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Figure 3.4 Infection efficiency of adeno-associated virus (AAV) inserted with 
PRG4-GFP in monolayer culture of chondrocytes. (A) Chondrocytes (B) 
Synoviocytes (C) Meniscus cells (D) Infection percentage of AAV. (n = 4-10, 
***p<0.001) 
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Figure 3.5 Infection efficiency of retroviral vector inserted with PRG4-GFP 
in monolayer culture of chondrocytes. (A) Chondrocytes (B) Synoviocytes (C) 
h/N double transduced cell 
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Figure 3.6 PRG4-GFP secreted by synoviocytes was layered on the surface of 
an osteochondral explant. After incubating and washing with culture medium, 
the cartilage was cryo-sectioned and imaged. A representative image shows 
strong GFP signal on the cartilage surface. Scale bars = 200 µm. 
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Figure 3.7 Immunoblot analysis of lubricin in conditioned medium. The 
conditioned medium from AAV-PRG4-GFP infected synoviocytes and normal 
synoviocytes were loaded in each lane of a 5% SDS-PAGE gel. The blot was 
probed with peanut agglutinin (PNA). 
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Figure 3.8 PRG4-GFP production and purification by affinity 
chromatography (CNBr-Activated Sepharose 4B). Western blot of conditioned 
medium from transduced synoviocytes indicated that PRG4-GFP strongly 
expressed the lubricin protein at ~250 kDa. The blot was probed with GFP 
antibody. 
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CHAPTER 4 

PRG4-GFP PROTECTS CHONDROCYTES FROM DEATH AND 

DAMAGE INDUCED BY SHEAR LOADING 

4.1 Background and significance 

Friction coefficient is the maximum value of the frictional force divided 

by the normal force. Friction coefficient testing is used for a variety of materials 

from lubricants to films and household items, to determine the frictional 

characteristics of a material. The dimensionless value of the friction coefficient 

is the ratio of the force required to slide the surface to the force perpendicular to 

the surface. A low friction coefficient indicates that the surfaces are smoother, 

less resistant. 

Over the past several decades, many researchers and laboratories have 

measured the friction coefficient in body joints. These investigations have 

examined a variety of species and joints across a range of methods. While most 

early studies utilized methods to study the frictional properties of intact synovial 

joints, more recent work has employed techniques and equipment to look more 

closely at cartilage alone. Methods include whole joint friction pendulum 

systems and custom-made friction simulators,(71, 105, 106) and the sliding of 

excised cartilage plugs against various surfaces.(81-84, 107) There are 

advantages and disadvantages related to both the use of intact joints and the use 

of cartilage plug samples. 
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Tribological studies that investigate the frictional properties of intact 

joints allow for the preservation of physiological conditions. These studies 

require custom-built systems, such as pendulums or arthrotripsometers, in which 

the joint serves as a fulcrum that the apparatus pivots around. Reported frictional 

coefficients of articular cartilage measured from intact joints range from as low 

as 0.001 to as high as 0.35. Further studies have demonstrated that the use of 

cartilage samples against artificial flat surfaces allows for the direct 

measurement of the friction coefficient. Frictional coefficients measured with 

cartilage plugs utilizing lubricants such as synovial fluid and saline with 

cartilage against glass, metal, and cartilage range from 0.0015 to 0.9. 

While there has been decades of research investigating the tribological 

properties of articular cartilage and synovial joints, additional work is needed to 

examine the response of friction, lubrication and wear to biomechanical testing, 

such as cyclic loading.(108) Exposing test specimens to biomechanical testing 

leads to greater insight and allows for a simulation of in vivo joint conditions. 

McCann groups demonstrated that cyclic loading with a pendulum system 

resulted in friction coefficient increases via the medial compartment of bovine 

knee joints.(75) Forster and Fisher also showed that cyclic loading of bovine 

cartilage plugs with a custom-made apparatus yields an increase in friction 

coefficient.(84)  Nugent Derfus groups determined that cyclic loading of bovine 

stifle joints has beneficial effects upon lubrication; they were able to 

demonstrate that continuous passive motion upregulated the production of 

lubricin.(109)  
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In this study, we developed the cyclic shear loading device for in vitro 

friction experiment based on tribological studies. Then, we prepared injured 

bovine osteochondral explants model and treated with several lubricants on that 

model. Friction coefficient was measured by LabVIEW software connected to 

friction device. This study will determine PRG4-GFP’s cytoprotective effect on 

shear stress and the relationship between lubricants and friction coefficient. 

4.2 Specific aims and hypotheses 

 We tested possible lubricants in knee joint in vitro model. The explants 

were then incubated for 4 hours in pure Hanks balanced salt solution (HBSS) or 

in HBSS containing 20% bovine synovial fluid, or 0.3 μM PRG4-GFP (0.1 

mg/ml), or 0.3 μM BSA (0.03 mg/ml). Then, explants were moved into a custom 

built shear loading device and a 1.0 kg vertical load was applied to a smooth 

acrylic ball resting on the impact site. After preloading in place for 30 minutes 

the ball was driven back and forth across the impact site over a distance of 5 mm 

at sliding velocity of 1.0 mm/sec for 60 minutes.  

 PRG4-GFP showed lubricin-like cartilage binding capacity to cartilage 

surfaces in vitro. We hypothesized that metal-on-cartilage friction tests would 

show that PRG4-GFP reduced friction coefficients to a degree comparable to that 

of synovial fluid and had strong chondroprotective effects in explanted cartilage 

exposed to shear loading.(84) Assessments of chondrocyte viability after shear 

loading showed that PRG4-GFP had a strong chondroprotective effect on par 

with that of synovial fluid. 
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Specific Aim 1: PRG4-GFP protects chondrocytes from death and damage 

                            induced by shear loading.  

Hypothesis 1: PRG4-GFP prevents shear loading damage on articular 

cartilage and decreases chondrocyte death. 

a. Construct the shear loading device. 

b. Verify the lubricant’s preventing effect on cell death on damaged 

articular cartilage compared to control group 

4.3 Materials and methods 

4.3.1 Characterization of friction device 

 A custom-designed friction device was used in this study (Figure 4.1A). A 

stepper motor actuator (NEMA 17 Stepper, Ultra Motion, Cutchogue, NY) 

connected with a 10 lb load cell (Honeywell, Columbus, OH) created shear 

loading on flat surface of the specimens. A constant normal load was also 

applied on the specimen via a 1 kg stainless steel bar. The specimen was securely 

fixed in a custom-designed molder and contacted with a 1 x 1 cm flat steel bar 

(Figure 4.1B). The entire device was located in a 37 °C incubator and operated 

using LabVIEW software (National Instruments Corp., Austin, TX). For the 

validation of the device, articular cartilage, rubber and wood were tested to 

measure the friction coefficient (μ).(75, 110, 111) 

4.3.2 Friction test on explants 

 Fresh bovine osteochondral explants were anchored along the bone 

surface to the base plate with poly caprolactone (PCL). The centers of the 

explants were subject to a high energy impact load via a 4 mm platen, which 
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caused superficial chondrocyte death and mild fissuring of the superficial zone. 

Osteochondral explant plugs with 7 J/cm2 impact injury were incubated in 

various lubricants, HBSS, 20% bovine synovium fluid (SF), or PRG4-GFP with 

50, 100, and 200 μg/ml for 30 minutes. Next, the plugs were moved into a 

custom built shear loading device and were then equilibrated with 1 kg pre-

loading on the impact site. After pre-loading in place for 30 minutes the ball was 

driven back and forth across the impact site over a distance of 5 mm at a sliding 

velocity of 1.0 mm/sec for 60 minutes. After staining with calcein AM and 

ethidium homodimer the explants were imaged on a confocal microscope to 

observe the percentage of viable cells at the center of the impact site. Imaging 

was repeated at 24 hours and 72 hours, and 168 hours post-op.  

 For measuring friction coefficient, fresh bovine osteochondral explant 

plugs (12 mm) were anchored along the bone surface to the base plate with new 

designed plate. The centers of the explants were subject to a high energy impact 

load via a 4 mm platen, and then the explant plugs were incubated for 30 minutes 

in pure HBSS or 20% bovine SF or PRG4-GFP with 50, 100, and 200 μg/ml. 

Then, explant plugs were moved into a custom built shear loading device and a 

1.0 kg vertical load was applied to a smooth metal surface resting on the impact 

site. After pre-loading in place for 10 minutes the metal surface was driven back 

and forth across the impact site over a distance of 3 mm at a sliding velocity of 

1.0 mm/sec for 3 cycles. Friction coefficient was calculated by the kinetic 

equation (F = μN; F; friction force, μ; friction coefficient, and N; normal force).  
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4.3.3 Confocal examination 

 The bovine cartilage plugs and murine knee joints were stained with 1 

µg/ml calcein AM (Invitrogen; green) and 1 µg/ml ethidium homodimer 

(Invitrogen; red) and viewed through Olympus Fluoview 1000 Confocal Laser 

Scanning Microscope (Olympus America Inc., Center Valley, PA). The sites 

were scanned at about 500 μm in depth and at 50 μm intervals.  

 All confocal images were stacked in Z-project by Image J software 

(rsb.info.nih.gov/ij) and cell viability was calculated using quantitative cell 

image processing (QCIPTM).(112) The values at each time period (days 1, 3 and 7) 

were normalized to those at day 0. 

4.3.4 Statistical analysis 

Cell viability among tested groups was compared with the statistical 

analysis software package SPSS (IBM, Armonk, NY, USA). One-way analysis of 

variance (ANOVA) with the Tukey post hoc test was conducted to test all 

possible pairwise comparisons. The level of significance was set at p<0.05. 

4.4 Results 

4.4.1 Effect of PRG4-GFP on cartilage friction 

 The lubricating function of attached PRG4-GFP was evaluated using the 

friction test. A custom-designed friction device (Figure 4.1A, 4.1B) was 

validated using articular cartilage, rubber and wood (Figure 4.2A). Friction 

coefficient of articular cartilage was extremely low (0.015 ± 0.004) which was 

consistent with literatures showing 0.0005-0.04 for articular joint (113), while 
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the coefficient of rubber and wood were 0.25 ± 0.014 and 0.256 ± 0.014, 

respectively.  

 Injured osteochondral plugs were treated with PRG4-GFP with 

concentrations of 50, 100 and 200 μg/ml and bovine SF as a positive control 

(Figure 4.2B). The friction coefficient of injured cartilage with 7 J/cm2 showed 

5-times higher (0.073 ± 0.013) than that of an intact cartilage. This high friction 

value was reduced in PRG4-GFP treatment groups as well as the bovine SF 

group. In particular, the coefficients of PRG4-GFP ranged from 100 (0.011 ± 

0.011, p<0.001) to 200 μg/ml (0.014 ± 0.006, p<0.001) were significantly low 

without any difference in intact cartilage. 

4.4.2 Cytoprotective effect of PRG4-GFP on chondrocyte 

 Figure 4.3 shows representative images on the surface of cartilage at day 0 

(post-impact and -friction) and at day 7. The cartilage plug cultured in HBSS was 

severely damaged with 20-30% initial death of chondrocyte after an impact-

injury. This cell death dramatically increased at day 7 (over 60%). There was 

cytoprotective effect in groups of BSA, SF and PRG4-GFP at days 0 and 7.  

 The chondrocytes are continuously die from impact damage and friction 

stress. The viability was quantified using QCIPTM software and resulted in 

significant improvement of protecting cell death in groups of 20% SF and 100 

μg/ml PRG4-GFP (Figure 4.4). The percentage of viable cells in HBSS was 

approximately 40%, in negative control group (BSA and CM) was 60%, while 

PRG4-GFP treatment maintained the viability with over 80% at day 7 (p<0.01). 
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4.5 Discussion and conclusions 

 A custom-designed friction device was well developed with stepper motor, 

cyclic actuator, 10 lb load cell, LabVIEW software, and 1 kg shear loader. A 

constant normal loader was also applied on the specimen via a 1 kg stainless 

steel bar. For the validation of the device, articular cartilage, rubber and wood 

were tested to measure the friction coefficient. The friction device (Figure 4.1) 

was validated using articular cartilage, rubber and wood (Figure 4.2A). Friction 

coefficient of normal articular cartilage was extremely low (0.015 ± 0.004), 

while the coefficient of rubber and wood were 0.25 ± 0.014 and 0.256 ± 0.014, 

respectively. We are convinced that our friction test device functions within 

normal units. 

PRG4-GFP was treated on injured model to check the cytoprotective 

effect. Injured osteochondral plugs were treated with PRG4-GFP with 

concentrations of 50, 100 and 200 μg/ml, and the bovine SF was set as a positive 

control (Figure 4.2B). The friction coefficient of injured cartilage showed 5-

times higher (0.073 ± 0.013) than that of intact cartilage (0.015 ± 0.004). This 

high friction value was reduced in PRG4-GFP treatment groups as well as the SF 

group. In particular, the coefficients of PRG4-GFP ranged from 100 (0.011 ± 

0.011, p<0.001) to 200 μg/ml (0.014 ± 0.006, p<0.001) were significantly low 

without any difference in intact cartilage. We recognized that recombinant 

PRG4-GFP has cytoprotective and the capacity of decreasing friction as synovial 

fluid, and that PRG4-GFP treatment has a favorable potential for gene therapy. 

Friction test results showed that the cartilage plug cultured in HBSS was 
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severely damaged with 20-30% initial death of chondrocyte after an impact-

injury. While this cell death dramatically increased at day 7 in groups HBBS, 

BSA (over 60%), there was cytoprotective effect in groups of SF and PRG4-GFP 

at days 0 and 7 (Figure 4.3). The cell viability was calculated by confocal 

imaging with QCIPTM. 

 The viability resulted in a significant improvement of protecting cell death 

in groups of 20% SF and 100 μg/ml PRG4-GFP like being seen as confocal 

imaging (Figure 4.4). The percentage of viable cells in HBSS was approximately 

40%, while PRG4-GFP treatment maintained the viability with over 80% at day 7 

(p<0.01). Depending on high cell viability and decreasing friction coefficient 

after PRG4-GFP treatment, we predicted in vivo gene therapy using PRG-GFP 

would be a good source for curing OA. 
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Figure 4.1 Friction device for friction test (A) Friction device model. 
Specimens were applied to both shear load and normal load via a stepper motor 
actuator and a 1 kg mass. (B) Osteochondral explants (12 mm diameter and 10 
mm height) impacted with 7 J/cm2 using a drop tower was securely fixed with 
screws in a custom-designed molder. (C) 1 kg mass loading image on explant (D) 
The scheme of friction device 
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Figure 4.2 Friction coefficient (μ). (A) Several materials which was identified 
the friction coefficient (μ) were tested to validate the friction device (n = 4). The 
result was similar to literature. In particular, the coefficient of articular cartilage 
closed to zero (0.015 ± 0.004). (B) PRG4-GFP and synovial fluid (SF) showed a 
dramatic effect on reducing coefficient. Compared to impacted cartilage (0.073 ± 
0.013), the coefficient in groups of PRG 4-GFP ranged from 100 and 200 μg/ml 
and 20% SF was significantly low (less than 0.015) without any difference in 
intact tissue. N = 4-10, *p<0.05, **p<0.01, and ***p<0.001. 
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cultures indicate that the LubC product is appropriately glycosylated. Thus, we 

are now poised to move ahead with studies to assess intra-articular PRG4 gene 

therapy as a means to mitigate OA in ACL deficient joints. We hypothesize that 

ectopic expression of PRG4-GFP in the joint with infection of AAV-PRG4-GFP 

will protect cartilage from the degenerative effects of chronic joint instability. 

 We would like to assess the effects of PRG4 gene therapy on the 

progression of OA in the destabilization of a medial meniscus (DMM) mouse 

model and in a rabbit ACL transection model. Gene therapy will be started 

immediately after a complete ACL transection. Joint instability and osteoarthritis 

will be evaluated at 4 and 8 weeks post DMM or ACLT. 

Specific Aim 1: AAV-PRG4-GFP transduction of joint cells in vivo for gene 

                           therapy  

Hypothesis 1: Determine PRG4-GFP is expressed in PRG4 gene therapy in 

a mouse DMM model and in a rabbit ACL deficient model. 

a. Verify AAV-PRG4-GFP infection in animal models through fluorescent      

                        imaging  

b. Verify PRG4-GFP expression level confirm with immunohistochemistry 

5.3 Materials and methods 

5.3.1 In vivo feasibility test of PRG4-GFP 

 Six young adult male C57BL/6J mice (8 weeks-old) were obtained from 

the Jackson Laboratory (Bar Harbor, ME) and allowed to acclimate for 1 week. 

Animal study was performed according to a protocol approved by Institutional 

Animal Care and Use Committee (IACUC) at the University of Iowa. Under 
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anesthesia, 5 μl of 0.5 x 1010 v.g AAV-GFP (n = 3) or AAV-PRG4-GFP (n = 3) 

was injected into the intra-articular space of each right stifle joints using a 

Hamilton® syringe fitted with a 28 gauge needle (Hamilton co., Reno, NV). 

There was no injection in the contralateral stifle (left). After 2 weeks, all animals 

were euthanized with CO2 and stifles from both sides were isolated for confocal 

examination and DNA extraction. 

5.3.2 Immunohistochemistry examination using anti-lubricin antibody and anti-

GFP antibody 

 The femorotibial joints of mice that were killed 2 weeks following 

injection of AAV-PRG4-GFP were examined histologically. The joints were 

dissected and stored in a buffered neutral formalin solution (100 ml 37–40% 

formalin, 900 ml distilled water, 4 gram sodium phosphate monobasic, 

monohydrate, and 6.5 gram sodium phosphate dibasic, anhydrous [pH 7.4]). 

Decalcification was performed for 2 days at room temperature, using a 

decalcifying solution (100 ml concentrated formic acid, 80 ml concentrated HCl, 

50 gm 1,3,5-trihydroxybenzene, and 800 ml distilled water). The specimens were 

embedded in paraffin, and sections were generated and stained with a 1 : 250 

dilution of anti-lubricin antibody (Abcam Inc., Cambridge, MA) and anti-GFP 

antibody by peroxidase-linked goat anti-rabbit IgG. To receive more clear 

staining, Vectastain® ABC reagent (Vector Laboratories Inc., Burlingame, CA) 

was used. 

 

 



58 

 

 

 

5.3.3 μCT imaging in AAV-PRG4-GFP injected rabbit knees 

 The equilibrium partitioning of an ionic contrast-microcomputed 

tomography (EPIC- μCT) was performed for characterization morphological and 

compositional change after injection AAV on ACL ruptured rabbit knee models. 

The proximal end of each tibia was immersed in 2 ml of 30% Hexabrix 320 

contrast agent (Covidien, Hazelwood, MO) and 70% ion-free phosphate buffer 

saline (PBS) at 37 °C for 30 min for equilibration of the agent. There was no 

difference in the average X-ray attenuation levels, thickness, volume or surface 

area determined for fresh and formalin-fixed cartilage at that time point. 

Proximal tibiae were scanned using a μCT 40 (Scanco Medical, Brüttisellen, 

Switzerland) at 45 kVp, 177 mA, 200 ms integration time, and a voxel size of 16 

μm. 

5.3.4 Statistical analysis 

Cell viability among tested groups was compared with the statistical 

analysis software package SPSS (IBM, Armonk, NY, USA). One-way analysis of 

variance (ANOVA) with the Tukey post hoc test was conducted to test all 

possible pairwise comparisons. The level of significance was set at p<0.05. 

5.4 Results 

5.4.1 In vivo feasibility test of PRG4-GFP 

 PRG4-GFP was injected into the murine knee joint to verify the potential 

use of in vivo environment. Green fluorescence was detected on the intra-

articular cells including the articular cartilage (Figure 5.1A), synovium (Figure 

5.1B) and intra-patellar fat pad (Figure 5.1C). In contrast, there was no detection 
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in the contralateral joints (Figure 5.1D). Finally, DNA isolated from mouse 

whole stifle joint was verified the infection of PRG4-GFP. Unlike GFP injection, 

PRG4-GFP gene was detected in all 3 PRG4-GFP-injected mice (right) (Figure 

5.2). PRG4-GFP was examined histologically in a paraffin embedded cartilage 

section. AAV-PRG4-GFP injected knees showed an immune response to both 

GFP antibody and lubricin antibody (Figure 5.3C, 5.3D). Normal murine 

cartilage groups had no response to either antibody (Fig 5.3A, 5.3B). 

5.4.2 In vivo test of PRG4-GFP in PTOA animal models 

 PRG4-GFP was injected into the mouse knee joint to verify its potential in 

the in vivo environment. AAV-PRG4-GFP injected in the destabilization of the 

medial meniscus (DMM) knees (5 μl of 0.5 x 1010 v.g) and ACL insufficiency 

rabbit knees (200 μl of 0.25 x 1010 v.g) showed minimal proteoglycan and 

lubricin loss compared to control GFP groups. The μCT imaging in AAV-PRG4-

GFP injected rabbit knees showed PRG4-GFP is inhibiting degeneration in 

damaged tissue compared to AAV-GFP injected group (Figure 5.5). In load 

bearing cartilage region, a stable level of PG contents and PRG4-GFP signal 

were identified in AAV-PRG4-GFP injected knees. The AAV-PRG4-GFP 

injected left knees were strongly expressed with GFP antibody and lubricin 

antibody compare to AAV-GFP injection group or right knees (Figure 5.6). 

5.5 Discussion and conclusions 

 Through molecular cloning, PRG4-GFP was inserted in the AAV vector. 

Injection of AAV-PRG4-GFP in mouse stifle joints (5 μl of 0.5 x 1010 v.g) 

resulted in persistent expression of the transgene by superficial and transitional 
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chondrocytes, as well as by synoviocytes, adipocytes, and meniscal cells (Figure 

5.1). Depending on regions of AAV-PRG-GFP infection, expression levels and 

PRG4-GFP covered areas were varied. Cartilage surfaces in injected joints were 

positive for both GFP and lubricin, whereas control joints were largely negative 

for both targets through feasibility test of immunohistochemistry (Figure 5.3). 

We are convinced that PRG4-GFP gene therapy enhanced the surface lubricant 

layer on cartilage surfaces. If we find the proper infection concentration and 

more exact region to recover with lubricin, our approach will make it possible to 

refine the long-term therapeutic effects of lubricant supplementation on the 

development of PTOA in joint injury models.  

 Our studies are intended to provide a definitive assessment of the 

potential of PRG4/lubricin gene therapy to block the development of PTOA 

associated with mice DMM and ACL insufficiency in the rabbit. AAV-PRG4-

GFP treatment groups show less proteoglycan loss and slow degeneration in 

damaged area (Figure 5.4, 5.5, 5.6). If PRG4-GFP gene therapy proves to be 

effective in the context of DMM and ACL transection, a natural follow-up to this 

investigation would be to apply the treatment to other joint injuries that might 

also benefit from improved joint lubrication. Moreover, our gene therapy will be 

enhanced if implemented with the previous well- known candidate gene. Thus, 

we are well-positioned to broaden the indications for PRG4-GFP therapy to 

encompass the majority of injuries that lead to PTOA. We suspect these results 

will fully predict what may occur in humans. However, positive findings in this 

proof-of-concept study will encourage us to further examine the long-term 
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effects of PRG4-GFP therapy in models that better approximate the slow, gradual 

pace of OA progression in humans. 
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Figure 5.1 Ectopic expression of PRG4-GFP in vivo. Six mice had GFP (n = 3) 
or PRG4-GFP (n = 3) injection in right stifle and euthanized at 2 weeks. 
Confocal images show apple green fluorescence emitted from the articular 
cartilage (A), synovium (B), and infrapatellar fat pad (C) in mouse knee joint 
after 2.5 x 1010 v.g injection of AAV-PRG4-GFP. (D) contralateral joints 
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Figure 5.2 Confirmation of PRG4-GFP gene through PCR. PCR products 
were detected in only PRG4-GFP group (R; right), while the contralateral joint 
(L; left) had no PRG4-GFP construction gene. 
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Figure 5.3 Immunohistochemistry with GFP antibody and lubricin antibody 
in vivo. Paraffin-embedded cartilage sections were stained with GFP (A and C) 
and lubricin (B and D) antibodies. The antibodies were only expressed positively 
in PRG4-GFP group (C and D) compared with normal cartilage (no injection) (A 
and B). 
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Figure 5.4 Representative histologic sections safranin O staining for 
measuring PG contents. (A, C) AAV-GFP injection in DMM mouse (B, D) 
AAV-PRG4-GFP injection in DMM mouse (n = 2-4). DMM: Destabilization of 
the medial meniscus 
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Figure 5.5 Representative histologic EPIC-μCT image in ACL transection 
rabbit model. (A) AAV-GFP injection in ACLT rabbit (B) AAV-PRG4-GFP 
injection in ACLT rabbit (n = 6) In load bearing cartilage region, a stable PG 
contents level and PRG4-GFP signal were identified in AAV-PRG4-GFP injected 
knees. ACLT: anterior cruciate ligament transection 
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Figure 5.6 Representative immunohistochemistry image in ACL transection 
rabbit model with GFP antibody and lubricin antibody. AAV-GFP or AAV-
PRG4-GFP were injected in ACLT left knees. Right knees are no injection 
control group. Paraffin-embedded cartilage sections were stained with GFP and 
lubricin antibodies. ACLT rabbit injected with AAV-GFP (n = 7), ACLT rabbit 
injected with AAV-PRG4-GFP (n = 7), ACLT: anterior cruciate ligament 
transection 
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CHAPTER 6 

DISCUSSION AND CONCLUSIONS 

 The recombinant PRG4-GFP fusion protein produced by transduced 

synoviocytes in monolayer culture was of the expected molecular weight, 

appropriately glycosylated, and found to bind to cartilage surfaces. The friction 

coefficient of explant cartilage decreased significantly with the addition of 

PRG4-GFP to the culture medium. We measured the friction coefficient from an 

average of 3 back-and-forth cycles. However, some researchers report that 

repetitive motion friction increases the friction coefficient.(84) Thus, more 

lengthy friction tests are needed to acquire a more comprehensive understanding 

of the effects of PRG4-GFP on friction. On the other hand, PRG4-GFP 

functioned similarly to SF in terms of protecting chondrocytes from shear load-

induced death, which supports the hypothesis that PRG4-GFP lowers friction. 

These findings confirmed that the insertion of the GFP sequence in PRG4, while 

helpful for tracking purposes, did not significantly disrupt boundary lubricant 

function.   

 Injection of AAV-PRG4-GFP in mouse stifle joints resulted in persistent 

(up to 4 weeks post-injection) expression of the transgene by superficial and 

transitional chondrocytes, as well as by synoviocytes, adipocytes, and meniscus 

cells. Immunohistochemistry showed that cartilage surfaces in injected joints 

were positive for both GFP and lubricin, whereas control joints were largely 
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negative for both targets. These results indicate that PRG4-GFP gene therapy 

enhanced the surface lubricant layer on cartilage surfaces.  

 Injection of AAV-PRG4-GFP in rabbit ACL deficient joints also resulted 

in a stable expression of PRG4-GFP by chondrocytes and synoviocytes on the 

articular surface. Immunohistochemistry showed that cartilage surfaces in 

injected joints were positive for both GFP and lubricin as in previous mice 

experiments. The μCT imaging in load bearing region on cartilage showed a 

stable level of PG contents, blocking PG loss, and PRG4-GFP signal. These 

results indicate that PRG4-GFP gene therapy enhanced the surface lubricant 

layer in animal models. A longer period of the experiment, approximately more 

than 8 weeks, would be required to verify long-term effects. Although we 

followed mice for only 4 weeks (rabbits for 8 weeks), we suspect that PRG4-GFP 

expression in post-mitotic cells like chondrocytes may persist for a year or more 

post-infection.(127) If that is the case, our approach has a favorable potential to 

test the long-term therapeutic effects of lubricant supplementation on the 

development of PTOA in joint injury models. Moreover, a quantification a 

method of therapeutic effects on cartilage surface needs to be verified for the 

expression of PRG4-GFP. 

 The studies proposed here are intended to provide a definitive assessment 

of the potential of PRG4/lubricin gene therapy to forestall the development of 

PTOA associated with ACL insufficiency in the rabbit. We do not know that 

these results will fully predict what may occur in humans. Rather, positive 

findings in this proof-of-concept study will encourage us to further examine the 
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long-term effects of PRG4-GFP therapy in models that better approximate the 

slow, gradual pace of OA progression in humans. 

 If PRG4-GFP gene therapy proves to be effective in the context of ACL 

transection, a natural follow-up to this investigation is to apply the treatment to 

other joint injuries and damages that would benefit from improved joint 

lubrication. These may include isolated meniscal injuries, combined ACL and 

meniscal injuries, and intraarticular fractures. Animal models for all of these 

injuries have been developed in our laboratories as part of the NIH program 

project and relevant Department of Defense-funded projects. Therefore, we are 

well-positioned to broaden the indications for PRG4-GFP therapy to encompass 

the majority of injuries that lead to PTOA. 

 Having overcome the most significant technical obstacles in preliminary 

studies we don’t expect to encounter substantial difficulties in executing the 

proposed experiments. However, concerns regarding the adequacy of PRG4-GFP 

expression levels in the joint must be addressed. Our pilot studies showed that 

the concentration of PRG4-GFP secreted into 10 ml of culture medium by 1 x 106 

transduced synovial fibroblasts in 2 days (0.3 μM) was sufficient to prevent the 

effects of injurious shear loading on explants. Since we are planning on 

introducing 1010 viral particles in the joint it is not unreasonable to expect that 1 

x 106 cells or even more will be transduced. Thus we are confident that 

expression levels will be adequate to effectively lubricate joint surfaces, 

especially in the small confines of the rabbit joint. In any event we will carefully 
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monitor whether PRG4-GFP is in fact coating joint surfaces at every end point. 

For this reason, optimized volume of AAV-PRG4-GFP is needed. 

 It is important to note that we do not expect many chondrocytes to be 

infected by AAV due to the impenetrability of the cartilage extracellular matrix. 

More accessible cells in the synovial membrane and fat pad are more likely to be 

transduced. By secreting lubricin into joint fluid bathing cartilage surfaces, these 

cells contribute extensively to the lubricin bound to the cartilage surfaces. Thus, 

we expect that the secretion of PRG4-GFP by non-cartilage cells will be 

chondroprotective. 
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