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Figure 7.5: Measurement correlations between the total ONH volume and pRNFL
and pTR thicknesses in 55 eyes from the subsequent analysis dataset. (a) Compares
Zeiss’ pRNFL and our pRNFL and pTR thicknesses with the total ONH volumetric
measurement. (b) Compares the relationship between our algorithm’s pRNFL and
pTR thicknesses with Zeiss’ pRNFL thickness.
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continuous scale measurement of optic disc edema and changes over time. More

thorough discussions and details can be found in [7].

7.3 Automated 3D Region-Based Volumetric
Estimation of Optic Disc Swelling in

Papilledema Using SD-OCT

In the previous section, a high correlation between the ONH volume and Frisén

grade (r = 0.74) shows that the global volumetric measurement can be a potentially

good option to assess the severity of papilledema. However, the region-based vol-

umetric measurements were not addressed in the previous discussion. Because the

regional features are often helpful in the expert-determination of Frisén scale grades

from fundus photographs and considering the recent automated fundus-based anal-

yses [5], these features can be expected to contribute in an OCT-based papilledema

severity prediction system as well. Therefore, in this work, a machine-learning ap-

proach is proposed to use a fuzzy k-nearest-neighbor (k-NN) classifier to predict

the Frisén grade for each input SD-OCT volumetric scan using the retinal features

including not only the ONH volume, mean pRNFL and pTR thicknesses (as were

discussed in the previous section) but also the newly added region-based volumetric

measurements (i.e., the nasal, superior, temporal, and inferior volumes). The final

selected features are decided by sequential forward feature selection and tested using

a leave-one-subject-out cross validation method.

7.3.1 Automated Retinal Layer Segmentation and
Swollen Region Segmentation

All the input SD-OCT volumetric scans are segmented using the 3D graph-search

that was discussed in Section 4.3, where the ILM, bottom surface of the RNFL and

the RPE complex are the target surfaces. After the layer segmentation, the RPE

en-face image is generated [Fig. 7.6 (a)] by averaging voxel intensities for each A-scan

in the RPE layer. Fig. 7.6 (a, b) shows 2D and 3D visualizations, respectively. Next,
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Figure 7.6: Steps of region-based volumetric estimation. (a) A RPE en-face image.
(b) 3D visualization. (c) Segmentation of the swollen region. (d) A 3D color map
of the region-based divisions, including the nasal (red), superior (yellow), temporal
(blue), and inferior (green) areas.

a 2D graph-search algorithm [66] is used to segment the swollen region in the en-face

image [i.e., the dark region inside the red circle in Fig. 7.6 (c)].

7.3.2 Computations of 3D Global, 2D Regional, and
3D Regional Retinal Features

Using the retinal layer segmentation results (and flipping the image into a right-eye

orientation when necessary), the ONH volume is considered as a 3D global feature,

which is defined as the volume between the ILM and the lower bounding of RPE

(Section 7.2.2). For the 2D regional features, the mean peripapillary RNFL (pRNFL)

and TR (pTR) thicknesses are calculated around a circular scan with a radius of 1.73

mm, which matched the same setting as Zeiss commercial machines (Section 7.2.1).

Finally, the nasal, superior, temporal, and inferior regions within the swollen area
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[i.e., the dark region inside the red circle, Fig. 7.6 (c)] are considered as 3D regional

features. In particular, as illustrated in the red region in Fig. 7.6 (d), the nasal

volume is defined as the TR volume within the nasal quadrant (315◦ to 45◦ using the

geometric centroid of the swollen region). The volumes of the superior, temporal, and

inferior regions are the quadrants of the total swelling regions between 45◦ to 135◦,

135◦ to 225◦, and 225◦ to 315◦ [i.e. the yellow, blue, green quadrants in Fig. 7.6 (d),

respectively].

7.3.3 Classification of Frisén Scale Grade

A fuzzy k-nearest-neighbor (k-NN) algorithm was used to predict the Frisén scale

grade associated with multiple SD-OCT features (i.e., the ONH volume, the mean

pRNFL and pTR thicknesses, as well as the mean volumes of the nasal, superior, tem-

poral, and inferior regions) and tested by a cross-validation, which means repeatedly

excluding all the scans from one patient and then using the information of the other

patients to predict the Frisén scales of the previously excluded scans. Further, the

sequential forward searching algorithm is adopted to obtain the best possible combi-

nation of these features. The accuracy of prediction as well as the mean Frisén grade

difference (MGD) of different feature combinations were computed, where MGD was

defined as the absolute Frisén scale difference between the k-NN classifier’s output and

the agreement of three independent neuro-ophthalmologists. Thus, an MGD of zero

would correspond to a perfect classification result. The k-NN algorithm was imple-

mented using a C++ library for approximate nearest neighbor (ANN) searching [80].

Because only seven features were considered in this study (which means the compu-

tational time is relatively short), the error bound of the maximum approximation in

the ANN library is set to zero in our implementation.
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Table 7.2: The mean ONH volume (3D global feature), pRNFL and pTR thickness
(2D regional features), and regional volumes (3D regional features) of the input 70
SD-OCT ONH scans for each Frisén scale grade in papilledema.

Frisén Scale Grade 0 1 2 3 4

# of Eyes 5 25 28 7 5

ONH 11.18 12.32 14.30 16.53 21.45
Volume [0.26] [0.24] [0.40] [0.58] [1.36] (mm3)

pRNFL 84.08 113.00 185.19 270.49 464.54
Thickness [9.50] [5.35] [14.95] [34.47] [74.10] (µm)

pTR 309.31 341.48 418.56 525.68 805.72
Thickness [12.96] [9.21] [19.02] [39.62] [80.68] (µm)

Nasal 0.22 0.38 0.84 1.20 1.61
Volume [0.03] [0.03] [0.08] [0.13] [0.26] (mm3)

Superior 0.24 0.49 1.10 1.42 1.90
Volume [0.05] [0.05] [0.10] [0.13] [0.25] (mm3)

Temporal 0.15 0.25 0.63 0.92 1.40
Volume [0.04] [0.02] [0.06] [0.11] [0.23] (mm3)

Inferior 0.26 0.52 1.13 1.48 1.91
Volume [0.05] [0.05] [0.10] [0.14] [0.24] (mm3)

Note: [*] represents the standard error of the mean.

7.3.4 Experimental Methods and Results

Seventy ONH-centered SD-OCT volumetric scans (Carl Zeiss Meditec, Inc., Dublin

CA) from 22 papilledema patients with multiple visits were obtained from The Uni-

versity of Iowa. Each scan had dimensions of 200×200×1024 voxels that covered a

volume 6×6×2 mm3.

All of the corresponding fundus photographs were graded by three independent

neuro-ophthalmologists from The University of Iowa, and the majority outcome,

which was decided by the winner-take-all rule, was adopted when the original three

judgments were not consistent. Within these 70 ONH scans, there were 5, 25, 28, 7,

and 5 scans with Frisén grade of 0, 1, 2, 3, and 4, respectively. (Note: there were no

scans with Frisén grade 5 in this work.)
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The ONH volume was the only 3D global feature, and the mean (± standard

error) results from grades 0 to 4 were 11.18 (± 0.26), 12.32 (± 0.24), 14.30 (± 0.40),

16.53 (± 0.58), and 21.45 (± 1.36) mm3, respectively. For the 2D regional features

(i.e., the pRNFL and pTR thicknesses) and the 3D regional features (i.e., the mean

volumes of the nasal, superior, temporal, and inferior regions), organized results are

shown in Table 7.2 and Fig. 7.7.

The Spearman rank correlation coefficients between the Frisén scale grade and the

ONH volume, the mean pRNFL and pTR thicknesses, and the regional volumes of

nasal, superior, temporal and inferior areas are shown in Table 7.3. Fig. 7.8 represents

the mean thickness maps between ILM and RPE of each Frisén scale grade.

Using the k-NN classifier with k-value of 15, the best set of multi-feature selections

is the combination of the TR thickness and the mean temporal volume, where the

mean Frisén grade difference (MGD) was 0.386 and the accuracy of prediction was

64.29%. If only considering the 3-D global feature, the MGD and accuracy was just
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Table 7.3: Spearman Rank Correlations between Frisén Scale Grade and 2D/3D
Features.

3D Global 2D Regional 3D Regional
Feature ONH pRNFL pTR Nasal Superior Temporal Inferior

Spearman
0.737 0.739 0.673 0.752 0.747 0.770 0.758

Correlation
all p-values < 0.001
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Figure 7.8: Mean thickness maps between the ILM and RPE in papilledema from
Frisén scale grade 0 (a) to 4 (e), where labels ‘N’, ‘S’, ‘T’ and ‘I’ represent ‘Nasal’,
‘Superior’, ‘Temporal’ and ‘Inferior’, respectively.

0.629 and 41.43%, respectively. Fig. 7.9 is a performance-related comparison among

features, where the dark purple represents the best feature combination (i.e. the mean

pTR thickness and the temporal volume).

7.3.5 Conclusions

Although the Frisén scale grading system has been a popular and standard assess-

ment for papilledema, the high subjectivity, low reproducibility, and the requirement

of specific expertise are still unavoidable. The recent introduction of SD-OCT gives

a great alternative for ophthalmologists to analyze 3D volumetric information of pa-

pilledema. Although the preliminary results have been recently presented showing

high correlation between total retinal (TR) volume in SD-OCT and Frisén scale grades

(Section 7.2, [7]), the work in this section reflects the first time that region-based met-
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rics are examined for assessing papilledema. The changing of the “flipped C-shape”

at the optic disc in Fig. 7.8 is strong evidence demonstrating that regional features

play a very important role in differentiating the different grades of papilledema. Also,

the region-based volumetric estimation had a higher Spearman rank correlation than

the results from using the ONH volumetric estimation alone.

In addition, this is the first study for the Frisén scale grades that are predicted

using a fuzzy k-NN classifier with the combination of global as well as regional features

from the automated SD-OCT layer segmentations. Using sequential forward searching

algorithm found the best multiple-feature set, which was the combination of the mean

pTR thickness and the mean temporal volume. With the leave-one-subject-out cross

validation, the fuzzy k-NN classifier with the best multiple-feature set reduced the

mean Frisén grade difference down to 0.386 with the accuracy 64.29%. This was a

significant improvement compared to only considering the ONH volume to predict

Frisén scale grade which had an MGD of 0.629 and accuracy of 41.43%. In future

work, it will be important to perform similar experiments on a larger dataset of

subjects as this dataset is biased to contain a high proportion of Frisén scale grades

1 and 2. Thus, the selected features may be correspondingly biased to perform best

on those grades. Nevertheless, at minimum, this work demonstrates the importance

of considering region-based features in further studies.

7.4 Continuous-Scale Papilledema Severity
Score Estimation

Since only a small dataset (including 22 papilledema subjects from the Univer-

sity of Iowa) was used in the previous section, the much larger dataset from the

IIHTT OCT sub-study (including 126 papilledema subjects due to idiopathic intracr-

nial hypertension (IIH) [11, 12, 18, 19, 68]) is used in this work to test the proposed

idea of using a machine-learning technique to mimic experts’ decisions of assessing

papilledema severity. In addition to increasing the size of the input dataset, a few
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modifications have also been added to this section. First, instead of using a fuzzy

k-NN classifier, random forest classifiers are utilized to internally select the best input

feature combination to achieve better prediction results. Second, the definitions of the

region-based volumetric OCT features are slightly adjusted to better fit clinical mean-

ing. Third, the peripapillary retinal pigment epithelium and/or Bruch’s membrane

(pRPE/BM) 2D and 3D shape measures are added to the learning system. Although

it has been known that the pRPE/BM shape change may reflect the intrcacranial

pressure change [13, 14], there is still no study that has addressed the comparisons

between the pRPE/BM shape measure and Frisén grade.

7.4.1 Classification of Frisén Scale Grades

In IIHTT, Frisén grades (scale 0: normal; scale 5: severe) of papilledema are

determined 1) by neuro-ophthalmologists in the photographic reading center (PRC)

based on digital photographs evaluation, and 2) by the principal investigators at

each site during the clinical examination (CE). In this study, the CE Frisén grade is

considered as the reference standard, because we believe that the site investigators

may have more available information than the clinicians in the reading center, who

only have the assess to the fundus images.

7.4.2 Retinal Features Using Optical Coherence
Tomography

Ten OCT features are used as the inputs of the machine learning system. The first

three are the total ONH volume as well as peripapillary RNFL and TR thicknesses,

which can be computed using the methods described in Section 7.2. Next, four region-

based volumetric features are computed. The region boundary has been changed from

using the detected swollen region (Section 7.3) to directly using the peripapillary

circle (radius = 1.73 mm). As illustrated as the red region in Fig. 7.10, the nasal

volume is defined as the ONH volume within the nasal quadrant (315◦ to 45◦ using
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(a) (b) (c)

Figure 7.10: Region-based volumetric features. (a) Original RPE en-face image.
(b) Region-based volumetric features in the swollen region, which is defined in Sec-
tion 7.3.2. (c) Region-based volumetric features in the peripapillary region, where
the radius is 1.73 mm.

the geometric centroid of the swollen region). The volumes of the superior, temporal,

inferior regions are the quadrants of the total swelling regions between 45◦ to 135◦,

135◦ to 225◦, 225◦ to 315◦ [i.e. the yellow, blue, green quadrants in Fig. 7.10 (b, c),

respectively]. The eighth feature is the volumetric summation of these four quadrants,

called the peripapillary region volume. The last two features are the pRPE/BM 2D

and 3D shape measures, which can be computed using the same methods as we

discussed in Section 6.2 and 6.3, respectively.

7.4.3 Estimation and Validation of Papilledema
Severity Score

Random forest classifiers are used to estimate the papilledema severity score (PSS)

with the OCT input features that were discussed in the previous section: the to-

tal ONH volume, the peripapillary RNFL and TRT thicknesses, the volumes of the

nasal, superior, temporal and inferior regions, the total peripapillary volume, and the

pRPE/BM 2D as well as 3D shape measures. The random forest algorithm is imple-

mented using R language with the classification and regression training (i.e., CARET)

package [81]. The cross-validation method is implemented with the CARET package

to automatically decide the best number of variables randomly sampled as candidates
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at each split in these trees considering the lowest out-of-bag (OOB) error [81]. For

the purpose of the severity score validation, the root-mean-square deviation (RMSD)

and consistency rate between the predicted papilledema severity score and both PRC

and CE Frisén grades are computed. Here, the RMSD is defined as the square root

of the mean square residuals between the regression outputs of the random forest

algorithm and the corresponding Frisén grades, and the consistency rate is defined

as the percentage of the subjects whose rounded predicted PSS is the same as the

corresponding Frisén grade.

7.4.4 Experimental Methods and Results

One-hundred and twenty-six papilledema subjects (due to idiopathic intracranial

hypertension), right eyes at baseline, from the IIHTT dataset were initially included

in this study. To compare the Frisén grades with the OCT features, eleven subjects

were excluded because their OCT features were not available due to either missing

images or bad image quality. Therefore, there were 115 right eyes included with their

photographic reading center (PRC) and clinical examination (CE) Frisén grades and

all of the ten OCT features. Next, these 115 right eyes were randomly split into a

training set (80 eyes) and a testing set (35 eyes). In the training set, the counts for

the CE (PRC) Frisén grade 0 to 5 were 1 (0), 18 (10), 23 (31), 23 (23), 11 (12), and 4

(4), respectively. The root-mean-square deviation (RMSD) between these two Frisén

grades was 0.82, and the consistency rate was 0.48. Next, a regression model was

trained by a random forest algorithm with 1000 randomly generated decision trees

using the OCT features from the training set. The implementation was achieved

using the CARET package in R language. The random forest classifiers considered

the CE Frisén grade as the reference standard and utilized ten-fold cross-validation

to decide the best amount of the variables to split on each node in these decision trees

with the lowest out-of-bag (OOB) error. Meanwhile, the importance of each feature

was computed and is shown in Fig. 7.11.
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Figure 7.11: A bar chart of the feature importance from the random forest algorithm
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represents the pRPE/BM 2D as well as 3D shape measure, respectively.
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Table 7.4: The comparisons among the photographic reading center Frisén grades
(PRCG), clinical examination Frisén grades (CEG), and papilledema severity score
(PSS) in both training and testing sets.

PRCG vs. CEG PSS vs. CEG

Training Set RMSDa 0.82 X
(80 Eyes) Consistency Rate 0.48 X

Testing Set RMSD 0.97 0.70
(35 Eyes) Consistency Rate 0.31 0.49b

a Root-mean-square deviation
b PSS is rounded-off before the computation

On the other hand, in the testing set (35 eyes), the counts for the CE (PRC)

Frisén grades from 0 to 5 were 1 (0), 5 (5), 12 (10), 11 (10), 6 (10), and 0 (0), respec-

tively. The RMSD between these two Frisén grades was 0.97, and the consistency

rate was 0.31. Fig. 7.12 (a, b) shows the confusion matrices of the training and test-

ing dataset, respectively; note that there was no grade 5 in the testing set. After

applying the testing set to the trained random forest model, the regression results,

called papilledema severity scores (PSS), were computed. The RMSD between the

PSS and clinical examination (CE) Frisén grades in the testing set was 0.70, which is

significantly smaller than the RMSD between the PRC and CE Frisén grades in the

testing set (p < 0.05). Fig. 7.13 (a) shows the histogram of the predicted PSS with a

bin width of 0.5; Fig. 7.13 (b) shows the confusion matrix of the rounded PSS and CE

Frisén grades, where the consistency rate was 0.49. Table 7.4 shows the comparisons

among the PRC Frisén grade, CE Frisén grade and PSS in both training and testing

sets.

In addition, considering both of the training and testing sets (i.e., 80 + 35 eyes),

the Spearman rank correlations between the CE Frisén grade and the 10 OCT features

were also calculated (Fig. 7.14).



113

0

1

0

0

0

0

0

7

11

0

0

0

0

2

12

7

2

0

0

0

7

12

4

0

0

0

1

3

5

2

0

0

0

1

1

2

0

1

2

3

4

5

0 1 2 3 4 5
CE Grade

P
R

C
 G

ra
d

e

0
3
6
9
12

Counts

Training Set

0

1

0

0

0

0

2

3

0

0

0

2

4

3

3

0

0

3

3

5

0

0

0

4

2

0

1

2

3

4

0 1 2 3 4
CE Grade

P
R

C
 G

ra
d

e

0
1
2
3
4
5

Counts

Testing Set

(a) (b)

Figure 7.12: Confusion matrix between the photographic reading center (PRC) and
clinical examination (CE) Frisén grades in (a) the training set of 80 eyes, where the
RMSD was 0.82 as well as consistency rate was 0.48, and (b) the testing set of 35
eyes, where the RMSD was 0.97 as well as consistency rate was 0.31. Note: there is
no grade 5 in the testing set.
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Figure 7.13: Predicted papilledema severity scores (PSS) in the testing set of 35 eyes.
(a) The histogram of the PSS with the bin width of 0.5. (b) The confusion matrix
between the rounded PSS and CE Frisén grade, where the consistency rate was 0.49.
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Figure 7.14: A bar chart of the Spearman rank correlation coefficients between the
CE Frisén grade and the OCT features, where “TotalVolume” represents the total
ONH volume, “Nasal”, “Superior”, “Temporal” and “Inferior” represents the four
individual 90◦ quadrant volumes of the peripapillary region, “pRegion” represent
the total volume of the peripapillary region, “RNFL” and “TRT” separately repre-
sents the peripapillary RNFL and TR thicknesses, and “pBM Shape 2D” as well as
“pBM Shape 3D” represents the pRPE/BM 2D as well as 3D shape measure, respec-
tively.
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7.4.5 Conclusions

Fig. 7.14 demonstrates that the total ONH volume, the peripapillary RNFL and

TR thicknesses, and the region-based volumetric measurements are strongly corre-

lated to the Frisén grades in the IIHTT dataset, which is consistent with the con-

clusions from previous studies [7, 68, 72]. It is also not surprising to see that the

pRPE/BM 2D and 3D shape measures have very limited correlations with the Frisén

grades, since these pRPE/BM shape measures mostly represent the papilledema sever-

ity from the perspective of the changes in intracranial pressure [13, 14, 76]. (On the

other hand, the Frisén grades are determined by the visible features of the peripap-

illary retina and the optic disc from the fundus photographs or direct funduscopic

observation.) In addition, comparing Fig. 7.11 with Fig. 7.14, we find the feature im-

portance from the random forest framework has a very similar patten to the Spearman

rank correlations between the CE Frisén grade (i.e., the reference standard) and the

OCT features. This adds to the explanation for why the pRPE/BM shape measures

do not help the machine-learning algorithm to determine the Frisén grades.

In fact, although the data here has shown that the pRPE/BM shape measures do

not directly contribute to the prediction of a Frisén-scale-based papilledema severity

score, the pRPE/BM shape measures practically support evidence to help distin-

guish the causes of optic disc edema, such as pseudo-papilledema, ischemic optic

neuropathy, and meningiomas of the optical nerve sheath [14,15]. Since papilledema

is defined by optic disc swelling due to elevated intracranial pressure, the pRPE/BM

shape measures can be extremely helpful for the proposed machine-learning system to

distinguish papilledema from the other types of optic disc swelling with an appropriate

reference standard.

Based on Fig. 7.12, it is noticeable that the CE and PRC Frisén grades are not

generally consistent (the consistency rate in training and testing sets are only 0.48

and 0.31, respectively). This is in agreement with the other studies showing that
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the Frisén grading system has the limitation of high intra-observer variability [4–

7]. Therefore, developing a more robust system to consistently evaluate papilledema

is truly beneficial for the clinical needs. With a robust OCT layer-segmentation

algorithms, the OCT features can be computed automatically and quantitatively.

Then, the proposed machine-learning framework can be directly applied to these

OCT measurements to output a severity score. Our data shows that the proposed

papilledema severity score (PSS) was significantly closer to the reference standard

than the Frisén grades that were determined by the photographic reading center.

Because the expertise of accurately determining the severity of papilledema is unique,

this machine-learning system can be potentially useful for helping clinicians who are

under training to practice their judgments. Or, for some other situations, such as

circumstances in which qualified clinicians are not immediately available (for example,

emergency departments), technicians trained in operating OCT devices may use this

proposed system to obtain a preliminary assessment without invasive exams. The

proposed PSS system can be potentially useful in multiple clinical scenarios.
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CHAPTER 8
CONCLUSIONS

Due to the low requirements of the imaging technique, the Frisén grade system

has been a standard measurement of papilledema since its introduction in 1982. Be-

cause the Frisén grades are determined by experts qualitatively examining the visual

features of the peripapillary retina and the optic disc from the fundus photographs or

direct funduscopic observation, this grading system has inherent limitations (such as

high intra- and inter-observer variability, need of specific expertise, tedious processing

steps, and the ordinal nature of the scale), resulting in low reproducibility. Spectral-

domain optical coherence tomography (SD-OCT), on the other hand, is a relatively

new imaging technique and has an entirely different perspective of assessing the reti-

nal tissue. SD-OCT has the ability to enable cross-sectional information of the retina

to be acquired without invasive procedures; this type of advantage makes the OCT

technique very popular in the fields of ophthalmology and neuro-ophthalmology.

To obtain accurate retinal measurements using the OCT images, the accuracy

of the retinal layer segmentation plays an important role. Although most of the

commercial OCT devices support automated retinal layer segmentation with regular

measurements (such as the peripapillary RNFL and TR thicknesses), there is still

no particular commercial device that has the ability to reliably perform the layer

segmentation in severely swollen optic discs. Therefore, in Chapter 4, details were

discussed about developing robust retinal layer segmentation algorithms for optic

disc swelling in an automated fashion. These proposed algorithms work for both

high-definition five-line raster (HD-5LR) and regular volumetric protocols. Based on

accurate segmentation results, OCT parameters (such as the peripapillary RNFL and

TR thicknesses, the volumes of the total ONH as well as peripapillary region, and

the volumes of the peripapillary nasal, superior, temporal, and inferior quadrants)

are also reliable. For example, in the Idiopathic Intracranial Hypertension Treatment
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Trial (IIHTT) OCT sub-study baseline dataset, including 126 subjects, the proposed

layer segmentation algorithms have been demonstrated to be less prone to failure

in segmenting retinal layers under swollen optic discs compared to the accompanied

algorithms of the commercial SD-OCT devices [11]. Chapter 4 provides a solid foun-

dation to compute the OCT measurements in this doctoral work.

In addition to the volumetric and thickness measurements, multiple studies have

also shown that the peripapillary retinal pigment epithelium and/or Bruch’s mem-

brane (pRPE/BM) deformation may reflect a change in intracranial pressure. There-

fore, quantifying the pRPE/BM shape variation becomes another currently widespread

topic in the field of investigating papilledema. To correctly evaluate the pRPE/BM

shape, the accurate location of the pRPE/BM opening needs to be segmented before-

hand. Chapter 5 thoroughly addressed this topic, from the difficulties of segment-

ing the pRPE/BM opening under severely swollen retinal tissue in SD-OCT images,

to further providing semi- and fully automated methods to perform the pRPE/BM

profile segmentation in the SD-OCT RPE en-face image domain. Then, Chapter 6

extended the obtained BMO contour and automatically placed landmarks, for the

purpose of generating 2D and 3D pRPE/BM shape models. The traditional method

(which is completely manual) of generating the pRPE/BM shape model was limited

by its tediousness so that it was applicable only in 2D and for relatively small datasets.

Chapter 5 and Chapter 6 improved the traditional method by automating it and suc-

cessfully applied the computed 2D and 3D pRPE/BM shape measures for a large-scale

dataset (i.e., IIHTT dataset). Having these two chapters is important, because this is

the first study of automating the processes of generating statistical-shape models of

the retinal layer, especially the methods working for both swollen and normal optic

discs. However, since the optic disc swelling does not immediately subside when the

intracranial pressure dramatically decreases (e.g. after shunt, lumbar puncture, or

other aggressive procedures), the pRPE/BM shape measures may temporarily show
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inconsistency with the other OCT volumetric or thickness measurements to reflect

the papilledema severity. Generally speaking, the optic disc swelling may lag over the

ensuring days to weeks [15].

Potential future work using the pRPE/BM shape models is to develop a system

to use the pRPE/BM shape measures to be an alternative to reflect the true cere-

brospinal fluid (CSF) pressure, so patients could reduce the need of receiving lumbar

punctures. Also, because the pRPE/BM shape change reflects the change in the in-

tracranial pressure, it is beneficial to use these shape measures to test if the optic disc

swelling is papilledema. Since the Bruch’s membrane opening is often obscure under

a severely swollen inner retina in the OCT images, the true location may come clearer

when the swelling subsides over time. Therefore, another potential extension of the

pRPE/BM segmentation and shape models is to use the latter results in the longitu-

dinal dataset to cross-validate the baseline results. In addition, using the results from

the previous couple visits may be helpful in predicting papilledema development or

treatment progress. Another application is to extend this methodology to model dif-

ferent retinal layers and/or the layer combinations for the purposes of classifying the

types of optic disc swelling. The shapes of optic disc swelling may show dissimilarly

at different retinal layers from various etiologic and pathogenetic mechanisms.

Due to the low reproducibility of Frisén grading system, neuro-ophthalmologists

have been researching alternative methods on a continuous scale to present the pa-

pilledema severity more objectively. SD-OCT is relatively new and capable of quan-

tifying retinal structure. Not surprisingly, researchers have started to investigate the

possibility of using SD-OCT measurements as features to develop a quantitative sys-

tem to replace the current qualitative method. Chapter 7, first, demonstrated that

the total ONH volumes are strongly correlated with Frisén grades to show the poten-

tial usage of this 3D SD-OCT feature as new option to assess papilledema. This step is

important, because the 2D thickness measurements (i.e., the peripapillary RNFL and
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TR thicknesses) become less reliable when the optic disc swelling is severe [12]. Then,

the SD-OCT volumetric region-based features were tested in a machine-learning sys-

tem in a small dataset to indicate that using multiple SD-OCT features together may

increase the accuracy of mimicking experts’ decisions of assessing papilledema from

fundus images. By observing Fig. 7.8, the inverse “C-shape” swelling clearly shows

papilledema development by region in order of severity. Finally, a random forest al-

gorithm was utilized to consider all the available SD-OCT features to compute the

papilledema severity score (PSS) to objectively reflect the degree of the optic disc

swelling due to raised intracranial pressure. So far, this machine-learning system was

trained by utilizing Frisén grades as the reference standard. Since the Frisén grades

and SD-OCT features may reflect different pathophysiological aspects of papilledema,

the proposed machine-learning framework also keeps the flexibility of switching the

learning targets as well as adding/removing extra features. For example, it is pos-

sible to switch the current reference standard to the experts’ severity rankings. By

doing so, the scales of the original Frisén grading system can be dramatically ex-

tended. Also, a recent study showed that multiple types and patterns of folds in

papilledema, which express stress and strain, appear to be a function of two separate

but interrelated biomechanical drivers: volumetric expansion of the optic nerve head

and anterior deformation of the pRPE/BM [82]. Therefore, a possible extension of

this system is to quantify these retinal folds and then use them as new features. Also,

as we discussed in the previous section, measures of different retinal layers can be

potentially good features as well. Considering all these new and proposed features

together, the generalization of the proposed PSS system can be improved.

To summarize, this doctoral work develops a machine-learning system using 2D/3D

SD-OCT images to evaluate papilledema severity based on global and regional fea-

tures, including volumes and thicknesses, as well as shape measures. It is expected

to be a more robust system than the traditional qualitative method (i.e., the Frisén
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grading system). The current limitation of this work is that the Frisén grades are

still the reference standard for the proposed system, so the learning system may be

biased by the high variability in the ground truth. However, the advantage of this

doctoral work is that the proposed machine-learning framework is flexible, so the

input features and learning targets can be straightforwardly adjusted without much

modification to fit new applications. Future works may include increasing the gener-

alization of the proposed PSS system and switching to different reference standards

for the machine-learning system to distinguish the types of the optic disc edema.
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