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In Figure 5.6(a), we have shown the speed-ups and scalability test of our

LiDAR data reduction algorithm for 1, 2, 4, 8 and 16 CPU cores. Using a 16 core

Xeon Phi processor we speed-up the running time of algorithm by 15.81 times i.e.

from ≈ 6 hours to ≈ 20 minutes, for the dataset under consideration. The scalability

we achieve is closer to a k fold improvement for a k core processor (k ≥ 1).

Figure 5.6: (a) Parallel speed-ups for LiDAR data reduction algorithm (b)

Data reduction and DEM accuracy

We observed that, compared to the DEM generated from the original complete

LiDAR dataset, there is no significant decrease in accuracy for the DEM generated

from the 52% reduced dataset obtained by applying our algorithm for β = 90%

to the original LiDAR dataset as input. The root mean square error (RMSE) and

standard deviation supporting the same is shown in Figure 5.6(b). In comparison to

the original DEM, the error introduced in the generated DEM, when β = 90%, is



97

only 0.14 meters. In Figure 5.7(a), we have shown the 2-D and 3-D DEM generated

from 66% reduced dataset obtained by applying our algorithm for β = 80%, and in

Figure 5.7(b), DEM generated from 52% reduced dataset obtained for β = 90%. From

Figure 5.7(a) and Figure 5.6(b), we can see that, there is significant loss of accuracy

in the DEM generated from reduced dataset obtained for β = 80% and β ≤ 85%

respectively. For β = 80% the data density is reduced by 66%, but there is an error

of 0.29 meters which reduces the accuracy of the DEM considerably. Whereas for

values of β > 90% the percentage of data reduction is not significant.

The processing time for the DEM generation is directly proportional to the

size of the LiDAR data used for its generation ([50]). It takes half the time to generate

DEM from 52% reduced dataset for β = 90% compared to the original LiDAR dataset.

The smaller the value of β, the lower the density of the reduced LiDAR data, and

lesser is the accuracy of DEMs generated. We need to decide the value of β based

on the type of terrain for example, based on our study, β = 90% is optimal for

terrains having a good mix of flat land, land with moderate inclination, and steep

slopes. It reduces the data density to half the size of the original dataset, and also

preserves high accuracy of the DEMs generated. For terrains dominated by flat lands,

higher β values may lead to optimal reduction of LiDAR data, whereas for terrains

dominated by moderate, steep slopes, and rough regions, lower values of β may be

the correct choice. We thus demonstrate that our LiDAR data reduction algorithm

can significantly improve the processing time, and the file size of DEM generations.
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Figure 5.7: (a) β = 80%, reduced dataset comprising of 2.2 million points

(b) β = 90%, reduced dataset containing 3.1 million points

5.6 Discussion

It is observed that not all LiDAR data contribute effectively to the accurate

generation of DEMs. It is important to identify points representing the specific fea-

tures of the terrain which contain more significant information, compared to other

points ([49, 16]). While designing our LiDAR data reduction algorithm, we take fea-

tures like slope of the terrain into consideration, to remove less important points and

keep critical points. Of all the features of a terrain, we choose slope to be the most
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important feature. Terrain slopes highlight changes in the terrain surfaces which

provides elevation information of a point, and they also showcase information about

their surroundings. Significant changes in slopes of the terrain indicates points with

more critical information, compared to other points ([47]). Thus using our LiDAR

data reduction algorithm, which includes slope of the terrain as the main data re-

moval factor, reduces the number of data points required for DEM generation, while

maintaining high accuracy. Results show that our parallel implementation of this

algorithm is highly scalable and efficient in terms of processing times. Our research

described in this chapter also appears in [86].

Many algorithms for DEM generation have been described in several studies,

but taking into account the specific characteristics of LiDAR data and the application,

it is important to select appropriate interpolation algorithms, modeling techniques,

and resolution of the DEM. One of our applications involve real-time mapping of

terrain on which the vehicle equipped with LiDAR sensor moves. Using traditional

sequential spatial interpolation algorithms along with our data reduction algorithm

is not sufficient to achieve the goals of real-time terrain mapping. So it makes it

essential to design a multi-core parallel spatial interpolation algorithm which can

be combined with our data reduction algorithm, to address the problem of real-time

terrain mapping. In the next chapter, we describe our multi-core spatial interpolation

algorithm to address this issue.
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CHAPTER 6
SPATIAL DOMAIN : INTERPOLATION

6.1 Introduction

Spatial data interpolation is a crucial technique in Geographical Information

System (GIS), which computes unknown terrain height values of points, based on

the known elevation values of points in the neighborhood ([47]). A natural terrain

surface is a continuous surface comprising of infinite points ([22]). We use point sam-

pling techniques to approximate the accuracy of the generated DEMs to the required

resolutions. The most commonly used DEMs are the grid DEM, the contour line

DEM, and triangular irregular network (TIN) DEM. A grid DEM can be represented

as a matrix, having related data points which capture information of the terrain’s

topography. Every grid cell has a value which denotes the elevation for the entire cell

([80]). Each of the grid cells get this elevation value by interpolating (approximation

procedure) adjacent sampling points. Burrough et al. ([14]) defined interpolation as,

a process of interpreting values at points found in unsampled regions, on the basis

of values at points within the confined area of study. Interpolation techniques in

grid DEMs is used to determine the terrain height value of a point based on the

known elevation values of points in the neighborhood ([47]). Spatial interpolation

methods are defined on the basis of geometric and geo-statistical properties. Spatial

interpolation can be classified in various classes like local, global, deterministic, prob-

abilistic, exact and approximate. Local interpolation techniques just process a part
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of the dataset as opposed to the global techniques, which processes the entire dataset.

Exact interpolation techniques like Kriging, (Inverse Distance Weighted) IDW and

some spline methods, generates DEMs which takes into consideration all the points in

the dataset. Probabilistic interpolation methods use geo-statistics to generate DEMs.

These methods include Kriging, and Fourier analysis. The quality of the generated

DEMs is evaluated based on the difference between the “true” and the interpolated

value at points in entire or selected locations ([12]).

Practically applying spatial interpolation is a computationally expensive task

and it requires powerful computing resources. Spatial interpolation is applied more

to massive data analysis, which requires more processing time. We develop parallel

shared memory spatial interpolation technique, which exploits multiple cores of CPUs.

We conduct comparative studies of the DEM generated by our algorithm, to the

ones generated by traditional sequential approaches, using validation technique, and

also evaluate the comparison using statistical approaches like Root Mean Square

Error (RMSE). We also conduct comparisons of our spatial interpolation with various

interpolation algorithms, and DEM resolutions, to check where our algorithm lies in

terms of performance and quality, in the comprehensive guidelines of this area.

The remainder of this chapter is organized as follows: In Section 6.2, we de-

scribe the related work. We state our contributions in Section 6.3. In Section 6.4, we

describe our LiDAR data interpolation algorithm along with its parallel implemen-

tation. In Section 6.5, we discuss and present our experimental results, followed by

some discussion in Section 6.6.
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6.2 Related Work

There are many spatial interpolation techniques to generate DEMs like, grid

DEM generation technique called Inverse Distance Weighted (IDW), Triangular Ir-

regular Networks (TIN), geo-statistical methods like Kriging, local polynomial, etc.

([22]) showed that generating DEMs using grid DEM techniques has more efficient

storage and manipulation scope. DEMs generated using grids introduces errors, since

the terrain is represented in a discrete fashion. The size of the grid used for gener-

ating DEM is directly proportional to the approximation ratio of the terrain surface

representation. Since LiDAR data is dense, such limitations of grid DEM method can

be eliminated. Kraus et al.([41]) studied complex models to generate DEMs resulting

from hybrid techniques. But in practice, all the DEMs generated from LiDAR are

done using grids techniques ([52]). Due to the availability of large variety of interpo-

lation techniques, questions on which is the most appropriate technique for different

terrains needs to be answered. The authors of ([22, 99, 51]), conducted empirical

studies to answer these questions, and evaluate the affects of various interpolation

techniques on DEM quality. There does not exist any one interpolation technique

which is optimal for all terrain surface data ([23]). IDW interpolation technique is

proved to exhibit better performance when the sampled data has high density. Since

LiDAR data has high density IDW is a preferred choice to generate DEMs ([68, 1]).

In this chapter, we describe our parallel algorithm for spatial interpolation, which

aims towards generating high quality DEMs in less computational time, compared to

traditional approaches.
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6.3 Contribution

We develop a modified IDW spatial interpolation technique, which generates

better or similar quality DEMs in less computational time, compared to traditional

IDW. We design a novel parallel implementation which exploits multi-core architec-

ture of the CPUs to achieve high scalability and efficiency.

6.4 Spatial Interpolation

Spatial data interpolation is a crucial technique in Geographical Information

System (GIS), which computes unknown terrain height values of points, based on

the known elevation values of points in the neighborhood ([47]). Processing massive

spatial data is a computationally expensive and complex process, and traditional

sequential algorithms cannot meet the demand for faster processing speeds along with

maintaining accuracy. In this section, we describe a parallel spatial interpolation

algorithm which is a modification to QuickGrid ([18]) and traditional IDW. The

modification takes place in the algorithm, as well as its implementation, where it

exploits the multi-cores of the CPU to increase the computational speed.

6.4.1 Algorithm

We initialize the algorithm by overlaying a grid of k sq.m. cells (k > 0)

on the LiDAR data, while preserving spatial geo-referencing. We used k = 0.0254

sq. m., for our simulations. Each LiDAR point has x, y and z coordinate, and we

want interpolate for z-values to be assigned to each grid cell. Steps for our spatial

interpolation algorithm are as follows:
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Figure 6.1: (a) Grid of k sq.m. (k > 0) overlaid on the LiDAR data

(b) Selecting a cut-off radii and assigning weights to grid intersections (c)

Assigning weights to each grid cell

1. Parse through the intersection points of each cell in the grid (shown in Fig-

ure 6.1(a)) in left-right, top-bottom fashion.

2. For each intersection point, we compute and assign a weight as follows:

� Initially select a cut-off radius for the circle whose center is the intersection

point. (It is recommended to choose small cutoff radii for very dense

datasets, compared to less dense datasets.)

� Then divide the circle into eight equal sectors, and choose the closest Li-

DAR points in each sector, if there exist any (shown in Figure 6.1(b)). Set

the grid intersection point to the average of these chosen LiDAR points

weighted by 1/(distance from grid intersection)2.

3. After assigning weights to all the grid intersection points, we assign each grid

cell the average weight of its four surrounding grid intersection points (shown

in Figure 6.1(c)).
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6.4.2 Parallel Implementation

The sequential implementation of the algorithm described in Subsection 6.4.1

is highly inefficient in terms of processing time. Parsing over every grid cell and grid

intersection points individually, multiple times, can be computationally expensive and

time consuming task. In this subsection, we design a parallel implementation for the

above algorithm consisting of two phases: the split phase, where we distribute the

data over multiple cores of a CPU to process it simultaneously, and the merge phase,

where we merge the processed data back together.

Initially, in the split phase, we dedicate a master core which divides the grid

(along with the LiDAR data) into k equal parts, where k is the total number of CPU

cores available for processing. It distributes and assigns each of the k parts of the grid

to each core individually (block assignment), shown in Figure 6.2. Each core then

simultaneously execute the algorithm mentioned in Section 4, for the part of the grid

data that is assigned to it.

Once all the cores have finished their computations, the master core initializes

the merge phase, where the common grid intersection points between two grid parts

are averaged and merged (shown in Figure 6.2), so as to get the original grid with

all grid intersection points computed. Then the master core divides the grid into k

equal parts and assigns each of the k parts individually to each core, which computes

and assigns each grid cell the average weight of its surrounding four grid intersection

points. Scalability tests using 1,2,4,8 and 16 CPU cores and speed-ups are shown in

Section 4.3.
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Figure 6.2: Parallel split and merge phases of our spatial interpolation

algorithm

6.5 Computational Results

In this section, we test our spatial interpolation algorithm with fixed cut-off

1.5 meters, on two different test terrains shown in Figure 5.5, which is our ‘dataset

1’ and Figure 6.3, which is our ‘dataset 2’. Dataset 2 is 200× 500 meters, relatively

flatter with shallow valleys, and less rough with slope angle ranging from 0.07° to

43.8° when compared to dataset 1, which is a mix of deeper valleys, steep slopes and

few flat lands. dataset 2 contains 2.1 million LiDAR points. All the LiDAR data

density reduction is done using the algorithm described in Chapter 5, with β = 90%.
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Figure 6.3: (a) Imagery of study area for dataset 2 (b) Elevation map

of dataset 2 showing terrain with less roughness, shallow valleys and flat

regions

By applying our LiDAR data reduction algorithm to dataset 1, we reduce the data

density to 52%, and when applied to dataset 2 for β = 80% we reduce the data

density to 71%. We then generate DEMs with this reduced LiDAR data, as well as

complete LiDAR dataset using traditional IDW and modified IDW.

To obtain high accuracy in our statistical analysis, we compare the elevation

values of each of the LiDAR points to the corresponding elevation value of the DEMs

generated, rather than checking for few control points. This method is known as val-

idation. RMSEs were calculated (shown in Figure 6.4(b)), to study the performance
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Figure 6.4: (a) Parallel speed-ups for our spatial algorithm (b) RMSE for

IDW and modified IDW at different LiDAR density levels for two datasets

using validation method

of our spatial interpolation algorithm compared to traditional IDW algorithm, for

different LiDAR data density. From our empirical study shown in Figure 6.4(b), we

can conclude the following :

� RMSEs for both the interpolation algorithms increase with decrease in LiDAR

data density for both the datasets.

� RMSEs for the more complex terrain, i.e. dataset 1, is higher than dataset 2,

which is relatively flat and has shallow valleys and less roughness.

� Quality of results obtained by modified IDW is at least as good as traditional

IDW for reduced density, complex terrain (Ex. 52% reduced LiDAR dataset 1,

gives an RMSE of 0.22 meters for both the algorithms).

� Quality of results obtained by modified IDW is better than traditional IDW for
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dense, complex and relatively flatter terrains.

� Time to generate DEMs using modified IDW, is much less than that used by

sequential traditional IDW.

As shown in Figure 6.4(a), using a 16 core Xeon Phi processor we speed-up the running

time of algorithm by 13.5X i.e. 190 seconds using single core versus 14 seconds.

6.6 Discussion

In this chapter we present our modified IDW spatial interpolation algorithm

which achieves results which are at least as good as traditional IDW for reduced

density, complex terrain, and better than traditional IDW for dense, complex and

relatively flatter terrains. It also achieves good scalability, and takes much less time

to generate DEMs compared to traditional IDW. Our parallel IDW algorithm is inte-

grated with our data reduction algorithm and used as a core subroutine in streaming

based applications.
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CHAPTER 7
EXPERIMENTAL ENVIRONMENT

7.1 Chapter 1 : Biological Domain

We implemented the BLLP algorithm using C++ and graph libraries. All

the simulations are done on Processor-Intel Core i7 3770 3.4GHz and Turbo Boost

enabled Memory-16GB DDR3-1600 RAM 500G 3GB/s 7200 RPM; Linux machines.

All the plots are done using Gephi and Gnuplot.

7.2 Chapter 3 : Social Networks Domain - Shared Memory

We implemented the MCML algorithm using C++ and boost graph libraries.

The simulations for the benchmark datasets and the Facebook forum dataset are done

on Processor-Intel Core i73770, 3.4GHz and Turbo Boost enabled Memory-16GB

DDR3 − 1600 RAM; Linux machines. These machines have 4 cores with hyper-

threading enabled. The simulations for the Amazon dataset is done on a system

running on CentOS 6.3, a Linux operating system based on Red Hat Linux, with

512GB Nodes, 32 GB RAM, 2.9GHz, and 16 Xeon Phi cores. All the results obtained

are average of 5 runs. We use OpenMP directives for implementing parallel MCML

algorithm. All the plots are done using Gephi and Gnuplot.

7.3 Chapter 4 : Social Networks Domain - Distributed Memory

The performance of our hybrid algorithm is evaluated by executing series of

experiments on the High Performance Neon Cluster at University of Iowa. We im-
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plemented the hybrid algorithm using C++ and boost graph libraries. We also use

parallel implementation of PMETIS which was developed in GNU C++ MPI. We use

8 heterogeneous standard machines each having 64GB RAM, 16 Xeon Phi cores and

2.6 GHz processor. All the experiments were executed as a single batch command

comprising of at most 8 compute machines having 16 cores each. Each experiment is

executed 3 times and average of the results from these runs are reported to preserve

accuracy and consistency.

7.4 Chapter 5 & 6 : Spatial Domain - Data Reduction & Interpolation

We implemented the LiDAR data reduction algorithm and modified IDW using

C++. We use OpenMP/p-threads directives for implementing parallel versions of the

above algorithms. The simulations for the LiDAR dataset is done on a system running

on CentOS 6.3, a Linux operating system based on Red Hat Linux, with 512GB

Nodes, 32 GB RAM, 2.9GHz, and 16 Xeon Phi cores. The LiDAR point cloud,

slope-map and slope statistics are generated and visualized using ArcGIS, ArcMap

v10.3. IDW algorithm is used to generate DEMs for reduced LiDAR data (not our

new spatial interpolation algorithm). We use QuickGrid tool to visualize DEM’s

generated by our algorithms. All the plots are done using Gnuplot and LibreDraw.

All the results obtained are average of five runs.
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[72] N Pržulj, Derek G Corneil, and Igor Jurisica. Modeling interactome: scale-free

or geometric? Bioinformatics, 20(18):3508–3515, 2004.
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