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  Figure 25. Non-protective GAP5041-48- and S20318-325-specific CD8 T cell 
responses do not significantly reduce liver parasite burden 
 

BALB.b x BALB/c F1 (H-2bxd) DC-LM vaccinated mice (>14 days post LM 
boost with the indicated specificity) were challenged I.V. with 4 x 104 Pb 
sporozoites.  Pb-specific 18s ribosomal RNA transcripts were quantified via 
qRT-PCR from total RNA extracted from livers of 42 hours post sporozoite 
challenged mice. Liver RNA from unvaccinated, unchallenged mice 
(“Naïve” group) served as negative control.  Data shown are pooled from 
two independent experiments, N = 4-6 mice per group. Error bars indicate 
mean +/- S.E.M. Statistical comparison via one-way ANOVA comparison to 
mice DC-LM vaccinated with irrelevant OVA257-264 epitope. *** indicates p 
< 0.001, ** indicates p < 0.01. N.S.= not significant. LOD indicates limit of 
detection. 
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Figure 26. Efficient recognition of infected hepatocytes correlates with 
epitope-specific protection 
 

(A), CTV-labeled sporozoite infection of primary hepatocytes is dose 
dependent. Percentage of infected hepatocytes at 24 hours post infection with 
the indicated multiplicity of infection (MOI) was determined by analyzing 
CTV+ cells by flow cytometry. Splenic CD8 T cells enriched from DC-LM 
vaccinated BALB.b x BALB/c F1 (H-2bxd) mice were added to primary 
hepatocyte cultures previously co-incubated with Pb sporozoites (MOI ~1) for 
20 or 40 hours.  (B), Representative IFNγ production by CD8 T cells following 
6 hour incubation with uninfected hepatocytes, uninfected hepatocytes + 
exogenous cognate peptide, or 20 hour Pb-infected hepatocytes.  (C), 
Cumulative data of IFNγ producing, Plasmodium-specific CD8 T cells added 
at 20 hour post-infection with sporozoites. (D), Similar to (C) but CD8 T cells 
were added at 40 hour post-infection with sporozoites.  Data are pooled from 
seven experiments with each specificity, per infection time, tested at least 
twice.  Error bars are mean +/- S.E.M. in (C) and (D).  One-way ANOVA 
comparison of means significant differences (p < 0.05): in (C) CSP vs. GAP, 
CSP vs. S20, CSP vs. TRAP; TRAP vs. GAP50, TRAP vs. S20; in (D) TRAP 
vs. GAP50. 
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CHAPTER IV: 

FUTURE PERSPECTIVES 

Elucidating immune mediators of protective immunity against Plasmodium infection 

through WSV platforms 

CPS vaccination requires CD4 T cells and antibodies for protection in the stringent 

P. yoelii/C57Bl/6 model 

Whole sporozoite vaccination (WSV) platforms have been used to understand the 

immunological requirements of protection against Plasmodium infections. These 

platforms have successfully provided sterilizing immunity in rodents, non-human 

primates, and humans (69, 72, 76, 78, 81, 99).  Application of WSV in rodent models of 

malaria has shown that protection is largely afforded due to CD8 T cells targeting 

sporozoite and liver-stage expressed antigens (Figure 27A)(81, 94, 95, 98, 99).  However, 

CD8 T cells are not the only contributors to protection.  Some studies have shown that 

CD4 T cells and antibodies also contribute to protection (88, 98, 211).  In Chapter II, I 

support these findings, demonstrating that CPS vaccine-induced CD4 T cells and 

antibodies are required for the clearance of blood-stage parasites that persist during CQ 

chemoprophlayxis.  Specifically, I show that antibodies generated during the low-grade, 

transient patent parasitemia after CQ cessation, correlate with sterilizing immunity 

following a sporozoite challenge of CPS vaccinated mice (Figures 11 and 12).  This 

antibody response is essential for sterilizing immunity, as CPS-vaccinated µs-AICDA-/- 

mice (which maintain B cells, but do not secrete antibodies) cannot control parasitemia 
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following a sporozoite challenge and eventually succumb to hyperparasitemia.  

Moreover, CPS vaccinated wild-type C57Bl/6 mice, depleted of CD4 and CD8 T cells by 

antibody-mediated depletion, maintained sterilizing immunity following challenge with 

blood-stage parasites (Figure 13).  These data indicate that CPS-induced memory 

immune responses could mediate protection against blood-stage parasites independentally 

of CD4 and CD8 T cells.   Thus, in a stringent parasite/host model of CPS vaccination, I 

found a role for CD4 T cells and antibodies, with little to no detectable contribution by 

CPS-induced CD8 T cell response (Figures 9 and 13).  Based on my data, and the current 

literature on CD4 T cell helper responses (reviewed in (224, 225)), it is likely that CD4 T 

cells are essential for the generation of potent anti-blood-stage antibody responses during 

the exposure to low-grade, transient blood-stage parasitemia, but CD4 T cells are not 

required after these antibodies are generated when CPS-vaccinated mice are challenged at 

a memory time point (Figure 13).  

 

Cross-stage reactive antibodies may be critical for CPS vaccine-induced protection 

While the role of liver-stage antigen-specific CD8 T cells in other WSV platforms 

(RAS and GAP) is well-defined, in the CPS vaccination model, mice are exposed to 

blood-stage antigens that may lead to the development of potent blood-stage or cross-

stage (targets liver-stage and blood-stage antigens) immunity via antibodies that are 

sufficient to mediate protection in the absence of a CD8 or CD4 T cell response.  Indeed, 

evidence of the induction of cross-stage reactive antibodies following controlled blood-

stage parasite exposure has been described before.  BALB/c mice vaccinated with Py 
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265BY blood-stage parasites with 10 days of CQ chemoprophylaxis experienced “patent 

self-limiting” parasitemia that lasted up to 20 days following initial vaccine 

administration (88).  Fifteeen days following resolution of patent parasitemia, vaccinated 

mice were challenged with homologous sporozoites and assessed for sterilizing 

immunity.   Protection from sporozoite challenge was assessed by Giemsa-stained blood 

smear, which shown 100% of vaccinated mice were protected from sporozoite challenge 

in one experiment.  Further, the authors reported a 95% reduction in liver parasite burden 

in vaccinated mice relative to controls, which is a more direct measurement of the liver-

stage component of cross-stage immunity than measuring sterilizing immunity (88).  The 

authors concluded that cross-stage reactivity against liver-stage antigens could be induced 

by vaccination with blood-stage parasites concurrently with CQ chemoprophylaxis.  I 

hypothesize that CPS vaccination using sporozoites similarly leads to development of 

cross-stage reactive antibodies (Figure 27B).  I showed that antibody titers against blood-

stage parasite lysate and a blood-stage specific protein (MSP-1) were increased in mice 

exposed to breakthrough parasitemia that occurred under the 10 day CQ regimen relative 

to the absence of breakthrough parasitemia under the 25 day CQ treatment (Figure 12).  I 

predict that ELISA analysis of antibodies against intact sporozoites would show that CPS 

vaccination induces cross-reactive antibodies specific to sporozoites.  If so, it is possible 

that these anti-sporozoite antibodies could block early hepatocyte infection events (115, 

120, 226), and therefore provide a degree of liver-stage protection. Alternatively, 

antibodies generated by exposure to blood-stage parasites may be cross-reactive with 

antigens expressed by the liver-stage parasite.  Resolving this would likely require in 
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vitro analysis of the inhibition of parasite development in the presence/absence of CPS-

induced antibodies.  

 

Generation of immunity against heterologous Plasmodium strains 

WSV approaches have aided in our understanding of the immunological 

requirements of mediating sterilizing immunity.  However, WSV studies of rodents and 

humans have primarily addressed vaccine-induced protection against the immunizing, 

homologous Plasmodium strain, and little has been done to address the protection 

afforded against heterologous Plasmodium infection.  Some studies have indicated little 

to no detectable heterologous immunity using rodent models of malaria.  For example, in 

one study CBA/Ca mice were immunized via I.P. administration of rodent-specific 

Plasmodium chabaudi (Pcc) strain AJ sporozoites or blood-stage parasites while 

concurrently receiving an anti-blood-stage parasite-specific drug (mefloquine).  Pcc AJ-

vaccinated mice showed no delay in time to patency (measured as first day blood-stage 

parasites are seen by Giemsa-stained blood smear) following sporozoite challenge with 

Pcc substrain CB (227, 228).  Results were similar if vaccination was performed with Pcc 

CB, followed by challenge with Pcc AJ.   In contrast, studies utilizing other rodent 

Plasmodium strains in WSV approaches have shown partial cross-species protection (81, 

109, 182, 229).  For example, three administrations of genetically attenuated parasite 

(GAP) Py fabb/f -  into BALB/c mice confers sterilizing protection from heterologous 

challenge with wild-type Pb sporozoites in 100% of mice (5/5 mice tested)(81).  Further, 

five administrations of Py RAS confers sterilizing protection in 54% of Pb challenged 
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BALB/c mice (182). The conflicting nature of the Py/Pb experiments relative to the Pcc 

experiments may be due to many factors such as different rodent Plasmodium species 

utilized in the studies, type of whole parasite attenuation, immunization schedule and 

number of administrations, route of administration (I.P. versus I.V), or mouse strains.  

These differences can only be resolved through extensive experimentation, testing these 

variables (i.e. types of WSV, immunization schedule, route of immunization, etc.)  head-

to-head to best understand the protocols that engender the best heterologous immunity in 

each mouse strain/parasite species scenario.   

I have demonstrated how route of immunization and type of WSV approach 

impacts the magnitude of the total Plasmodium-specific CD8 and CD4 T cell responses 

(Figures 6 and 7) and sterilizing immunity (Table I).  However, the sterilizing protection 

was likely enhanced in CPS vaccinated mice due to development of anti-blood-stage 

specific antibody responses as a result of low-grade, transient parasitemia during 

immunization. Importantly, this is not an observation exclusive to the C57Bl/6-Py rodent 

malaria model as a similar observation was subsequently observed using P. chabaudi 

parasites (191).  Thus, multiple factors may impact the protective immune responses 

engendered following WSV, which can impact the degree of protection against 

heterologous Plasmodium challenge.  Because many substrains of Plasmodium 

falciparum and Plasmodium vivax can be prevalent in the endemic areas (230-233), these 

conflicting studies collectively highlight the need to better understand how to engender 

cross-strain immunological responses that transcend beyond the homologous, 

immunizing Plasmodium strain.  
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To better understand the optimal parameters to engender sterilizing protection 

against heterologous challenge, I could test CPS vaccine-induced protection against 

heterologous strains by utilizing rodent Plasmodium strains Py and Pb as these two 

strains have distinct disease manifestations in C57Bl/6 mice, differ in the kinetics and 

magnitude of parasitemia, and allow for the use of well-established and novel CD8 T cell 

epitopes to track antigen-specific CD8 T cell responses (96, 97, 136, 157, 234).  CPS 

vaccination may be the optimal WSV approach to understand the varying immunological 

requirements of heterologous Plasmodium infections as CPS vaccination confers 

enhanced protection in rodent models relative to RAS or GAP vaccination with fewer 

vaccine administrations (88, 211).  Specifically I could examine to what extent CPS-Py 

vaccination protects against challenge with Pb sporozoites.  I hypothesize based on the 

current literature (81, 182), this single administration CPS vaccination strategy would 

lead to a measureable delay in time to patency, but would not provide sterilizing 

immunity.  Adjustments to the dose of immunizing parasites, or the number of 

administrations are additional experiments I could perform to better understand the 

immunological requirements leading to sterilizing protection from heterologous 

sporozoite challenge.  I predict that additional CPS administrations would provide 

sterilizing heterologous protection, which would be dependent on CD8 T cells to reduce 

the liver parasite burden.  Experiments similar in design to those described in Chapter II 

would be able to resolve these predictions.  
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CPS vaccination could be used as a model to elucidate the induction of experimental 

cerebral malaria 

Blood-stage infection of naïve C57Bl/6 mice leads to experimental cerebral 

malaria (ECM) in the majority of the challenged mice.  ECM, a lethal condition, is 

characterized as the breakdown of the blood-brain barrier, the sequestration of blood-

stage parasites to the brain endothelial layer, and requires CD8 T cells and the production 

of IFNγ (reviewed in (235)).  There are still many facets of ECM that are unclear, such as 

the timing of these events in relation to infection exposure, as well as if the CD8 T cells 

found in the brain of mice experiencing ECM symptoms are Plasmodium-specific or are 

non-specific.  Because of the evidence of Py GAP vaccination affording protection 

against Pb sporozoite challenge (81), it would be interesting to know if CPS-Py 

vaccination would afford protection from ECM in Pb-challenged C57Bl/6 mice.  If so, 

CPS-Py vaccination could serve as a model to understand how magnitude and duration of 

Pb blood-stage parasitemia leads to the induction of ECM, as well as characterize the 

specificity of the CD8 T cell responses that are helping drive the disease.  Differences in 

the total activated CD8 T cell response, parasite sequestration in the brain, the kinetics of 

the blood-brain barrier breakdown could be compared between Pb sporozoite challenge 

of CPS-Py vaccinated mice versus naïve C57Bl/6 mice.  More importantly, the recent 

description of novel H-2b-restricted CD8 T cell epitopes derived from Pb antigens 

provides an opportunity to directly address the role of CPS-induced CD8 T cells in 

protection from challenge, or whether parasite-specific CD8 T cells play a role in the 

induction of ECM (136, 157, 234).  Taken together, many avenues exist to further define 
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the immunological requirements of protection against heterologous challenges.  Since 

vaccination of human subjects via WSV approaches have largely ignored testing of 

protection against heterologous challenge, experiments in rodent models of malaria could 

help direct the advancement of WSV or subunit approaches to achieve strain-transceding, 

heterologous protection against Plasmodium infections.    

 

Advancing subunit vaccination strategies through enhancing quantity and quality of 

protective CD8 T cell responses against liver-stage infection 

Localization of antigen targeted by an anti-Plasmodium CD8 T cell response may 

dictate protective capacity 

Plasmodium-specific CD8 T cells targeting liver-stage expressed antigens can 

provide sterilizing immunity in humans and rodents (69, 71, 72, 76, 78, 98). Recently, 

new CD8 T cell epitopes, derived from liver-stage proteins expressed by rodent 

Plasmodium, have been described enhancing our ability to study Plasmodium-specific 

CD8 T cell responses (136, 157, 210, 234).  For example, these novel epitopes have 

allowed for studies addressing how the specificity of the CD8 T cell response may impact 

protective capacity.  In Chapter III, I have shown that not all Plasmodium-specific CD8 T 

cell responses generated following WSV infection contribute to protection against 

subsequent sporozoite exposure (Table III). Importantly, only two of four tested CD8 T 

cell specificities (CSP252-260- and TRAP130-138-specific CD8 T cells) were capable of 

mediating protection, and these two specificities target antigens expressed on the surface 
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of the Plasmodium sporozoite. These findings provide evidence that localization of the 

antigen during liver-stage infection may impact the ability of infected hepatocytes to 

present cognate peptide on surface MHC class I molecules.  I hypothesized that many 

CD8 T cell specificities are primed following sporozoite infection, but only CD8 T cell 

specificities that target antigens that are surface expressed by the parasite, or easily 

released from the parasite parasitophorous vacuole (PV) during liver-stage infection are 

readily accessible to the hepatocyte peptide presentation machine for presentation by 

MHC class I molecules (Figure 28).  Differences in the efficiency of peptide presentation 

would impact the ability of antigen-specific CD8 T cells to recognize infected cells.  To 

experimentally support this, I examined the ability of DC-LM vaccine-generated CD8 T 

cells to recognize cognate antigen presented by sporozoite-infected hepatocytes.  I found 

that CSP252-260- and TRAP130-138-specific CD8 T cells, the two CD8 T cell specificities 

capable of mediating protection in my system, produced IFNγ following recognition of 

their cognate antigen presented on sporozoite-infected hepatocytes.  In contrast, the 

frequency of GAP5041-48- and S20318-325-specific CD8 T cells recognizing their cognate 

antigen was lower than CSP- and TRAP-specific CD8 T cells (Figure 26).   Collectively, 

these data indicate that surface expression of parasite antigens may impact antigen 

presentation efficacy, and subsequently the capacity to be targeted by CD8 T cell 

responses (Figure 28).   

In order to lend more support to the antigen localization hypothesis beyond my 

data described in Chapter III, additional CD8 T cell epitopes will need to be described 

and screened for protective capacity.  Prime-boost vaccination strategies will likely be 
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essential to determine the protective capacity of these new CD8 T cell epitopes through 

examining numerically large, individual CD8 T cell specificities in the absence of any 

other anti-Plasmodial response.  Over two decades passed between the description of the 

CSP252-260 epitope and the novel GAP5041-48, S20318-325, and TRAP130-138 Pb-derived CD8 

T cell epitopes, thus it remains possible it may a considerable amount of time until 

sufficient quantity of Pb-derived CD8 T cell epitopes are described to enable further 

studies to potentially support this hypothesis.  Therefore, an alternative way to address 

this quesetion would be through the generation of transgenic parasites.  To this end, Pb 

transgenic parasites could be designed that express the GAP5041-48 epitope sequence 

followed by the signal sequence of TRAP under control of a promoter that is expressed 

throughout the parasite life cycle; this transgenic parasite design (named PbGAP50sec) 

would theoretically enable for the GAP5041-48 CD8 T cell epitope sequence to be surface 

expressed on the sporozoite similarly to TRAP protein, potentially enabling the eventual 

secretion or access of this peptide sequence to the host cell cytosol and proteolytic 

machinery.  The construct would be designed to express hemagglutinin (HA) to test for 

construct expression throughout the liver-stage and blood-stages of infection.  DC-LM 

GAP50 and OVA vaccinated mice would be challenged with high dose (>104) or low 

dose (103) transgenic PbGAP50sec parasites and assessed for liver parasite burden at 42 

hours post infection in high dose challenged mice, or alternatively assessed for sterilizing 

protection via Giemsa stained blood smear in the low dose challenged group of mice.  

The high/low dose regiment tests a high dose commonly utilized in rodent WSV studies 

(88, 211), whereas the low dose is the dose required to sufficiently infect all naïve mice 
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(134, 236).   If the location of the protein-derived epitope affects the antigen processing 

efficiency and eventual CD8 T cell recognition, I hypothesize this experiment would 

show a decrease in liver parasite burden in DC-LM GAP50 mice relative to DC-LM OVA 

vaccinated mice because DC-LM vaccine-induced GAP5041-48-specific CD8 T cells 

would more efficiently detect and kill infected hepatocytes.  Further, I predict DC-LM 

GAP50 vaccinated mice receiving low dose PbGAP50sec challenge would have delayed 

time to blood-stage patency relative to DC-LM OVA vaccinated mice.  If these 

experiments provide the predicted results, this experimental approach could be extended 

to test the S20 epitope in a similar matter.  

 

Quantitative and qualitative features of CD8 T cell-mediated immunity – as learned 

from novel CD8 T cell specificities  

To date, the majority of our understanding of the quantitative and qualitative 

features of protective CD8 T cell responses have tracked CD8 T cells directed against the 

immunodominant CSP epitopes: CSP252-260 in P. berghei and CSP280-288 in P. yoelii (96, 

97, 134, 149, 155, 174, 196, 197, 217). However, the recent description of novel CD8 T 

cell epitopes enables the expansion of these studies – particularly with the ability to track 

two distinct protective CD8 T cell specificities (CSP252-260- and TRAP130-138-) and two 

non-protective CD8 T cell specificities (GAP5041-48- and S20318-325-).  Now additional 

data can be gathered regarding the quantitative and qualitative features of CD8 T cell-

mediated immunity against Plasmodium.  
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To date, protection in humans following WSV or prime-boost subunit vaccination 

has correlated with the magnitude of the Plasmodium-specific CD8 T cell response and 

the number of vaccine administrations (76, 78, 91).  However, it is unclear what is the 

most optimal dose, dosing schedule, and number of vaccine administrations that provides 

the most durable, protective CD8 T cell response against Plasmodium.  Using rodent 

models of malaria and four distinct CD8 T cell specificities, I can address these 

questions.  Firstly, I would address how the total CD8 T cell response and the four 

distinct Plasmodium-specific CD8 T cell-specific responses are affected by the number of 

vaccine administrations. CB6.F1 (H-2bxd) mice would be RAS vaccinated with high-dose 

(2 x 104) or low dose (1 x 103) Pb sporozoites over 1, 2, 3, 4, or 5 administrations, with 3-

week intervals between administrations. The 3-week interval allows for an accelerated 

vaccination schedule compared to waiting for memory time points to boost (>60 days), 

while also allowing for the responses to contract from the peak effector responses before 

another RAS vaccine administration.  RAS vaccination would be used since GAP5041-48-

specific CD8 T cells can be induced by blood-stage infections (157), and I want to 

exclusively evaluate liver-stage induced immunity.  I would compare the frequency and 

total CD8 T cell response in the spleen and the liver using surrogate activation markers 

and MHC class I tetramer straining.  These experiments would help determine if multiple 

administrations do enhance the total CD8 T cell response, which would be expected by 

the current Plasmodium literature (78, 81, 99, 211), and if higher sporozoite doses 

correlate with higher magnitude CD8 T cell responses – important to know for WSV 

approaches as generating aspetically-harvested, laboratory-reared sporozoites is a critical 
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limiting factor to widescale vaccination (70, 80).  However, more importantly, these 

studies could help determine if there are differences in the capacity of protective CD8 T 

cell responses to be boosted relative to non-protective CD8 T cells.  This is important to 

know because measuring the total CD8 T cell response would measure the increases in 

non-protective responses as well, which would not contribute to the overall protection 

induced by WSV approaches.  Indeed, there is evidence that differential boosting of 

Plasmodium-specific CD8 T cell responses does occur.  CPS-vaccination of BALB/c 

mice with P. yoelii lead to the description of the L348-56 CD8 T cell epitope derived from 

a parasite ribosomal protein (210).  The authors shown that despite multiple 

administrations of CPS vaccination, the L348-56-specific CD8 T cell response did not 

numerically increase.  However, the L348-56-specific CD8 T cell response did numerially 

increase using a DC-LM heterologous prime-boost approach.  In contrast, the CSP280-288-

specific CD8 T cell response numerically increased following CPS administrations or 

DC-LM prime-boost.  The CSP280-288-specific CD8 T cell response is known to mediate 

protection (155, 183, 203), but to date the protective capacity of the L348-56-specific CD8 

T cell response has not been published.  Thus, a better characterization of the induction, 

boosting, and maintenance of protective and non-protective anti-Plasmodium CD8 T cell 

responses could lead to understanding of how to specifically enhance only the CD8 T cell 

responses that meaningfully contribute to protective immunity.  It is important to 

understand how to generate protective immunity in a manner that utilizes the least 

amount of time and resources to aid in achieving the goal of efficacious, widescale 

vaccination of humans against Plasmodium.  
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Beyond specificity: localization of the CD8 T cell response may matter 

Tissue-resident CD8 T cell populations have become an area of increasing interest 

in the fields of muscosal immunology (237-239), as well as in the field of malaria (240, 

241).  Increased technological advances in cellular imaging, particularly intravital 

microscopy (IVM)(242, 243), have the potential to reveal information regarding the 

location of CD8 T cell responses following vaccination, or challenge. Multiple studies 

have provided evidence that protective Plasmodium-specific CD8 T cells target and kill 

liver-stage-infected hepatocytes (103, 199, 200, 244). More recently, IVM was applied to 

study the mechanism in which CD8 T cells target Plasmodium-infected hepatocytes. 

Using GFP-expressing sporozoites to infect mice, a loss of GFP fluorescence was 

observed in hepatocytes surrounded by clusters of in vitro generated CSP-specific  

effector CD8 T cells, suggesting the direct killing of Plasmodium-infected hepatocytes 

via a mechanism requiring multiple antigen-specific CD8 T cells (200). These 

observations help provide an explanation regarding the large numerical CD8 T cell 

requirement for protection since several CD8 T cells were associated with killing of a 

single infected hepatocyte (134). However, it is still unclear where protective 

Plasmodium-specific CD8 T cells are localized following WSV vaccination, and the 

movements of these cells upon challenge. There is an increasing interest in the role of 

tissue-resident memory CD8 T cell populations generated following infection or 

vaccination in multiple models (reviewed elsewhere (237-239)). However, to date it 

remains unclear how the resident memory populations identified in the skin, brain, and 
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mucosal tissues compare phenotypically and functionally to populations of Plasmodium-

specific CD8 T cells localized in the liver of vaccinated mice. It will be important to 

thoroughly describe Plasmodium-specific CD8 T cells within the liver, particularly in 

regards to whether these cells are resident within the parenchymal tissue, or alternatively, 

whether they are associated with the endothelial barrier of the liver sinusoids. Recent 

IVM data suggests that hepatitis B virus-specific in vitro generated effector CD8 T cells 

in the liver are localized in the vasculature and do not require migration into liver 

parenchymal tissue to kill infected hepatocytes (245). While this is a different infection 

setting, it is possible that Plasmodium-specific CD8 T cells in the liver exhibit a similar 

location in the vasculature during killing of parasite-infected hepatocytes. This result has 

important implications as most studies of liver-resident memory CD8 T cells in 

Plasmodium have utilized perfusion techniques to eliminate circulating cells, but it is 

possible perfusion techniques may dissociate important “resident” CD8 T cell 

populations, closely associated with the sinusoids, from analysis.  

To date, liver resident memory populations generated by WSV have been 

described as CD8 T cells that remain in the liver following perfusion (240, 241), but their 

contribution to protective immunity is unclear. CXCR6 expression has also been 

described as an important molecule involved in CD8 T cell liver homing and residence 

(246). Expression of chemokine receptor CXCR6 may be a marker to identify these liver 

resident Plasmodium-specific CD8 T cell populations (240, 241). For example, CXCR6 

expression on CD8 T cells was shown to be required for long-term maintenance of 

Plasmodium-specific CD8 T cell populations in the liver.  This was shown by an 



 
 

 160 
 

experimental design initially requiring transfer of either CXCR6+/+ or CXCR6-/- CD45.1+ 

OT-I CD8 TCR Tg CD8 T cells into wild-type BALB/c recipient mice, followed by RAS 

immunization with P. berghei CS5M, a P. berghei strain which has the H-2Kd-restricted 

CSP252-260 epitope (SYPSAEKI) altered to the OVA epitope (SIINFEKL) by targeted 

substitutions (197).  Immunization with Pb CS5M-RAS thus induces OVA-specific CD8 T 

cell responses that can be tracked by OVA-specific CD8 T cell tetramer staining or 

alternatively through staining for an allelically disparate marker (CD45.1 in this case).  

Wild-type BALB/c mice receiving CXCR6+/+ OT-I cells prior to Pb CS5M-RAS 

immunization maintained OVA-specific liver CD8 T cell responses into memory 

timepoints, but this response was not maintained in livers of mice receiving CXCR6-/- 

OT-I cells, indicating a requirement for CXCR6 expression for maintance of 

Plasmodium-specific liver CD8 T cells.  Further studies need to define these liver-

resident CD8 T cells beyond the requirement for CXCR6 such as their protective capacity 

and how they differ from circulating CD8 T cell populations.  Additionally, it will be 

important to characterize any differences from the more strict definitions of resident T 

cell populations in other tissues and model systems (237-239).  It remains important to 

determine the true location of these populations, the signals that draw and maintain these 

CD8 T cell populations, and the relative time they remain associated with the liver 

sinusoids.  Comparisons of Plasmodium-specific CD8 T cell populations in the liver with 

more strictly defined resident memory CD8 T cell populations will be helpful in 

determining if unique features exist, their importance in vaccine-induced protection and 
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how to create or modify liver-localized CD8 T cell responses against Plasmodium to 

foster better liver-stage immunity.   

Recently, the Harty laboratory has acquired essential tools to elucidate the 

localization of Plasmodium-specific CD8 T cell populations in the liver, such as the 

generation of mCherry-expressing TRAP130-138 TCR retrogenic mice (247), CXCR6 GFP 

knockin mice (CXCR6GFP/+)(248), and a two photon microscope to enable intravital 

imaging of cellular events (249).  I hypothesize that liver-associated memory 

Plasmodium-specific CD8 T cells are generated following WSV approaches or infection, 

and these CD8 T cells express CXCR6 and localize to the sinusoids, not the parachyma in 

the liver.   To test this, I would adoptively transfer TRAP130-138-specific CD8 T cells from 

a retrogenic donor into naïve CB6.F1 receipient mice.  CB6.F1 receipient mice would 

then be vaccinated with a RAS vaccination regimen that induces the largest number of 

Plasmodium-specific CD8 T cells, as determined by experiments previously discussed in 

this future perspectives chapter.  I would use intravital microscopy to image CXCR6+, 

TRAP130-138-specific CD8 TCR retrogenic cells in the liver, particularly noting the 

localization of these cells in RAS-vaccinated mice receiving wild-type sporozoite 

challenge compared to non-challenged, RAS-vaccinated mice. These studies will aid in 

the understanding of the localization, and movement of these liver-associated CD8 T cell 

memory populations. These types of experiments can be used to determine how to foster 

better liver-stage immunity against Plasmodium.    
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Conclusion 

Our understanding of the immunological requirements to engender sterillzing 

immunity against Plasmodium has improved to the point that both WSV and subunit 

approaches can achieve sterilizing immunity in vaccinated human subjects (72, 78, 85, 

90, 131, 194).  However, there are severe limitations to each of these vaccination 

approaches that, at least to date, will likely prevent their use to achieve the goal of 

worldwide eradication of Plasmodium.  With the advent of novel CD8 T cell epitopes to 

track Plasmodium-specific CD8 T cell responses against rodent Pb antigens, in addition 

to development of CD8 TCR retrogenic mice and continued enhancement of live imaging 

microcsopy tools, our understanding of the CD8 T cell requirements for protection will 

improve, which should enhance the efficacy of subunit vaccination approaches in the 

future.  However, it remains possible subunit vaccination approaches that exclusively rely 

on CD8 T cells to mediate protection may never achieve high efficacy.  Therefore, it is 

plausible that a successful subunit vaccine approach will need to include anti-Plasmodial 

CD4 T cells and antibody responses to best achieve cross-stage, and cross-

strain/heterologous protection.  Regardless of which arm(s) of the immune response are 

required to ultimately achieve this end goal, due to their relative accurate ability to 

predict protective outcomes in vaccinated human subjects, rodent models of malaria will 

continue to be critical to understand the immunological requirements of protection 

against Plasmodium infections.  
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Figure 27. Whole sporozoite vaccination induce anti-Plasmodium CD8 T cells and 
antibodies mediate protection against Plasmodium infections 
 

WSV strategies (i.e. RAS and GAP vaccination) expose the host to sporozoite antigens, 
inducing anti-sporozoite antibody responses capable of partial inhibition of sporozoite-
infection of hepatocytes and the induction of anti-liver-stage directed CD8 T cell 
responses (A).  In contrast, while CPS vaccination also induces these responses, 
protection in a C57Bl/6-P. yoelii model appears to be dependent on antibody responses 
direct against blood-stage antigens (B).   
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Figure 28. Proposed model defining a differentiating factor between antigens 
targeted by protective and non-protective anti-Plasmodium CD8 T cell responses 
 

Non-protective CD8 T cells (i.e. GAP5041-48- and S20318-325-specific CD8 T cell 
responses) may target parasite antigens that are not easily accessible to the host cell 
cytosol to access proteolytic machinery for peptide processing and presentation on 
hepatocyte surface by MHC class I complexes (A).  Protective CD8 T cell responses (i.e. 
CSP252-260- and TRAP130-138-specific CD8 T cells) may target parasite antigens that are 
easily accessible to host cell cytosol, allowing efficient processing and presentation on 
MHC class I molecules, and subsequent antigen-specific CD8 T cell recognition and 
killing (which may be IFNγ dependent).    
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