

opment of Porter and Oleson (2013) is quite promising in this regard, for while the

dimension of the exposed and infectious population matrices is necessarily increased,

the authors’ development is already firmly rooted in the stochastic SEIR framework.

Much additional work remains to demonstrate the computational feasibility of such
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generalization in spatial settings, however there is nothing which would prevent the

inclusion of such techniques from a theoretical perspective; such feasibility may well

depend on the computational advancements discussed in the previous section.
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APPENDIX A
ADDITIONAL STATISTICAL OUTPUT

Figure A.1: Ebola Predictions - 15 Time Points, 0DF Temporal Basis
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Figure A.2: Ebola Predictions - 15 Time Points, 1DF Temporal Basis
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Figure A.3: Ebola Predictions - 15 Time Points, 2DF Temporal Basis
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Figure A.4: Ebola Predictions - 15 Time Points, 3DF Temporal Basis
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Figure A.5: Ebola Predictions - 20 Time Points, 0DF Temporal Basis
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Figure A.6: Ebola Predictions - 20 Time Points, 1DF Temporal Basis
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Figure A.7: Ebola Predictions - 20 Time Points, 2DF Temporal Basis
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Figure A.8: Ebola Predictions - 20 Time Points, 3DF Temporal Basis

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

May Jul Sep Nov Jan

0
50

10
0

15
0

20
0

Guinea: New Cases

rptDate

I_
st

ar
[, 

1]

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

May Jul Sep Nov Jan

0
50

0
10

00
15

00

Liberia: New Cases

rptDate

I_
st

ar
[, 

2]

● ● ● ● ● ● ● ●
●

●

●

●

●
●

●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

May Jul Sep Nov Jan

0
20

0
40

0
60

0
80

0

Sierra Leone: New Cases

rptDate

I_
st

ar
[, 

3]



169

Figure A.9: Ebola Predictions - 25 Time Points, 0DF Temporal Basis
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Figure A.10: Ebola Predictions - 25 Time Points, 1DF Temporal Basis
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Figure A.11: Ebola Predictions - 25 Time Points, 2DF Temporal Basis
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Figure A.12: Ebola Predictions - 25 Time Points, 3DF Temporal Basis
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Figure A.13: Ebola Predictions - 30 Time Points, 0DF Temporal Basis
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Figure A.14: Ebola Predictions - 30 Time Points, 1DF Temporal Basis
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Figure A.15: Ebola Predictions - 30 Time Points, 2DF Temporal Basis
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Figure A.16: Ebola Predictions - 30 Time Points, 3DF Temporal Basis
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APPENDIX B
FULL CONDITIONAL DISTRIBUTIONS

For reference, the full conditionals are summarized here.

• Full Conditional For S∗

log(p(S∗|.)) ∝
T∑
j=1

n∑
i=1

{
log

((
fR(R∗, S∗, A0)ij

S∗ij

))

+ log(π
(RS)
j ){S∗ij}+ log(1− π(RS)

j ){fR(R∗, S∗, A0)ij − S∗ij}

+ log

((
fS(S∗, E∗, A0)ij

E∗ij

))
+ fS(S∗, E∗, A0)ijlog(1− π(SE)

ij )
}

(B.1)

• Full Conditional for E∗

log(p(E∗|.)) ∝
n∑
i=1

T∑
j=1

{
log

((
fS(S∗, E∗, A0)ij

E∗ij

))

+ (E∗ijlog(π
(SE)
ij )) + (fS(S∗, E∗, A0)ij − E∗ij)log(1− π(SE)

ij )

}
+ log

((
fE(E∗, I∗, A0)ij

I∗ij

))
+ log(1− π(EI))

n∑
i=1

T∑
j=1

{fE(E∗, I∗, A0)ij}

(B.2)

• Full Conditional for I∗
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log(p(I∗|.)) ∝
n∑
i=1

T∑
j=1

{
log(g(yij|I∗ij)) + log

((
fE(E∗, I∗, A0)ij

I∗ij

))

+ (I∗ijlog(π(EI))) + (fE(E∗, I∗, A0)ij − I∗ij)log(1− π(EI))

}
+ log

((
fI(I

∗, R∗, A0)ij
R∗ij

))
+ log(1− π(IR))

n∑
i=1

T∑
j=1

{fI(I∗, R∗, A0)ij}

(B.3)

• Full Conditional for R∗

log(p(R∗|.)) ∝
n∑
i=1

T∑
j=1

{
log

((
fI(I

∗, R∗, A0)ij
R∗ij

))

+ log(π(IR)){R∗ij}+ log(1− πIR){fI(I∗, R∗, A0)ij −R∗ij}

+ log

((
fR(R∗, S∗, A0)ij

S∗ij

))
+ log(1− π(RS)

j ){fR(R∗, S∗, A0)ij}

+ log(π
(SE)
ij ){E∗ij}+ log(1− πSEij ){fS(S∗, E∗, A0)ij − E∗ij}

}
(B.4)

• Full Conditional for {θ}

log(p({θ}|.)) ∝
n∑
i=1

{ T∑
j=1

{
(E∗ijlog(π

(SE)
ij )) + (fS(S∗, E∗, A0)ij

− E∗ij)log(1− π(SE)
ij )

}}
(B.5)
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• Full Conditional for {β}

log(p({β}|.)) ∝
n∑
i=1

{ T∑
j=1

{
(E∗ijlog(π

(SE)
ij )) + (fS(S∗, E∗, A0)ij

− E∗ij)log(1− π(SE)
ij )

}}
+

K∑
k=1

{
− β2

k

10

}
(B.6)

• Full Conditional for ρ

log(p(ρ|.)) ∝
n∑
i=1

{ T∑
j=1

{
(E∗ijlog(π

(SE)
ij )) + (fS(S∗, E∗, A0)ij

− E∗ij)log(1− π(SE)
ij )

}}
+ (log(π(ρ)))

(B.7)

• Full Conditional for {β
π
(RS)
j
}

log(p({π(RS)
j }|.)) ∝

T∑
j=1

{
log(π

(RS)
j )

[ n∑
i=1

{S∗ij}
]

+ log(1− π(RS)
j )

[ n∑
i=1

{fR(R∗, S∗, A0)ij − S∗ij}
]}

+

{
− τ 2

RS

2
‖βπRSj ‖

}
(B.8)
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• Full Conditional for γ(EI)

log(p(γ(EI))) ∝ log(π(EI))
[ n∑
i=1

T∑
j=1

{I∗ij}
]

+ log(1− π(EI))
[ n∑
i=1

T∑
j=1

{(fE(E∗, I∗, A0)ij − I∗ij)}
]

+ log(π(γ(IR)))

(B.9)

• Full Conditional for γ(IR)

log(p(γ(IR))) ∝ log(π(IR))
[ n∑
i=1

T∑
j=1

{R∗ij}
]

+ log(1− π(IR))
[ n∑
i=1

T∑
j=1

{fI(I∗, R∗, A0)ij −R∗ij}
]

+ log(π(γ(IR)))

(B.10)
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