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three weeks after treatment using an HA ELISA (Corgenix, Broomfield, CO) by 

following the manufacturer’s protocol.  Briefly, samples, HA reference solutions, and HA 

controls were diluted by a factor of 1:10 in reaction buffer and 100 µL of each solution 

was added into a well coated with hyaluronic acid-binding protein (HABP). In order to 

account for HA present in the serum used to supplement the DMEM, fresh DMEM 

supplemented with fetal bovine serum (FBS) was also used as a control. After a one hour 

incubation at room temperature the wells were washed four times using PBS, followed by 

a 30 minute incubation at room temperature with a solution of horseradish peroxidase-

conjugated HBP. After incubation, 100 µL of a chromogenic substrate solution 

containing tetramethylbenzidine and hydrogen peroxide was added. The absorbance of 

each sample, HA reference, and control was measured at 450 nm using a Glomax 

microplate reader (Promega, Madison, WI). A standard curve was created using the 

absorbance and known concentration of the HA reference solutions, and a best fit curve 

was calculated using a third-order polynomial regression as recommended by the 

manufacturer.   

4.2.6. Statistical Analysis 

 
Data in graphs for mRNA expression levels are presented in the form of mean ± 

standard error. All other data are presented as mean ± standard deviation. Student t-tests 

were performed using Prism 6 software (Graphpad Software Inc., La Jolla, CA). 

Significance was obtained at α = 0.05. 
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4.3. Results 

 
4.3.1. Cross-linked HA Swelling and Stress Development 

Osmotic pressure tests were performed to determine the swelling capabilities of 

the formulation of cross-linked HA used for this study, as defined by the Donnan effect. 

When placed into a solution of purified water, the dermal filler absorbed approximately 

73.5 ± 20.5 µL in 24 hours and a total of 202.3 ± 34.2 µL after 72 hours (Fig. 20C). 

Dermal filler exposed to a solution of 1x PBS absorbed approximately an average of 25.7 

± 6.4 µL of water by 24 hours, and of 31.0 ± 8.9 µL by 72 hours.  Equilibrium began to 

occur after only one day, at which point the average swelling ratio of the dermal filler 

was found to be 1.26 ± 0.06, increasing to 1.31 ± 0.09 by the end of the experiment (Fig. 

20C). The change in height of the fluid column was used at each of these time-points to 

calculate the Donnan osmotic pressure by equating this pressure to hydrostatic pressure. 

The Donnan osmotic pressure was plotted against the swelling ratio and was used later to 

estimate the amount of stress generated by the swelling of the dermal filler injected into a 

collagen gel (Fig. 20D). Focal injection of the dermal filler into acellular collagen gels 

caused the formation of small pockets that resulted from local expansion of the lattice 

(Fig. 21A). The average initial area occupied by 10 µL of dermal filler was 

approximately 4.40 ± 0.87 mm2. Water absorption after addition of 1x PBS caused the 

injected filler to swell by approximately 10%, as it expanded in size to approximately 

4.83 ± 0.43 mm2. The swelling ratio of injected dermal filler was defined as the ratio of 

the area at each time-point over the initial area. After approximately six to seven hours, 

the change in swelling ratio began to decrease, and equilibrate. The swelling ratio was 
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found to be 1.07 ± 0.01 after only six hours, and 1.10 ± 0.00 after 24 hours (Fig. 21B). 

This decrease in swelling ratio exhibited by the injected dermal filler as compared to the  

 

Figure 20. HA dermal filler osmotic pressure tests. 

swelling ratio of non-confined dermal filler indicates a resistance to deformation that may 

be introducing a state of tension on the surrounding fibrous network. Due to the low 

cross-linking density of the formulation of dermal filler used in this study, we can assume 

that the hydrostatic pressure of the dermal filler when exposed to an aqueous solution is 

negligible, which can be confirmed by the dissolution of the dermal filler when placed in 

water and 1x PBS, after only two hours. The stress generated by swelling of the dermal 

filler was found by using the swelling ratio of the filler in collagen and interpolating the 
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corresponding hydrostatic stress using the plot in Fig. 20D. Then, using equation 4-3, I 

estimated the stress developed by swelling of the dermal filler in collagen to be 

approximately 20.7 Pa.  

 

Figure 21. Characterization of swelling behavior of dermal filler in an acellular collagen 
gel hydrated with 1x PBS. A) DIC images depicting the change in area of an 
injection of dermal filler due to swelling when exposed to 1x PBS for 24 
hours. B) Swelling ratio of pure, unconfined dermal filler, and dermal filler 
injected into a collagen gel, plotted over time. 
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4.3.2. Activation of Rho/ROCK Pathway/Fibroblast 

Mechanosensitivity 

 
Having demonstrated the swelling capabilities of the HA-based dermal filler and 

its effect on altering the mechanical environment of a collagen gel, we next considered 

whether the changes caused to the ECM would be enough to induce mechanotransduction 

in different aged cells and incite collagen synthesis.  Released collagen gels were used to 

simulate the mechanical environment of the aged dermis by providing a low stress level 

milieu. Fibroblasts cultured within stress-relieved gels, exhibit a decrease in contractility 

and in the synthesis of ECM proteins, a behavior characteristic of fibroblasts that inhabit 

the aged dermis. Primary human dermal fibroblasts (HDFs) extracted from young, and 

old dermal tissue explants were cultured within collagen gels that were relieved from 

stress and were then treated with a mechanical stimulus through the injection of a HA-

based dermal filler. Age-dependent differences in fibroblast mechanosensitivity were 

assessed by studying the response of genes that encode for the mechanoresponsive 

proteins that regulate actin stress fiber formation and contractility, RhoA, ROCK1, and 

ROCK2. PBS was used as a control, assuming that its injection into a collagen gel would 

cause a temporary expansion of the lattice. While the dermal filler would absorb water 

and continue to swell over time, causing small deformations to the surrounding collagen 

matrix, and introducing a state of stress, we assumed that PBS would eventually diffuse 

through the porous matrix, causing little to no lasting physical changes and therefore, 

would provide no mechanical signal to the cells. 

Young HDFs cultured in stress-relieved collagen gels that were injected with 

dermal filler, demonstrated a 2.7-fold increase in the expression of the small GTPase 
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protein, RhoA, and a 2.8-fold, and 3-fold increase in the expression of ROCK1, and 

ROCK2, respectively, five minutes after treatment (Fig. 22A). This response was not 

sustained after 24 hours in all cell lines within the young age group. Although the average 

expression of RhoA, ROCK1, and ROCK2 in dermal filler-injected samples at 24 hours 

was found to be 3-fold, 2.7-fold, and 2.6-fold greater than in PBS controls, these levels of 

expression were not significantly different.  

 

Figure 22. Rho/ROCK expression in young and old HDFs cultured in released collagen 
gels. Gene expression of RhoA, ROCK1, and ROCK2 was analyzed using 
qPCR five minutes, and 24 hours after injection of dermal filler into a released 
collagen gel seeded with A) young HDFs  (n=15, *p<0.05, **p<0.01, 
***p<0.001 vs. PBS injection) or B) old HDFs (n=9, *p<0.05, **p<0.01, 
***p<0.001 vs. PBS injection). 

Activation of RhoA, ROCK1, and ROCK2 was also observed in old HDFs in 

stress-relieved fibroblasts after dermal filler injection. Levels of expression of RhoA, 

ROCK1, and ROCK2 exhibited a 5-fold, 3-fold, and 3-fold increase, respectively, five 

minutes after injection of the dermal filler (Fig. 22B).  Similar to the behavior observed 

in young HDFs, the older cells did not significantly sustain the increased level of 

expression of Rho/ROCK genes. No significant differences in levels of expression were 

observed between young and old HDFs in response to the injection of the filler.  
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Attached collagen gels were used to represent a simple in vitro model of a healthy 

dermis under homeostatic levels of tension. When cultured within attached collagen gels, 

as fibroblasts begin to exert forces and remodel the environment, resistance is met by the 

tethered boundaries of the gel. As tension develops within the gel, fibroblasts assume an 

active, synthetic activity. Young HDFs cultured within attached collagen gels, 

 

Figure 23. Rho/ROCK expression in young and old HDFs cultured in attached collagen 
gels. Gene expression of RhoA, ROCK1, and ROCK2 was analyzed using 
qPCR five minutes, and 24 hours after injection of dermal filler into a released 
collagen gel seeded with A) young HDFs  (n=15, **p<0.01, vs. PBS 
injection) or B) old HDFs (n=9, vs. PBS injection). 

demonstrated an approximate 2-fold increase in the level of expression of RhoA, and a 2-

fold, and 2.4-fold increase in the expression of ROCK1, and ROCK2 five minutes after 

treatment, respectively. In contrast to what was observed in fibroblasts cultured under a 

low-stress level environment, this change in expression continued to significantly 

increase over the course of 24 hours after treatment (Fig. 23A). In turn, old HDFs showed 

no immediate response to mechanical stimulation, as no significant change in the 

expression of RhoA, ROCK1, or ROCK2 was observed five minutes, or 24 hours after 

injection (Fig. 23B).  
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4.3.3. Cell Number 

The number of young HDFs cultured in released fibrin gels increased from an 

initial estimated 0.25 million cells to a measured average of 1.99 ± 0.38 million cells in 

dermal-filler treated gels and 2.12 ± 0.57 million cells in PBS controls after three weeks 

in culture (Fig. 24). Cell proliferation appeared to be lower in old HDFs cultured in 

released fibrin gels treated with dermal filler (1.72 ± 0.32 million cells) and PBS (1.75 ± 

0.38 million cells), as compared to younger HDFs seeded at the same initial density (Fig. 

24). With the exception of 69 year-old HDFs treated with dermal filler, all young and old 

cells cultured within attached fibrin gels demonstrated greater proliferation during the 

three-week culture after treatment with dermal filler and PBS than in released gels 

exposed to the same treatment. The number of young HDFs increased from an estimated 

0.25 million cells to 2.33 ± 0.50 million cells and 2.59 ± 0.49 million cells in dermal 

filler-injected and PBS controls, respectively. Old HDFs seeded at the same initial cell 

density, increased to 1.87 ± 1.06 million cells and 2.48 ± 0.99 million cells in dermal 

filler-injected and PBS controls, respectively. Treatment with the dermal filler caused no 

significant change in cell proliferation within age groups when cultured in released or 

attached gels. 
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Figure 24. Young and old HDF number in released and attached fibrin gels three weeks 
after treatment with dermal filler. 

4.3.4.  Collagen Expression and Synthesis 

 
Having found that the injection of dermal filler and enhancement of mechanical 

stimulation promotes a change in the expression of mechanosensitive proteins, we next 

studied the effect of this stimulation on inducing collagen expression and synthesis. 

Using the same models of healthy and aged dermis we began by studying changes in 

gene expression levels of collagen type I alpha I (COL1A1). A significant upregulation 

(p<0.001) in collagen expression was observed in both young and old HDFs cultured 

within released collagen gels five minutes after dermal filler injection (Fig 25A, and B). 

Stimulation caused by the injection of the filler was not enough to significantly sustain 
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this effect for 24 hours. There may be two reasons for this behavior: the tension caused 

by the swelling HA within the stress-relieved collagen gel was not sufficient to sustain a 

large enough increase in collagen expression or the HA began to diffuse out of the gel 

after injection. 

Figure 25.  Collagen  expression in  dermal  filler-injected  released  collagen  gels.  Gene 
expression of the collagen type I alpha 1 encoding gene, COL1A1 using      
qPCR five minutes and 24 hours after injection of dermal filler into a released 
collagen gel seeded with A) young HDFs  (n=14, ***p<0.001, vs. PBS 
injection) or B) old HDFs (n=9, ***p<0.001, vs. PBS injection). 

 
Following injection of dermal filler into attached collagen gel models, we found a 

significant increase in COL1A1 in young HDFs 24 hours after treatment (Fig. 26A). 

When cultured within an environment that provided the mechanical support for cells to 

achieve homeostatic levels of tension, old HDFs showed no increase in COL1A1 

expression five minutes after the dermal filler injection. But, continued swelling of the 

HA eventually generated a significant increase in COL1A1, observed 24 hours after 

treatment (Fig. 26B). The fold-change in the expression of COL1A1 in old HDFs, 

compared to PBS-treated control samples seeded with fibroblasts in the same age group 

after 24 hours was approximately 4.1, higher than the fold-change observed in young 
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HDFs, which was approximately 3.4. These results indicate that decreased collagen 

production by aged fibroblasts observed in vivo may be a result of a loss of mechanical 

tension in the dermis. Through the injection of the hydrophilic dermal filler, capable of 

causing an increase in mechanical stress, normal levels of COL1A1 expression can be 

restored. 

 

Figure 26. Collagen expression in dermal filler-injected attached collagen gels. Gene 
expression of the collagen type I alpha 1 encoding gene, COL1A1 analyzed 
using qPCR five minutes and 24 hours after injection of dermal filler into a 
released collagen gel seeded with A) young HDFs  (n=14, *p<0.05, vs. PBS 
injection) or B) old HDFs (n = 9, **p<0.01, vs. PBS injection). 

 
After observing the effect of mechanical stimulation on pre-translational 

expression of the COL1A1 gene, I evaluated the effect of these changes on the synthesis 

of collagen.  This was studied by quantifying the amount of collagen produced in samples 

treated with a swelling solution of cross-linked HA dermal filler in released or attached 

fibrin gels using hydroxyproline as an index for collagen production. In order to account 

for the effect of cell proliferation on the total amount of collagen produced, cell number 

was also quantified after a three-week incubation in attached or released fibrin gels, and 

was used to estimate the amount of collagen produced per cell.  
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Young HDFs produced an average total of 13.6 ± 6.8 µg of collagen when 

cultured in released fibrin gels and treated with an injection of 1x PBS. The injection of 

dermal filler did not cause a significant change in the amount of synthesized collagen, as 

young HDFs produced a total average amount of 12.0 ± 7.0 µg in dermal filler-injected 

gels (Fig. 27A). No significant difference was found in the amount of collagen produced 

per cell between control samples (5.9 ± 2.9 pg/cell) and dermal filler-treated samples (6.1 

± 3.0 pg/cell).  In released fibrin gels seeded with old HDFs and treated with dermal filler 

no significant difference in total collagen (13.8 ± 3.1 µg) was observed when compared 

to PBS-treated controls (13.0 ± 2.4 µg). Collagen produced per cell was approximately 

6.4 ± 1.5 pg/cell of collagen in control samples, 21 days after treatment and showed a 

small up-regulation in collagen synthesis, producing up to 8.0 ± 1.8 pg/cell when treated 

with an injection of dermal filler (Fig. 27B), though no significant difference was 

observed.  

When cultured in attached fibrin gels, young HDFs produced an average total of 

21.9 ± 6.7 µg in PBS controls, and 21.4 ± 5.3 µg when treated with an injection of the 

dermal filler. Normalized over the average number of cells, young HDFs in control 

samples produced approximately 8.0 ± 2.3 pg/cell and 8.2 ± 1.6 pg/cell in gels that were 

treated with the dermal filler. Old HDFs cultured under the same conditions produced an 

average total of 25.3 ± 4.8 µg of collagen in PBS controls and 24.7 ± 4.6 µg (Fig. 27A). 

Though no significant differences were observed, old HDFs produced collagen at a rate 

of 10.4 ± 2.5 ng/cell and slightly increased production to approximately 17.2 ± 8.0 ng/cell 

in gels treated with an injection of dermal filler (Fig. 27B).  
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Collagen production appeared to be unaffected by age as no differences were 

observed between age groups. Yet, significant differences (p<0.05) were found in the 

total amount of collagen produced in attached gels as compared to released gels (Fig. 

27A), as well as in the amount of collagen produced per cell (Fig. 27B). These results 

indicate that the expression and synthesis of collagen are dependent on the state of the 

mechanical environment of the ECM and that this response is not affected by aging in 

human dermal fibroblasts, but possibly, by the effects of intrinsic and actinic aging on the 

structural integrity of the dermis. These observations are consistent with the findings of 

Khorramizadeh et al. [159] who demonstrated that collagen production per cell was 

unaltered by aging in studies conducted on fetal dermal fibroblast and adult human 

dermal fibroblast monolayers. 
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Figure 27. Collagen production in attached and released fibrin gels three weeks after 
treatment with dermal filler. A) Total collagen produced by young (n = 12, *p 
< 0.05, and **p < 0.01) and old (n = 9 **p < 0.01, and ***p < 0.001) HDFs 
cultured in attached and released fibrin gels. B) Collagen produced per cell. (n 
= 12, *p < 0.05, and **p < 0.01) and old (n = 9 **p < 0.01, and ***p < 0.001) 
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4.3.5. HA Dermal Filler Diffusion 

After observing that the injection of the dermal filler did not have significant, 

lasting effects on collagen synthesis, I hypothesized that the HA was being removed or 

diffused through the collagen matrix. HA concentration was quantified in samples of 

DMEM to estimate the amount and rate of diffusion of HA out of the gel and into the 

medium. With a HA concentration of 24 mg/mL, each 10 µL injection of dermal filler 

contained 240 µg of HA. During the first 24 hours, approximately 550.8 ± 153.2 ng of 

HA had diffused out of the gel and into the medium. During the following 48, and 72 

hours, the HA found in DMEM was approximately 687.6 ± 214.4 ng, and 504.4 ± 47.4 

ng, respectively. HA continued to diffuse out of the gel during the following three weeks, 

as a cumulative total of approximately 4602.6 ± 278.9 ng of HA was quantified in the 

DMEM  (Fig. 28). This equates to approximately 2% of the total amount of DMEM 

initially injected into the gel. This amount does not incorporate the HA that may be 

located in the interstitial space of the collagen gel. Diffusion of HA into the gel and 

medium may be cause a reduction in the amount of stress generated in the collagen 

matrix due to HA swelling, and may explain my observations for collagen synthesis in 

the dermal models used in this study.  
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Figure 28. Cumulative amount of HA diffused into medium. 

4.4. Discussion 

 
Chronological aging of skin is characterized by drastic changes in the 

composition and structure of the dermal ECM, such as thinning of collagen fiber bundles 

[160], and a decrease in collagen and glycosaminoglycan synthesis. The mechanical 

interaction between fibroblasts and collagen fibrils is essential in regulating cell function 

and maintaining the structure and function of the dermal ECM [12, 161]. The depletion 

and destruction of structural proteins, a phenomenon characteristic of intrinsic and actinic 

aging may be responsible for the loss of mechanical communication between fibroblasts 

and the ECM. The combination of the inherent changes in cell behavior as we age and 

alterations in the mechanical feedback loop between cells and the ECM may lead to the 
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development of common signs of aging in skin such as wrinkle formation, increased 

fragility, delayed wound healing, and decreased elasticity, normally observed in 

individuals over the age of 60. In the study presented in this chapter, I have explored the 

role of mechanical integrity and stimulation in inducing the expression of genes 

responsible for fibroblast regulation and collagen synthesis in young and old HDFs. 

Many studies have explored the biochemical effects of HA on fibroblast adhesion, 

migration, proliferation, and protein synthesis. Its use as a dermal filler is based on its 

space-filling capability and its biocompatibility. But the long-term in vivo effects of 

cross-linked HA-based dermal filler injections on the activation of collagen synthesis, 

and changes in fibroblast morphology in the aged dermis suggest that alterations to the 

mechanical environment caused by its hydrophilicity and swelling capability, or the 

combination of this and its biochemical activity, may be the factors responsible for this 

response. In order to test this hypothesis, I began to characterize the swelling behavior of 

a commercially available 24 mg/mL HA-based dermal filler from Allergan, Inc. by 

performing osmotic pressure tests. When placed in dialysis tubing and exposed to 

purified water, the dermal filler increased the volume of fluid in the tubing by 

approximately 200%. Fluid absorption, governed by the Donnan effect, was decreased 

when the filler was exposed to an isotonic solution. Exposure to 1x PBS resulted in an 

increase in volume of fluid in the tubing of 31%.  The volume expansion of the filler that 

occurs due to the ability of cross-linked HA to imbibe large amounts of water, resulted in 

mechanical stretching and deformation of the fibrous matrix when it was injected into a 

collagen gel. These deformations introduced a state of stress that was estimated to be 

approximately 20.7 Pa, and incited behavioral responses in resident HDFs. 
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The Rho/ROCK pathway is a mechanoresponsive pathway that controls actin 

cytoskeletal organization [162], force traction generation [163], and the formation of 

actin stress fibers [164]. Few studies have explored the effects of intrinsic aging and the 

altered structure of the dermis on HDF mechanosensitivity and contractility. In this study, 

HDFs responded to the injection of the dermal filler by changing the expression of genes 

that encode for key regulators of the Rho/ROCK pathway in a manner that was dependent 

on the initial state of tension in the collagen-based in vitro model of the dermis. A large 

increase in the expression of RhoA, ROCK1, and ROCK2 was observed five minutes 

after injection of the dermal filler in released collagen gels that were cultured under low 

tension in both young and old age groups. This initial increase may have been caused by 

mechanical stretching of the collagen matrix as the filler displaced collagen fibers, 

generating a large, sudden change in the state of stress sensed by surrounding cells. Given 

the low state of tension that normally characterizes the released collagen gel model, 

increased stress caused by continued swelling of the dermal filler was not sufficient to 

cause a significant, lasting effect on the expression of RhoA, ROCK1, and ROCK2 

coding genes nor on the expression and synthesis of collagen.  

Young HDFs cultured in attached gels demonstrated a sustained response to the 

behavior of the filler up to 24 hours after injection by maintaining an elevated expression 

of RhoA, ROCK1, and ROCK2. This response was also accompanied by an increase in 

the expression of COL1A1, although the stimulation was not sufficient to induce a lasting 

effect on collagen synthesis. By providing a more stable network that allowed for the 

generation of endogenous tension and enabled fibroblast connectivity to the collagen 

ECM, mechanical stimulation through the injection of the hydrophilic dermal filler 
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stimulated fibroblast contractility by increasing the expression of RhoA, ROCK1, and 

ROCK2. This response was not observed in old HDFs. Injection of the dermal filler into 

attached models of the dermis resulted in no significant change in the expression of 

RhoA, ROCK1, or ROCK2 in old HDFs. Aged dermal fibroblasts are characterized by a 

collapsed morphology, and a rounded shape that differs from the extended shape of 

fibroblasts in young skin. A disruption in function of the Rho/ROCK pathway may be 

responsible for the collapsed shape, and reduced ability of the aged dermal fibroblast to 

maintain structural support of the dermal ECM. These observations are consistent with 

studies conducted by Kono et al., who found that adult fibroblasts exhibited a reduced 

contractile activity as compared to fibroblasts in childhood [165]. Another study 

conducted by Fujimura et al. correlated the decrease in adult mouse fibroblast 

contractility to decreased synthesis of ROCK1, and ROCK2 proteins [166].  Results 

obtained in this study may suggest impairment in the regulation of fibroblast contractility, 

and actin polymerization resulting from the effects of aging. But, further studies would 

have to be conducted in order to clearly understand the nature and mechanism of this 

alteration. Such studies would involve quantification of individual and collective 

fibroblast contractility, quantification of synthesis and activity of RhoA, ROCK1, and 

ROCK2 proteins and their effect on the phosphorylation of MLC, and polymerization of 

actin stress fiber formation in aged fibroblasts. 

Interestingly, mechanical stimulation introduced by the filler resulted in an 

elevation in the expression of COL1A1 that was sustained up to 24 hours after treatment. 

Furthermore, although the injection of the dermal filler did not promote increased 

collagen synthesis when compared to PBS-treated control samples, I found that old HDFs 
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were capable of synthesizing collagen at a similar rate as young HDFs. Culturing old 

HDFs in attached fibrin gels also resulted in an increase in the rate of collagen production 

per cell, as was observed in young HDFs when compared to collagen synthesis in 

released gels. Similarly, culturing young HDFs in released fibrin gels that provided a 

low-tension environment, Although a gradual decrease in collagen production has 

become a characteristic staple of chronologically aged skin, the fall-off in de novo 

collagen is most evident when skin ECM is damaged and broken down by an increase in 

MMP production [136]. This seems to indicate that although there may be inherent 

effects of aging on the cell’s ability to compositionally remodel the ECM, the lack of 

structural support and the absence of mechanical tension play an important role in 

deactivating ECM synthesis. These results suggest that impaired collagen synthesis in the 

dermis, normally associated with aging, is caused by a loss of structural stability in the 

dermis and is not a result of inherent changes in cell behavior caused by intrinsic aging. 

Although the synergistic activity of fibroblast mechanosensitivity and contractility 

mediated by the Rho/ROCK pathway and TGF-β1 have been implicated in the activation 

of collagen synthesis, our results may indicate that fibroblast synthetic activity may not 

be solely dependent on the Rho/ROCK pathway. Members of the mitogen-activated 

protein kinase (MAPK) family have been found to be involved in collagen gene 

regulation [167, 168] and have been shown to interact with TGF-β to control ECM 

deposition [169]. Further experimentation will involve exploring the role of MAPK and 

the ERK pathway in modulating collagen synthesis during the aging process.  

Although changes in collagen expression and synthesis in aged fibroblasts were 

associated to the state of the mechanical environment by use of released and attached 
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models of the dermis, no significant, lasting effects were observed due to the injection of 

a hydrophilic HA-based dermal filler. These results do not concur with in vivo studies 

that have demonstrated a significant increase in collagen production around areas of the 

dermis treated with similar formulations of HA-based dermal fillers [152, 154, 155]. By 

quantifying the presence of HA in samples of medium acquired from dermal filler-

injected gels, I found that HA from the filler was diffusing out of the collagen gels within 

days after treatment. Diffusion of the dermal filler through the porosity of the collagen 

gel prevents it from continuously mechanically deforming the surrounding matrix by 

increasing its volume through water absorption. These results lead me to conclude that 

the models of the dermis developed for this study were not the most suitable for the 

characterization of long-lasting effects of localized mechanical stimulation via the 

injection of a hydrophilic, HA-based dermal filler. To improve this in vitro model, 

collagen concentration should be increased to better simulate the protein density in the 

dermis and ensure stability of the filler at the site of injection.  

Furthermore, further improvements can be incorporated in the preparation of 

released collagen gels to be used as models representative of the environment of the aged 

dermis. The aged dermis is characterized by a partially degraded and broken down 

collagen network that causes a decrease in homeostatic tension. Although the released gel 

provided a low-stress level environment similar to what is observed in the aged dermis, it 

still consists of an intact collagen network that affords sites for cell attachment. 

Treatment of the gels with matrix-degrading proteins, such as MMP-1, could allow for 

the incorporation of the effects of the loss of binding sites and integrity of the collagen 

fibers on fibroblast quiescence and response to exogenous mechanical stimulation. 
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Despite these limitations, the use of this model allowed me to reveal age-related 

differences in the synthesis and expression of ECM proteins, and of genes that modulate 

cell contractility and force generation in human dermal fibroblasts, and their relationship 

to the mechanical environment of the ECM. 
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CHAPTER 5: CONCLUSIONS AND FUTURE AIMS 

Mechanical forces play an essential role in controlling fibroblast behavior and 

their ability to regenerate and remodel the ECM of cutaneous tissue.  The studies 

presented in this dissertation provide evidence that demonstrate the effects of multi-scale 

mechanical interactions between fibroblasts and the ECM on structural and compositional 

remodeling of wounds and the aged dermis.  

The presence of mechanical constraints surrounding in vitro models of the wound 

differentially control the patterns of deformation of fiber alignment generated in the fibrin 

clot caused by fibroblast contractility. These short-term structural changes have a great 

impact on the long-term synthesis of ECM-remodeling proteins such as collagen type I, 

MMP-1, MMP-2, and MMP-9. Dermal fibroblasts cultured on fibrin gels subjected to 

fixed boundary conditions secreted 21% more collagen type I than those cultured on 

fibrin gels cultured under free boundary conditions. Demonstrating that the differences in 

structural reorganization that develop as a result of macroscopic features of the ECM 

such as geometry, and boundary conditions can determine the extent of compositional 

remodeling and the outcome of cell-mediated tissue regeneration.  

Future work for this project will involve exploring the effects of localized 

mechanical stimulation on altering the overall structure and cell-mediated organization of 

the ECM. This would be done by introducing local deformations or inducing changes in 

fiber realignment in close proximity to cell explants after initial structural reorganization 

has ensued.  
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Experimentation on the effects of mechanical stimulation on the 

mechanosensitivity and synthetic activity of human dermal fibroblasts from young and 

old individuals demonstrated that loss of mechanical stability may be responsible, in part, 

for loss of fibroblast regenerative capabilities with aging. Injection of a hydrophilic HA-

based dermal filler into an in vitro model of the dermis altered the mechanical 

environment of the gel by introducing a state of tension. This stimulation which resulted 

in an increase in the expression of mechanosensitive proteins of the Rho/ROCK pathway 

that contribute to mechanotransduction, fibroblast contractility and differentiation in 

young HDFs was not sufficient to elicit a significant response in old HDFs. These results 

suggest that intrinsic aging may be accompanied by a reduction in fibroblast contractility 

and traction force generation. Further evaluation of synthesis and activity of RhoA, 

ROCK1, ROCK2, and MLC would be required in order to validate initial observations of 

genetic expression and determine the effects of such changes on fibroblast contractility, 

and mechanosensitivity.  Furthermore, changes in collagen synthesis, normally associated 

with aging, were found to be unaffected by intrinsic changes in fibroblast behavior. 

Instead, the effects of natural and actinic aging on the structural support of the dermal 

ECM may be responsible for the loss of mechanical communication between the ECM 

and adherent fibroblasts. This communication is essential in controlling fibroblast 

contractility and synthesis, and therefore, their ability to maintain, remodel, and 

regenerate cutaneous tissue. Such a finding may prove to be valuable in the investigation 

of delayed wound healing, loss of strength, and changes in dermal structure and 

composition in aged individuals.  
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Future work will involve improvement of the in vitro model used to represent the 

aged dermis by increasing protein concentration to decrease the porosity of the gel and 

prevent diffusion of the injected HA-based dermal filler out of the gel. Once we can 

characterize the long-term effects of the dermal filler, ensuring its stability, we can then 

attempt to isolate the mechanical effects of HA swelling on cell behavior from the 

biochemical effects that may develop from fibroblast-HA interactions.  To better simulate 

the broken-down collagenous network that makes up the environment of the aged dermis, 

collagen gels would also be treated with matrix-degrading proteins, to minimize 

fibroblast-matrix interactions by reducing sites for adhesion.  

The results for the studies conducted for the completion of this thesis support the 

idea that mechanical signaling and the dynamic mechanical interplay between cells and 

the ECM are essential in controlling tissue remodeling and regeneration processes. It also 

provides a basic framework for better understanding these mechanisms and in identifying 

the pathways involved in mechanotransduction between cells and cutaneous tissue and 

how these may affect normal cell behavior during wound healing and aging. 
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APPENDIX A: FIBRINOGEN AND THROMBIN PREPARATION 

Fibrinogen is a glycoprotein, synthesized by the liver and is known to be one of 

the main components of the plasma proteins.  Converted to fibrin through thrombin 

cleavage, fibrinogen is a key component of the wound healing process.  Upon injury, the 

body responds by forming a clot to prevent blood loss and to establish a temporary 

structure or network that allows for the migration of different cells such as macrophages 

and fibroblasts to the wound site.  The formation of this mesh begins with the 

accumulation of platelets at the wound site and the conversion of prothrombin to 

thrombin, which proceeds to cleave several polypeptides on molecules of fibrinogen, 

which then bind together to form fibrin. At the same time, thrombin activates the plasma 

protein, factor XIIIa, which catalyzes the formation of cross-links that stabilize and 

strengthen the fibrin mesh. 

Time Required: It will take two days to make the fibrinogen stock solution. Start 

making the fibrinogen stock solution in the morning. The thrombin stock solution is easy 

to make and will only take a few hours. 

Tips: 

• Make sure the fibrinogen solution does not exceed 37 °C. Higher temperatures 

can cause fibrinogen to denature and form a precipitate. 

• You can quantify total protein concentration in the fibrinogen stock with a 

Bradford total protein assay. 

1. Materials 

1.1. Reagents 

• De-ionized water (18kon 
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• Biological grade NaCl (Company, Cat No.) 

• HEPES (Sigma, Catalog No. H0887) 

• Bovine Fibrinogen (Sigma, Catalog No. F8630) 

• Thrombin from bovine plasma (Sigma, Catalog No. T4648) 

1.2. Equipment 

• Stir plate and stir bar 

• (3) 250 mL bottles (at least one autoclaved) 

• (3-4) 150 mL 0.45 µ3 Steritop filter (Fischer, Catalog No. 430627) 

• (3-4) 150 mL 0.22 µ3 Steritop filter (Fischer, Catalog No. SCGVTO54E) 

• (3-4) Glass fiber prefilters (Fischer Catalog No. AP2007500) 

• Steriflip 0.22 µm with 50 mL C-tube (Company, Catalog No.) 

2. Methods 

2.1. Fibrinogen Stock Preparation (~33mg/mL) 

Day 1 

1.       Make 150 mL of 20 mM HEPES buffered saline by mixing 3 mL of 1M 

HEPES and 147 mL of 0.9% saline. Use a slightly bigger bottle than the actual amount. 

Put a magnetic stir bar into the bottle. Depending on the frequency of use and the total 

volume needed, preparing half of this volume is also recommended because it makes 

dissolving the fibrinogen in HEPES a much easier process while also consuming less 

time. 

2.       Warm up the solution to 37 °C in the incubator prior to adding fibrinogen. 

3.       Measure out 5 g of fibrinogen. 
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4.       Add a small amount of fibrinogen (0.2-0.3 grams) to the bottle containing 

20 mM HEPES buffered saline. Swirl the solution around to make sure that the 

fibrinogen just added is wet. 

5.       Put the bottle in the incubator with the stir plate. Set the stir bar at a speed 

that is just below forming a vortex. You want to minimize forming bubbles but keep the 

solution from gelling up. 

6.       Add more fibrinogen approximately every 15 minutes or so. Make sure that 

the previously added fibrinogen has gone into solution. It is common to see bits of 

precipitate floating about. 

7.       Prior to dissolving the total amount of fibrinogen, you should allow the 

solution to mix in the incubator for 6 to 8 hours. Store the solution in the refrigerator 

overnight.  

Day 2 

8.       Warm the solution to 37 °C in the water bath for approximately one hour. 

9.       Sterile filter the solution using as many 0.45 micron filters as needed. Make 

sure to use the prefilters to speed up the process. 

10.   Repeat the filtering with 0.22 µ0 filters. Make sure to do this step in the hood 

into a sterile bottle. 

11.   Aliquot 0.5 and 1 mL volumes into sterilized microcentrifuge tubes  

2.2.  Thrombin Stock Preparation (25 U/mL) 

1.       Dissolve 500 units of thrombin into 2 mL of ddH20 and 18 mL of saline 

(0.9% NaCl).  

2.       Filter through 0.22 µm sterile filter into 50 mL tube (use steriflip tubes). 
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3.       Aliquot into 125 µ. and 250 µa volumes into sterile microcentrifuge tubes 

2.3. Fibrin Gel Polymerization 

In order to prepare a fibrin gel, stock solutions of fibrinogen and thrombin must 

be further prepared.  After separately preparing these reagents, you will add fibrinogen, 

thrombin and a cell suspension or medium with a concentration ratio of 4:1:1. 

1.       Determine the volume of fibrin gel you want to prepare.  Based off of this, 

calculate the amount of each reagent required knowing that the final ratio should be 

4:1:1. 

              Example:                                            

𝑉! = 4 𝑚𝐿 

𝑉!"#$"%&'(% = 4 𝑚𝐿 ∗
4
6 = 2.667 𝑚𝐿 

𝑉!!!"#$%& = 4 𝑚𝐿 ∗
1
6 = 0.667 𝑚𝐿 

𝑉!"## !"!#$%!&'% = 4 𝑚𝐿 ∗
1
6 = 0.667 𝑚𝐿 

 

2.3.1. Fibrinogen Solution 

Reagents:  

• Fibrinogen stock (~33 mg/mL) 

• 20 mM HEPES 0.9% saline solution 

Equipment: 

• (1) 50 mL C-tube or 1.5 mL micro-centrifuge tube depending on volume 

Procedure 

 1. Prepare a 20mM HEPES 0.9% saline solution as previously described. 
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 2. Thaw out an aliquot of fibrinogen from stock in a water bath at 37C for about 

5 minutes. 

3. Add 1/3 of the total volume of fibrinogen in fibrinogen from stock and 2/3 in HEPES 

solution to obtain a solution with a ratio of 1:2 and mix together in a 15 ml C-tube. 

Example: 

𝑉!"#$"%&'(% = 4 𝑚𝐿 ∗
4
6 = 2.667 𝑚𝐿 

𝑉!"#$"%&'(% !"#$% = 2.667 𝑚𝐿 ∗
1
3 = 0.889 𝑚𝐿 

𝑉!"!" !"#"$ = 2.667 𝑚𝐿 ∗
2
3 = 1.778 𝑚𝐿 

2.3.2. Thrombin solution 

Reagents: 

• Thrombin stock (25 U/mL) 

• 20 mM HEPES 0.9% saline solution 

• 2 M CaCl2 

Equipment: 

• (1) 15 mL C-tube or 1.5 mL micro-centrifuge tube depending on volume 

Procedure 

4.       Prepare 40 ml of a 2M CaCl2 solution by adding 40 ml of ddH20 to 11.76 g 

of CaCl2.  

5.       Filter this solution using a Steriflip C-tube with a 0.22um filter. Store in 

refrigerator at 4C. 
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6.       Calculate the amount of each reagent needed to obtain a thrombin solution 

with a final ratio of 1:4:0.075 and mix together into a 15 ml C-tube. 

  

Example:           

𝑉!!!"#$%& = 0.667 𝑚𝐿 

𝑉!!!"#$%& !"#$% = 0.667 𝑚𝐿 ∗
1

5.075 = 0.131 𝑚𝐿 

𝑉!" !" !"#"$ = 0.667 𝑚𝐿 ∗
4

5.075 = 0.525 𝑚𝐿 

𝑉! ! !!"#! = 0.667 𝑚𝐿 ∗
4

5.075 = 0.00985 𝑚𝐿 

2.3.3. Fibrin gel solution 

7.       Now that each reagent has been prepared in separate containers, add the 

previously calculated volume of the cell suspension into the 15 ml C-tube containing the 

fibrinogen solution.  

8.       Mix the thrombin solution with the fibrinogen containing the cell 

suspension and resuspend 5-10 times or until the solution is evenly distributed. 

9.       Once adding thrombin, the solution will begin to gel almost instantly, so 

make sure that you resuspend quickly and add the solution into the petri dish, well or 

mold where you would like to set your sample. 

10.   After solution has set at room temperature, incubate at 37C and 5% CO2 for 

15-30min. 

11.   Add medium onto the sample and make sure to change it every day or every 

two days, depending on the concentration of cells used to seed the gel. 
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APPENDIX B: POLYMERIZATION OF 3D COLLAGEN 

HYDROGELS 

1. Materials 

1.1. Reagents 

• Sterile 10x PBS with phenol red 

• Sterile 1 N NaOH 

• Sterile dH2O or cell suspension in cell culture medium 

• Acid solubilized Collagen Type I (Thermo Fischer, Catalog No.  

1.2. Equipement 

• 50 mL C-tube 

2. Methods 

2.1.  Acellular Collagen Gels 

1.       If you are preparing an acellular collagen gel, sterilize dH20 by using a 0.33 

um syringe filter or a 0.33 um Steriflip Millipore C-tube.  

2.       Dilute the 2 N NaOH to 1 N NaOH and sterilize using a 0.33 um syringe 

filter or a 0.33 um Steriflip Millipore C-tube. 

3.     Keep collagen type I stock solution (3 mg/mL), 1 N NaOH, and 10x PBS 

with phenol red at approximately 4°C by keeping on ice. 

4.       Determine concentration and final volume of collagen needed. 

5.       Calculate the amount of reagents needed so that your final solution is at the 

desired concentration with normal osmolality and neutral pH. 
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𝑉! = 𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

𝑉!"##!"#$ =
𝐹𝑖𝑛𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛 ∗ (𝑉!)
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛  

𝑉!"! !"! =
(𝑉!)
10  

𝑉!"#$ = 𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑐𝑜𝑙𝑙𝑎𝑔𝑒𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∗ 0.025 

𝑉!"!! !" !"## !"!#$%!&'% = 𝑉! − (𝑉!"##$%&' + 𝑉!"! !"! + 𝑉!"#$ 

 

6.       Mix the calculated volumes of 10X PBS with phenol red, 1N NaOH, and 

Collagen Type I and resuspend about 5 times, making sure that the solution is well mixed 

before adding the cell suspension. 

7.       Resuspend another 5 times until you obtain a homogenous mixture. (Try to 

do this quickly before gel begins to polymerize and avoid creating bubbles in the 

solution). 

8.       Pour collagen into desired plates or dishes immediately or store on ice. 

9.       Incubate in a 37C, 95% humidity incubator for 30-40 min. 

10.   After the gel has polymerized, add cell culture medium. 
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APPENDIX C: HOESCHT DNA ASSAY 

The number of cells within three-dimensional hydrogels can be easily quantified 

with the use of nuclear fluorescent dyes such as Hoechst stains and a plate reader. 

Hoschst stains are bisbenzamides that bind to the minor groove of double-stranded DNA. 

Originally developed by Hoechst AG, these stains are commonly used as nuclear 

fluorescent dyes.  

The following protocol was adapted in order to quantify the number of cells 

cultured for over one week in fibrin gels. 

1. Materials: 

• Digestion buffer (100 mM Tris, 50 mM EDTA, pH 7.4) 

• 10x TNE buffer (100 mM Tris, 2.0 M NaCl, 10 mM EDTA, pH 7.43) 

• Proteinase K (Roche, Ref No. 03115 879001) 

• Calf Thymus DNA (Sigma, Catalog No. D1501) 

• Hoechst 33342 (Thermo Fischer, Catalog No. H1339) 

2. Methods: 

2.1. Preparation of digestion buffer 

Because EDTA can only go into solution at a pH close to 7.4, begin by preparing 

a 1 M solution of EDTA in ddH2O. 

To prepare 250 mL of digestion buffer with a concentration of 100 mM Tris and 

50 mM EDTA and a pH of 7.4, add 3.03 g of Tris base to 150 mL of ddH2O in a 500 mL 

beaker while stirring on a magnetic plate. Add 12.5 mL of 1 M EDTA. Use concentrated 

HCl to pH the solution as needed in order to achieve a pH of 7.4. Once the solution 

reaches pH 7.4, add enough ddH2O to obtain 250 mL of solution. 
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2.2. Preparation of 10x TNE buffer 

To prepare 250 mL of 10x TNE buffer with a concentration of 100 mM Tris, 2.0 

M NaCl, and 10 mM EDTA, and pH pf 7.4, add 3.03 g of Tris base to 100 mL of ddH2O 

in a 500 mL beaker while stirring on a magnetic plate. Add 29.28 g of NaCl. Finally, add 

2.5 mL of 1 M EDTA. Use concentrated HCl to pH the solution as needed in order to 

achieve a pH of 7.4. Once the solution reaches pH 7.4, add enough ddH2O to obtain 250 

mL of solution. 

2.3. Preparation of proteinase K 

Reconstitute 100 mg of proteinase K in 20 mL of digestion buffer and store 

solution in a  -20°C freezer in 1 mL aliquots. 

2.4. Preparation of calf thymus DNA 

Calf thymus DNA must be diluted in digestion buffer at 4°C overnight, or until 

DNA is completely dissolved in solution. The DNA can be aliquoted in 500 µL of 20 µL 

of 2 stock solution in a  -20°C freezer. 

2.5. Fibrin digestion 

• The night before, dilute Proteinase K aliquoted at a concentration of 5 mg/mL to a 

concentration of 0.5 mg/mL in digestion buffer. Add 0.5 mL to a 1.5 mL micro-

centrifuge tube containing the sample.  

• Incubate micro-centrifuge tubes in a heating block at 56°C overnight. One hour 

after placing tubes in heating block, gently shake tubes so aid in mixing and 

degradation of the gel. The next day, make sure that samples are completely 

digested in the digestion buffer. Add additional digestion buffer to sample if 

needed. 
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2.6. DNA Standard Preparation 

• Thaw out one vial of 20 µg/mL of calf thymus DNA to prepare your standards. 

• Prepare standards by using the volumes of each reagent specified in Table C.1.  

Table C.1. Calf thymus DNA standards 

Standard Concentration 

(µg/mL) 

Volume of Stock 

(µL) 

Volume of 10x 

TNE Buffer (µL) 

1 6 60 140 

2 5 50 150 

3 4 40 160 

4 3 30 170 

5 2 20 180 

6 1 10 190 

7 0.5 5 195 

8 0 (Blank) 0 200 
 

• Add 100 µL of each standard to a 96-well black/clear bottom plate. 

2.7. Sample and Plate Preparation 

• Dilute each sample by 10x into the 96 well plate, 3 wells per sample (10 µL of 

sample, 90 µL of TNE buffer). 

• Determine the volume of Hoechst 33342 at a concentration of 0.2 µg/mL required 

to add 100 µL to each well, including those containing the standards. Prepare by 

mixing the volume required of Hoechst stock solution at 10 mg/mL with 10x TNE 

buffer. 

2.8. Fluorescent Quantification 
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• Turn on the Promega plate reader and select the user-defined protocol Hoechst 

33342 DNA Assay. Select the wells to be analyzed, and the number of readings. 

Make sure that the UV filter (360 nM/460 nM) is selected and is placed in the 

filter slot. 

• Select the “Door” icon in the bottom right corner of the screen.  

• Place the 96-well plate with well A1 facing the furthermost right corner of the 

plate holder. 

• Close the door by selecting the “Door” icon again. 

• Run assay. 

2.9. Data Analysis 

• After saving results onto a USB, open results using Excel. 

• After subtracting the fluorescent value for the blank from the value of 

fluorescence obtained for all samples, create a standard curve with fluorescence as 

the independent variable and DNA concentration as the dependent variable. 

• Determine the linear trendline and equation for the dataset using: 

§ 𝐷𝑁𝐴 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 ∗𝑚 + 𝑏 

• Using this equation, determine the DNA concentration in each sample by 

substituting the value for fluorescence measured using the plate reader. Cell 

number can be determined considering that fibroblasts contain approximately 7.6 

pg of DNA. 
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APPENDIX D: HYDROXYRPOLINE ASSAY 

1. Materials 

• 0.1 M NaOH 

• 6 N HCl 

• Hydroxy-L-proline (CAS 51-35-4, MW 131) 

• Stock buffer (25 g of citric acid, 60 g of sodium acetate, 34 g of sodium 

hydroxide, and 6 mL of glacial acetic acid) 

• Chloramine-T solution (0.0352 g of chloramine-T, 1.3325 mL stock buffer, 

0.65 mL of N-propanol, and 0.5175 mL of deionized water). 

• Dimethylaminobenzaldehyde (pDMBA) solution (0.5 g pDMBA, 3 mL N-

propanol, and 1.3 mL of perchloric acid) 

• Activated charcoal (CAS 7440-44-0) 

2. Methods 

2.1. Separation Process: 

• Place samples in an eppendorf tube and add 0.5 mL of 0.1 N NaOH to each 

sample and heat on a heating block at 98°C for one hour. 

• Transfer samples into a glass vial and place into a speed vacuum and spin for 

2 hours or until dry. 

• Once samples have dried, add 0.5 mL of 6 N HCl and heat on a heating block 

at 110°C for 24 hours. 

• Transfer vials to the speed vacuum and spin for 1.5 hours or until dry. 

2.2. Sample Preparation 

• Prepare assay buffer by diluting stock buffer 1:10 in water. 

• Add 0.25-0.5 mL of assay buffer to all samples after the last drying step and 

mix. 
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• Add a touch of charcoal to each solution, recap, and shake to disperse the 

well. 

• Transfer the solution into a new eppendorf tube and spin in a microcentrifuge 

at 1500 rpm for five minutes. 

2.3. Prepare Standard 

• Make a 1mg/mL solution by adding 10 mg of hydroxyproline to 10 mL of 

assay buffer. 

• Make 100 µg/mL solution by diluting the 1 mg/mL prepared in the previous 

step by 1:10. 

• Put 200 µL of the 100 µg/mL solution (therefore a total of 10 µg), in the first 

well of a 96 well plate.  

• Put 100 µL of assay buffer in ten additional wells of the row. 

• Take 100 µL out of the first well and mix into the second well. 

• Take 100 µL of the second well and mix into the third. 

• Repeat pattern for all but the last well. Dispose of the extra 100 µL. The wells 

should have 10,5,2.5, 1.25, 0.625, 0.313, 0.156, 0.0781, 0.029, and 0 µg/mL. 

• Repeat steps 8-12 for a second row. 

2.4. Assay 

• Add 100 µL of one sample per well. 

• Add 50 µL of Chloramine-T solution to each well.  

• Incubate at room temperature for 15 min. 

• Add 50 µL of p-DMBA solution to each well and mix well (including 

standards). 

• Cover with parafilm plate sealer. 

• Incubate at 37°C for 30 minutes. 

• Determine the optical density using a plate reader set to 570 nm.  


