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Figure 5-2: Maps showing the results of the best Cox model (selected based on the smallest 

AIC) for which PNA (top panels) and AO (middle panels) are retained as a significant 

covariates in the final models. The green colors in the bottom panels show the location of 

the final models that includes an interaction term. The grey circles in panels a and c refer 

to locations that the climate index is not maintained as an important covariate. The red 

(orange) colors indicate a statistically significant negative relationship at the 5% (10%) 

level; the dark (light) blue colors show a statistically significant positive relationship at the 
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5% (10%) level. The yellow (cyan) colors show the results for the non-significant negative 

(positive) relations.  

 

Figure 5-3: Maps showing the IVT and GPH anomalies corresponding to four different 

locations (black circles) for which different Cox regression models were selected to 

describe the occurrence of heavy precipitation events: (a) a model with AO as the only 

covariate; (b) a model in which neither of the covariates were selected; (c) a model 

including both AO and PNA; (d) a model with PNA as the only predictor. In all the panels, 

the blue (red) contours represent positive (negative) 500-mb GPH anomalies (m) on the 

days of the occurrence of the events and seven days prior to the events, while the underlying 

colored fields show the IVT anomalies. Anomalies are calculated for each day with respect 

to the 1980-2010 base period.  
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Figure 5-4: Maps summarizing the sensitivity of the results to the thresholds selection for 

the relation between the occurrence of flood events and PNA (left panels) and AO (right 
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panels) at the sub-seasonal scale over the central United States. The red (orange) colors 

indicate a statistically significant negative relationship at the 5% (10%) level; the dark 

(light) blue colors show a statistically significant positive relationship at the 5% (10%) 

level. The grey circles refer to the location of the stations that did not show a statistically 

significant relationship at the 10% significant level. 

 

 

Figure 5-5: Maps showing the results for the relation between the occurrence of heavy 

precipitation events and (a) AO and (b) PNA at the sub-seasonal scale when the threshold 

is selected based on the 90th percentile of the empirical precipitation distribution. The red 

(orange) colors indicate a statistically significant negative relationship at the 5% (10%) 

level; the dark (light) blue colors show a statistically significant positive relationship at the 

5% (10%) level. 
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CHAPTER 6 SUMMARY AND CONCLUSION 

 As discussed in the Introduction, flooding over the central United States has large 

societal and economic impacts, with loss of human lives and billions of dollars in damage. 

Because of these large repercussions, it is of the utmost importance to examine whether 

the magnitude and/or frequency of flood events have been changing over the twentieth and 

early twenty-first centuries. Therefore, there has been a lot of interest in analyzing 

streamflow records to detect variability in flood magnitude and/or frequency (e.g., Lins 

and Slack, 1999, Schilling and Libra, 2003, Lins and Cohn, 2011, Villarini et al., 2011b, 

Hirsch and Ryberg, 2012, Slater et al., 2015). Many of these studies did not show 

significant changes in flooding characteristics, particularly in flood magnitude. However, 

in analyzing precipitation data, numerous studies over the past decades have shown an 

increasing trend in the frequency and/or magnitude of extreme precipitations over the 

United States (e.g., Karl et al., 1996, 2009, Karl and Knight, 1998, Madsen and Figdor, 

2007, Groisman et al., 2001, 2004, 2012, Kunkel et al., 1999, 2008, 2013, Alexander et al., 

2006, Higgins and Kousky, 2013). Also, previous studies have shown that flood damage 

has been increasing over the past century (e.g., Pielke and Downton, 2000, Downton et al., 

2005, Gall et al., 2011). In addition, modeling studies point to an intensification of the 

hydrological cycle under projected climate warming (e.g., Voss et al., 2002, Held and 

Soden, 2006, Huntington, 2006), with increasing frequency of extreme events, such as 

heavy rainfall, flooding and drought (e.g., Voss et al., 2002, Milly et al., 2002, 2005, 

Christensen and Christensen, 2003, IPCC, 2012). 

 Because studies of the historical records to determine changes in flooding have thus 

far proved inconclusive, in Chapter 3, I used different approaches (i.e., block-maximum 



 
 

88 

 

and peak-over-threshold) to investigate whether the characteristics of recent flooding are 

different from the long-term averages over the central part of United States. To address this 

research question, I analyzed annual and seasonal daily streamflow records from 774 

USGS streamflow stations over the central United States. The study area included North 

Dakota, South Dakota, Nebraska, Kansas, Missouri, Iowa, Minnesota, Wisconsin, Illinois, 

West Virginia, Kentucky, Ohio, Indiana, and Michigan. The focus was on 774 USGS 

stream gages with long records (i.e., at least 50 years of data) ending no earlier than 2011.  

 I found limited evidence suggesting an increasing or decreasing trend in the 

magnitude of flood peaks over this area. In contrast, there was much stronger evidence of 

an increasing frequency of flood events. Therefore, the results of this work support the 

argument that over the past 50+ years the largest flood peaks have not really become larger, 

but that there has been a larger number of flood events. 

 Flood events happen when a stream system has excess water. Although there is 

evidence showing that part of the increase in the flood damage noted in the previous studies 

is related to growth in human activity in flood hazard regions (e.g., Pielke and Downton, 

1999, Pielke, 1999, Peterson et al., 2013), extreme precipitation still plays a critical role. 

Indeed, different hydrometeorological processes (e.g., mesoscale convective systems, 

snowmelt events, tropical and extratropical cyclones, atmospheric rivers) contribute to 

flood events in different seasons and locations over the contiguous United States. 

Therefore, in Chapter 3, I also examined changes in heavy precipitation as a possible reason 

for explaining observed changes in flooding over the central United States. Similar to the 

analysis of flood events, there is a stronger signal of change in the frequency rather than in 

the magnitude of heavy precipitation events. Overall, by examining the precipitation 
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records, I was able to link the increasing trend in the frequency of flood events to similar 

patterns in heavy precipitation over the central United States.  

 To this end, I found that changes in flood characteristics could be largely attributed 

to related changes in heavy precipitation. By assuming that this relationship holds outside 

the study region, I have examined the precipitation records to infer what changes in 

flooding across the United States may be. Figure 6-1 a summarizes the results of an analysis 

related to the presence of trends in annual maximum precipitation records. Overall, there 

is a limited number of pixels showing statistically significant changes in the magnitude of 

heavy precipitation: overall, 10% (8%) of grid cells show statistically significant increasing 

(decreasing) trends in the magnitude of heavy precipitation. 

 While the signal of change in the magnitude is relatively weak, it becomes much 

stronger when I examine changes in the frequency of heavy precipitation (Figure 6-1 b). 

About 30% of the grid cells over the contiguous United States display an increasing trend 

in the frequency of heavy precipitation, and 10% of grid cells reveal a decreasing trend. 

Therefore, the frequency of extreme precipitation has been increasing over large regions 

of the contiguous United States; the most notable exception is the Northwest, where the 

frequency of extreme precipitation has decreased over the past 65 years. Consequently, 

these results indicate that while most of the contiguous United States regions are not 

experiencing stronger storms, they have been experiencing a larger number of heavy 

precipitation events.  

 The analyses in Figure 6-1 lead to an interesting question for the future work. Is it 

possible that changes in the frequency rather than in the magnitude of flood events are not 

just confined to the central United States, but represent a widespread characteristic of flood 
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events across the continental United States that can be attributed to the changes in heavy 

precipitation events? To answer this question, analyses using the methodology detailed in 

this thesis should be performed. 

 While identifying the changes in flood and heavy precipitation characteristics 

reported in Chapter 3 is important, it is also imperative to start inspecting the driving forces 

that are responsible for the observed changes. In Chapter 4, I examined the climatic driving 

forces that are responsible for the observed changes in flood frequency over the central 

United States at the seasonal scale. The results revealed that climate variability from both 

the Atlantic and Pacific Oceans can play a significant role in explaining the variations in 

the frequency of flooding over the central United States. Among the different climate 

indices considered here, PNA was found to play a dominant role.  

 The findings about the nexus between climate variability and the frequency of flood 

events were extended to examine climate controls on heavy precipitation over the same 

area. I found that the variability of the Atlantic and Pacific Oceans influenced the frequency 

of heavy precipitation events in a manner similar to what was found for flooding, both in 

terms of geographic regions and seasonality. Therefore, these results suggest that the recent 

observed changes in the frequency of heavy precipitation and flood events over the central 

United States can be largely attributed to variability in the climate system.  

 The findings and methodology of Chapter 4 could provide the foundation for a 

number of additional lines of research. For instance, the insight gained from this work 

could be used to improve seasonal prediction systems. Indeed, an improved understanding 

of the relationship between climate variability and flooding could provide basic 

information to improve future water management. In particular, by skillfully forecasting 
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PNA values over a season of interest we would be able to have information related to the 

number of flood events that could be expected at a given location. 

 These analyses were extended to the sub-seasonal scale to examine how flood and 

heavy precipitation events were distributed within a season. I accomplished this by using 

Cox processes to describe the temporal clustering of flood events. As indicated, under 

clustering, there is an alternation of quiet and active periods, with the fact that one event 

has occurred that changes the probability of another event to occur later on. Thus, in 

Chapter 5, I developed Cox regression models to examine the climatic driving forces 

responsible for the observed changes in the flood and heavy precipitation frequency over 

the central United States at the sub-seasonal scale. The results reported in Chapter 5 

indicate that variations in the climate system play a critical role in explaining the 

occurrence of flood and heavy precipitation events at the sub-seasonal scale over the central 

United States. These results highlight that the rate of occurrence depends on covariate 

processes over a broad area of the central United States. In other words, temporal clustering 

is present and it is driven by climate variability. The findings of Chapter 5 increase our 

understanding of the causes responsible for the occurrence of heavy precipitation and flood 

events over the central United States. The information gained in that chapter can provide 

essential knowledge for short-term forecasting of heavy precipitation and flooding events, 

which could be useful for water resources planning and management.  
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Figure 6-1: Maps showing the results for statistically significant trends (5% level) in the 

magnitude (a) and frequency (b) of heavy precipitation. Analyses are performed at the 

annual scale. Blue (red) pixels show grid cells with an increasing (decreasing) trend. 

Adapted from Mallakpour and Villarini (2016a).  
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