






High cognitive demand tasks in technology-enhanced lesson plans ......................111 

Procedures with Connections tasks ...................................................................111 

Doing Mathematics tasks ..................................................................................134 

Summary ...........................................................................................................138 

Trustworthiness results ...........................................................................................145 

Influence of the black-box approach to teachers’ roles ..........................................146 

Designing DGS tasks ........................................................................................146 

Change feeling towards DGS use .....................................................................149 

Thought on the black-box approach .................................................................150 

Teacher’s technological role with the black-box approach ..............................152 

CHAPTER 5 DISCUSSION AND CONCLUSION ................................................................155 

Summary of the Results ................................................................................................155 

Factors that Influenced Preservice Teachers’ Lesson Planning ....................................157 

Influence of teachers’ perceived subject matter knowledge ...................................157 

Influences of teachers’ perceived pedagogical knowledge .....................................159 

Influence of curriculum resources for selecting tasks .............................................161 

Influence of teacher’s perceived technological knowledge ....................................163 

Influence of setting lesson goals .............................................................................164 

Influence of teachers’ preparing real-life problems ................................................165 

Preservice Teachers’ DGS Integration in Designing Tasks ..........................................166 

ix 
 



Selection and creation of geometrics DGS tasks ....................................................166 

Designing tasks with the black-box approach ........................................................171 

Preservice teachers’ concerns for preparing high level DGS tasks ........................175 

Implications of the Study ..............................................................................................177 

Limitations of the Study................................................................................................181 

REFERENCES .........................................................................................................................182 

APPENDIX A  TECHNOLOGY WITH GEOGEBRA ...........................................................204 

APPENDIX B  INTERVIEW PROTOCOL .............................................................................218 

 

  

x 
 



Figure 4-19  Worksheet and DGS construction diagram for the Tangent Length Theorem in 

Julie’s first lesson plan ........................................................................................... 104 

Figure 4-20  Worksheet and DGS construction diagram for the Secant Length Theorem 

in Julie’s first lesson plan ....................................................................................... 105 

Figure 4-21   Handout for the Tangent Length Theorem proof in Julie’s first lesson plan ......... 106 

Figure 4-22   Procedures without Connections tasks in both of Mike’s lesson plans ................. 107 

Figure 4-23  Handout for the proof of the Secant Length theorem in Julie’s first lesson plan .. 113 

Figure 4-24  Handout for the proof of the Two Tangent theorem in Julie’s first lesson plan .... 114 

Figure 4-25  A warm-up task in Mike’s first lesson plan ........................................................... 116 

Figure 4-26  Answer key for the high level warm-up tasks in Julie’s second lesson plan ......... 119 

Figure 4-27  The worksheet for the Power of a Point in Julie’s second lesson plan. ................. 121 

Figure 4-28  The DGS screen for the Power of a Point in Julie’s second lesson plan ............... 122 

Figure 4-29  A Procedures with Connections homework task with a solution in Julie’s  

second lesson plan.................................................................................................. 127 

Figure 4-30  A warm-up task in Mike’s second lesson plan ...................................................... 129 

Figure 4-31  The Conveyor Belt Activity from Mike’s second lesson plan ............................... 130 

Figure 4-32  A Procedures with Connections task, Activity-1, from Mike’s second  

lesson plan .............................................................................................................. 132 

Figure 4-33  Monge’s problem with DGS use in Julie’s second lesson plan ............................. 136 

xiii 
 



3 
 

of the Trends in International Mathematics and Science Study (TIMSS) showed that eighth grade 

students in the United States do not have sufficient geometric knowledge (Gonzales et al., 2009; 

Mullis, Martin, & Foy, 2008). Harel and Sowder (2007) also found that the performance of 

secondary school students in geometric proof is also weak. Therefore, it is evident that 

improvements in teaching and learning school geometry are critical whether the causes lie in the 

curriculum, the teacher’s instruction, or the students themselves.  

Technology has a beneficial role to play in teaching and learning geometry because it can 

facilitate the conceptual understanding of a proof (Hollebrands, Laborde, & Sträßer, 2008). The 

PSSM states, “Teachers should use technology to enhance their students' learning opportunities 

by selecting or creating mathematical tasks that take advantage of what technology can do 

efficiently and well—graphing, visualizing, and computing” (NCTM, 2000, p. 25). Technology 

can help teachers to represent mathematical ideas, organize and analyze data, support efficient 

and accurate calculations, and provide a setting in which students can engage in investigations in 

mathematics. Hence, the use of technology may help students to focus on enhancing skills of 

decision-making and improving reasoning in problem solving (Heid, 1995, 1997; Masalski & 

Elliott, 2005; Olive et al., 2010). Moreover, by introducing technology into geometry education, 

teachers can establish rich learning environments, provide meaningful activities, and create 

opportunities for students to work collaboratively, solve problems, and share knowledge and 

responsibility (Hollebrands & Dove, 2011; Hollebrands et al., 2008; McCrone, King, Orihuela, 

& Robinson, 2010).  

Many researchers argue that appropriate technology use integrated with relevant teaching 

methods improves not only students’ academic achievement (e.g., Isiksal & Askar, 2005), but 

also their mathematics learning (Hastings & Tracey, 2005; Jiang, 2002; Kozma, 2003). When 
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mediating student learning, teachers must constantly adjust the level of information and support 

according to students' needs, help students to link new information to prior knowledge, and 

refine their problem solving strategies. Therefore, teachers “must serve as guides and facilitators 

for discussions, provide stimulation and feedback to student activities” (O'Callaghan, 1998, p. 

22).  

Dynamic geometry software programs allow teachers and students to create geometric 

constructions and then manipulate them. The CCSS-M argues that dynamic geometry software 

(DGS) can “provide students with experimental and modeling tools that allow them to 

investigate geometric phenomena” (CCSSI, 2010, p. 74), and emphasizes the use of the software 

in teaching and learning geometry throughout K-12 learning experience (CCSSI, 2010). In 

particular, students need to make formal geometric construction with several ways of methods 

and tools including compass, straightedge and DGS (CCSSI, 2010).  

Purpose for the Study 

Researchers have examined how the introduction of technology into mathematics 

education affects curriculum (Chazan, Yerushalmy, & Leikin, 2008; Heid, 1997; Judson & 

Nishimori, 2005; O'Callaghan, 1998). Hollebrands et al. (2008) contend “[T]he choice of the task 

in relation to the affordances of the dynamical geometry environment may be critical for the 

development of the understandings of the students” (p. 174). Nevertheless, few studies have 

examined how technology influences the kinds of mathematical tasks teachers select or develop 

to improve students’ high level thinking (Doerr & Zangor, 2000; McGraw & Grant, 2005). 

Manouchehri, Enderson, and Pugnucco (1998) argue that the use of technology in 

geometry classrooms helps teachers build exciting and creative learning environments, which 

focus on investigating and using geometric concepts and relationships rather than on memorizing 
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definitions, properties, and formulas. However, much of the research literature has shown that 

teachers have used technology as a tool that extends their resources and practice in the 

classrooms, but the mathematical tasks in such a practice still focus on traditional procedures 

(e.g., Manouchehri, 1999; Monaghan, 2004). Based on results from a survey of 181 mathematics 

teachers with respect to the use of technology, Manouchehri (1999) argues that “There is 

evidence of the lack of use of computers at both middle and high school levels in ways other than 

drill and practice” (p. 37). From examining three teachers who integrated technology into their 

practice with mathematics tasks, Monaghan (2004) concludes that those teachers primarily 

focused on the instruction of technological procedures—e.g., sequences of keystrokes on a 

calculator—to replace mathematical procedures for arriving at a desired answer. In terms of 

choosing or developing mathematical tasks, most geometric instruction still focuses on exercises 

that construct or evaluate general propositions derived from specific examples and previous 

theorems (Lester et al., 1994). Therefore, the mere presence of technology in mathematics 

classrooms does not guarantee that teachers alter their practices so that instruction is meaningful 

for students.  

By introducing a variety of DGS functions and tools into geometry classrooms, users gain 

access to support for solving mathematical problems, including visual evidence and interactions 

between inductive and deductive reasoning (Chazan, 1993b; Laborde, 2000). Dragging is a 

dominant tool in DGS for students to explore and solve the mathematical problems (Arzarello et 

al., 1998; Baccaglini-Frank & Mariotti, 2010; Chazan, 1993b; Hölzl, 1996; Allen Leung, 2008; 

Lopez-Real & Leung, 2006). A new type of task in DGS involves using the dragging mode to 

construct a geometric figure that satisfies certain conditions (Hollebrands et al., 2008). This kind 

of mathematical task, called the black-box approach (Galindo, 1998; Hollebrands et al., 2008; 
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Jahn, 2000; Laborde, 1995), is challenging to students because it “requires a link between the 

spatial or visual approach and the theoretical one” (Hollebrands et al., 2008, p. 172). A few 

researchers have argued that, by introducing the environment of DGS into teaching school 

geometry, teachers can build geometric black-box tasks capable of enhancing students’ 

motivation and abilities to give proofs (Galindo, 1998; Jahn, 2000; Laborde, 1995). Although 

these favorable features of DGS—e.g., dragging and measuring—can contribute to meaningful, 

cognitively demanding geometric tasks, the study of those features has not yet been sufficiently 

investigated (Hollebrands et al., 2008).  

Teaching geometry with technology has been the most dominant research area in 

geometry education (Hodge & Frick, 2009; Lee, 2005). Even though researchers have revealed 

that the use of technology—including DGS— plays a key role in helping high school students 

understand geometry concepts (e.g., Jiang, 2002; Jiang & Pagnucco, 2002), many secondary 

mathematics teacher programs do not provide opportunities for teaching and learning geometry 

with DGS (da Ponte, Oliveira, & Varandas, 2002; Hodge & Frick, 2009). The lack of such 

opportunities for secondary mathematics teachers directly influences their students’ meaningful 

learning in mathematics (Henning, 2007). Pandiscio (2002) has found that when high school 

students and preservice teachers use DGS in the classroom, they tend to discuss geometry 

problems more meaningfully and therefore deduce key geometric relationships within problems 

or theorems in order to make their own conjectures.  

Based on two case studies of preservice high school mathematics teachers who used 

DGS, however, Bowers and Stephens (2011) asserts that the technology remained a simple 

supportive tool of visualization. Therefore, if preservice teachers carefully choose informative 

activities, not for visualizing but for facilitating mathematics goals, they can provide high quality 
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mathematics teaching with technology (Andrews, 2011). Based on a review of the literature 

published between 1998 and 2008, Hodge and Frick (2009) recommend that teacher education 

programs include teaching high school mathematics, especially teaching proofs and geometry 

with technology. Preservice teacher education should integrate technology with geometric tasks 

in order to prepare teachers as future instructional leaders who are well prepared for the ever-

shifting learning environments. Consequently, teaching geometry with DGS integration in 

teacher’s education programs is essential (Jiang, 2002; Pandiscio, 2002; Winicki-Landman, 

2001).  

To facilitate students’ high level thinking in mathematics, teachers’ instruction must 

provide sufficient opportunities for students to engage in rich and valuable mathematical tasks, 

which are defined as “a classroom activity, the purpose of which is to focus students’ attention 

on a particular mathematical idea” (Henningsen & Stein, 1997, p. 460). Researchers found that 

students learn minimally when teachers’ mathematical tasks consistently focus on memorization 

or procedural knowledge (Stein, Smith, Henningsen, & Silver, 2009). If the instructional tasks 

consistently encourage students to engage in high-level thinking, students gain greatly from the 

instruction. To describe and differentiate mathematical tasks by the level of cognitive demands, 

the Mathematical Tasks Framework (Henningsen & Stein, 1997; Stein, Grover, & Henningsen, 

1996; Stein & Lane, 1996; Stein & Smith, 1998; Stein et al., 2009) has been used in this study 

(Figure 1-1). This framework broadly differentiates mathematical tasks with low and high 

cognitive demands. Mathematical tasks with low cognitive demand include two categories: 

Memorization and Procedures without Connections. The tasks requiring high cognitive demand 

also includes two categories: Procedures with Connections and Doing Mathematics.  
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The purpose of this study is to examine the attitude changes of secondary preservice 

teachers in their preparation of geometric tasks in relation to the levels of cognitive demands 

when the use of DGS and/or black-box approach geometric tasks are involved in their lesson 

plan. The use of the Mathematical Tasks Framework (Stein et al., 2009) describes preservice 

teachers’ mathematical tasks associated with cognitive demands while preparing geometric tasks 

with the integration of the black-box approach. 

  

 
 

 

Figure 1-1. The Mathematical Tasks Framework. Adopted from “Implementing standards-based 

mathematics instruction: A casebook for professional development” by M. K. Stein, M. S. Smith, 

M. A. Henningsen, and E. A. Silver, 2009. Shaded region represents the area under investigation 

in present study. The dotted circle represents the new factor that is not included in the original 

Mathematical Tasks Framework.  
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Research Questions 

Two research questions are examined in this study: 

1. Do(es) preservice teacher(s) change the level of cognitive demand in the geometric tasks 

they design for lesson plans once they have been introduced and exposed to dynamic 

geometry software and types of geometric tasks? If so, how do they change?   

2. When dynamic geometry software is used to design lesson plans, 

a) How do preservice teachers select or design geometric tasks at low cognitive 

demands? 

b) How do preservice teachers select or design geometric tasks at high cognitive 

demands? 

c) How does the black-box approach influence the way preservice teachers 

conceptualize their roles in their lesson designs? 

To answer these research questions, a qualitative case study was conducted in a research 

university located in the Midwestern area of the United States. The participants were three 

secondary mathematics preservice teachers who were enrolled in a Methods course for high 

school mathematics at the same university. This study conducted pre-interviews with the 

preservice teachers, which were then followed by the instructions regarding various types of 

geometric tasks including the black-box approach with integrating DGS use. Finally, the 

researcher examined the preservice teachers’ preparation of mathematics tasks in their lesson 

plans along with post-interviews. Therefore, data included preservice teachers’ interviews, lesson 

plans, on-screen recordings of activities during the lessons, electronic files of selected or created 

geometric tasks, and the preservice teachers’ written reflection paper.  
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Significance of the Study 

The use of technology in mathematics classrooms has the potential to support teachers’ 

effective mathematics instruction and improve students’ mathematical thinking (NCTM, 2000). 

However, one of the most common problem types encountered in mathematics classrooms has 

been based on the procedural use of technology (Zbiek, Heid, Blume, & Dick, 2007). If teachers 

provide such types of tasks often, students are taught to solve mathematics problems using a 

finite set of technological procedures so that they intend to over-rely on procedural knowledge 

and may lack conceptual understanding of mathematics. If teachers set a lesson goal to increase 

students’ thinking and reasoning skills, such tasks may fail students’ engagement at a high level 

of cognitive demand (Stein et al., 1996; Stein et al., 2009).  

The analysis of Mathematical Tasks Framework has been used in identifying cognitively 

demanding mathematics task levels for teachers in mathematics teacher education and 

professional development (Stein et al., 1996; Stein et al., 2009). The results of the current study 

have the potential to help teacher educators and professional development designers elaborate a 

variety of geometric tasks with respect to levels of cognitive demand and technology use. 

Because many teachers tend to focus more on designing high level tasks that engage students’ 

thinking, the results of the present investigation might help teachers design high level 

mathematics tasks for their practice, in particular when the use of technology is involved.      

In order to design and implement high level mathematics tasks with technology use in 

classrooms effectively, mathematics teachers have to “know and understand deeply the 

mathematics they are teaching” and utilize that knowledge flexibly in teaching the tasks  

(NCTM, 2000, p. 17). In addition to teachers’ strong mathematical content knowledge, they need 

to have high quality pedagogical knowledge that includes addressing students’ common 
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misconceptions and posing meaningful questions (Hill, Ball, & Schilling, 2008; Shulman, 1986). 

The results of the present study might help preservice teachers understand what pedagogical 

content knowledge of mathematics and technology they need for their specific lesson goals.   

Finally, this study also might help textbook publishers and curriculum developers to 

understand the characteristics of high level geometric tasks with the use of technology and help 

them to provide proper guidelines for teachers’ practice. Hence, this study might help teachers to 

select or modify mathematics tasks in textbooks with technology use to meet their lesson goals.  
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CHAPTER 2  

REVIEW OF LITERATURE 

The purpose of this chapter is to outline researches related to geometric tasks in 

technology-integrated environments. The first two sections of this literature review focus on a 

framework for mathematical tasks with respect to the level of cognitive demands. Then literature 

relevant to the use of technology, especially DGS in teaching and learning geometry, precedes a 

discussion of various features of geometric tasks to promote mathematical level of cognitive 

demand. Finally, the chapter describes the role of teachers’ use of technology in teaching 

mathematics. 

The Mathematical Tasks Framework 

The Mathematical Tasks Framework was developed to provide a guideline of analyzing 

classroom instruction (Stein et al., 1996; Stein & Lane, 1996; Stein & Smith, 1998; Stein et al., 

2009). In the framework, mathematical tasks consist of three phases: 1) as they are represented in 

curricular or instructional materials, 2) as they are set up by the teacher in the classroom, and 3) 

as they are implemented by students (Stein et al., 1996; Stein & Lane, 1996; Stein et al., 2009). 

Based on the results of applying the framework to analyze many lessons from 1990 to 1995, 

Stein et al. (2009) have found that students’ learning gains minimally when mathematical tasks 

that teachers prepared focus on procedural knowledge consistently. By contrast, if instructional 

mathematics tasks consistently encourage students to invoke high-level thinking, students gain 

learning greatly from the instruction.  

According to the study of Stein et al. (2009), the cognitive demand of a mathematical 

task refers to “the kind and the level of thinking required of students in order to successfully 

engaged with and solve the task” (p. 1). The Mathematical Tasks Framework distinguishes 
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between low level cognitive demand, including Memorization and the use of procedures without 

any connection to meaning or concepts (called Procedures without Connections hereafter), and 

high level cognitive demand, including the use of procedures with connections to meaning or 

concepts (called Procedures with Connections hereafter), and Doing Mathematics, in which non-

algorithmic thinking is mainly characterized. The Task Analysis Guide (Stein et al., 2009) 

describes these four categories in detail (see Table 2-1). Thus, mathematical tasks with high level 

cognitive demand are those which require students to reason and explore in complex or non-

algorithmic ways or those that focus students’ attention on the use of procedures for the purpose 

of developing deeper levels of understanding of mathematical concepts and ideas. By contrast, 

the tasks with lower level cognitive demand require student’s procedural or algorithmic 

knowledge by recalling facts, definitions, rules, or formulas.     

Based on the Task Analysis Guide (Stein et al., 2009), teachers may select or create the 

mathematical tasks by evaluating the level of the tasks from curricular resources. In the 

beginning, mathematics teachers have to set lesson goals clearly. They can drive rigor in 

mathematics tasks by aligning the tasks with their mathematical goals (Sfard, 2001). The initial 

categorization of the mathematical tasks, however, is not fixed. For example, if a task goal of the 

teacher is ambiguous, a high level of cognitive demand may turn into a lower level of cognitive 

demand.  

According to Mathematical Task Framework (Stein et al., 1996; Stein et al., 2009) as 

shown in Figure 1-1, the tasks initially emerge in curricular or instructional materials, but they 

are designed and implemented by teachers to produce the outcome of student learning. At each 

stage in the framework, the level of the cognitive demands is subject to change based on the 

interactions between teachers and students. For instance, although a task is categorized at a lower 
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level of cognitive demand in curricular materials, a teacher may modify the task to increase the 

level of cognitive demand for students during the lesson plan design. On the other hand, the 

opposite scenario happens often. Teachers may shift to select high level tasks in curricular 

material into lower level tasks because those tasks are considered difficult both for teachers to 

instruct and for students to understand (Henningsen & Stein, 1997; Stein et al., 1996).  

Researchers argue that the mathematical tasks in which students engage are positively 

correlated with students’ learning (Hiebert & Wearne, 1993; Stein & Lane, 1996). In particular, 

Stein and Lane (1996) have observed classroom instruction at four middle schools in order to 

evaluate the cognitive demands of the mathematical tasks during the phases of set up and 

implementation, and found a positive correlation between the cognitive demand levels of 

mathematics tasks and student learning as measured by their instrument. That is, students who 

are more frequently exposed to high level cognitive demand tasks during the set up phase 

demonstrate greater gains on the measure of student learning. The study of Stein and Lane 

(1996) conclude that “the nature and level of instructional tasks used in the classroom have a 

substantial impact on student thinking which, in turn, affects student performance and learning” 

(p. 74). Therefore, there is good evidence that the instructional tasks consistently requiring high 

cognitive demand levels result in students’ enhancement of learning. 

Mathematical tasks that need students’ high level of cognitive demand often require “lack 

of specific solution path” (Smith, Bill, & Hughes, 2008, p. 133). As the first step of 

implementing high level tasks, teachers need to choose various tasks from curricula resources 

which will be reflected in their lesson plans. In order to be successful in teaching those high level 

cognitive demand tasks, during the lesson planning phase, teachers need to understand and 

prepare a variety of mathematical methods that students may apply to solve the tasks. Thus, 
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researchers claim that the effectiveness of a mathematical lesson depends significantly on the 

extent to which mathematics teachers prepared the lesson (Panasuk, Stone, & Todd, 2002; Smith 

et al., 2008). As lesson planning is defined as “preactive decision making that takes place before 

instruction” (Panasuk et al., 2002, p. 809), although a focused and detailed lesson plan does not 

guarantee an effective teaching of mathematics, it is certain that the lack of such a lesson plan 

may bring about the failure of the lesson to be meaningful in classrooms. For this reason, 

researchers have put emphasis on lesson planning to enhance students’ mathematical learning 

(Brahier, 2013; Panasuk et al., 2002; Smith et al., 2008).  

 

  

 
 



16 
 

Table 2-1 

The Task Analysis Guide

Level of 
Cognitive 
Demand 

Description 

Low Level 
Cognitive 
Demand 

Tasks 
 

Memorization Tasks 
• Involve either producing previously learned facts, rule, formulas, or definitions or committing 

facts, rule, formulas, or definitions to memory 
• Cannot be solved using procedures because a procedure does not exist or because the time 

frame in which the task is being completed is too short to use a procedure 
• Are not ambiguous–such tasks involve exact reproduction of previously seen material and what 

is to be reproduced is clearly and directly stated. 
• Have no connection to the concepts or meaning that underlay the facts, rules, formulas, or 

definitions being learned or reproduced. 
Procedures without Connections Tasks 
• Are algorithmic. Use of the procedure is either specifically called for or its use is evident based 

on prior instruction, experience, or placement of the task. 
• Require limited cognitive demand for successful completion. There is little ambiguity about 

what needs to be done and how to do it. 
• Have no connection to the concepts or meaning that underlie the procedure being used. 
• Are focused on producing correct answers rather than developing mathematical understanding. 
• Require no explanations or explanations that focus solely on describing the procedure that was 

used. 

High 
Level 

Cognitive 
Demand 

Tasks 
 

Procedures with Connections Tasks 
• Focus students’ attention on the use of procedures for the purpose of developing deeper levels 

of understanding of mathematical concepts and ideas. 
• Suggest pathways to follow (explicitly or implicitly) that are broad general procedures that 

have close connections to underlying conceptual ideas as opposed to narrow algorithms that are 
opaque with respect to underlying concepts. 

• Usually are represented in multiple ways (e.g., visual diagrams, manipulatives, symbols, 
problem situations). Making connections among multiple representations helps to develop 
meaning. 

• Require some degree of cognitive effort. Although general procedures may be followed, they 
cannot be followed mindlessly. 

• Students need to engage with the conceptual ideas that underlie the procedures in order to 
successfully complete the task and develop understanding. 

Doing Mathematics Tasks 
• Require complex and non-algorithmic thinking (i.e., there is not a predictable, well-rehearsed 

approach or pathway explicitly suggested by the task, task instructions, or a worked-out 
example). 

• Require students to explore and to understand the nature of mathematical concepts, processes, 
or relationships. 

• Demand self-monitoring or self-regulation of one’s own cognitive processes. 
• Require students to analyze the task and actively examine task constraints that may limit 

possible solution strategies and solutions. 
• Require considerable cognitive effort and may involve some level of anxiety for the student due 

to the unpredictable nature of the solution process required. 
Note. Adopted from “Implementing standards-based mathematics instruction: A casebook for 
professional development” by M. K. Stein, M. S. Smith, M. A. Henningsen, and E. A. Silver, 
2009, p. 6. 
 

 
 



17 
 

Cognitive Demand of Mathematics Tasks by Technology Use 

The present study considers the use of technology by teachers in terms of its potential 

influence on the cognitive demand of mathematical tasks they use or create. According to 

McGraw and Grant (2005), a technology-based mathematical task is classified as one of two 

types: Type 1 and Type 2.  

In a Type 1 task students follow a set of specific directions for the outcome of activities 

and procedures to obtain it. When students explore the Type 1 task, they are all supposed to get 

the same conclusion due to constraints of the task structure. Although students have the 

opportunity to recognize patterns and make conjectures in the Type 1 task, their decision-making 

is limited and they might all have same conjectures. As an example of a Type 1 task, McGraw 

and Grant (2005) provided students with a task to create a parallelogram with specific 

instructions in dynamic geometry environments. Students used the software to construct a 

geometric figure, take specific measurements of angle measures and segment lengths, drag the 

figure dynamically, record what they noticed about these measurements, and then make 

conjectures about the properties of parallelograms. While Type 1 tasks might scaffold students’ 

use of the technology, especially students who are unfamiliar with it, McGraw and Grant (2005) 

contend that these types of tasks have a tendency to shift students’ attention away from 

mathematics they intended to investigate, and instead students might focus on following 

technological directions.  

On the other hand, Type 2 tasks are more open-ended, prompting students to make 

decisions about what is to be investigated and how. For example, the above parallelogram task 

could be restructured to allow students to manipulate a quadrilateral—not limited to a 

parallelogram—and make conjectures about its properties, and explore which of those 
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conjectured properties might hold for other quadrilaterals and why. The key difference between 

Type 1 and Type 2 tasks is that Type 2 tasks allow students to make the decisions about what 

they will investigate and how. By allowing students to make these types of decisions for 

themselves, they are likely to make different conjectures and come to different conclusions. 

Therefore, teachers can create opportunities for students to communicate their reasoning to each 

other and this leads to potentially rich classroom discussions. Although a Type 1 task may be 

productive, McGraw and Grant (2005) describe that exposures of Type 2 tasks to students have 

more advantage in students learning and states, “Allowing students to make some decisions 

about what to do and how to do it helped create richer learning experiences for them [students] 

and also helped create more manageable classroom environments for us” (p. 316).  

Similarly, Zbiek et al. (2007) have made a distinction between exploratory and expressive 

activity by extending the distinction between exploratory and expressive mathematical models 

(Bliss & Ogborn, 1989; Doerr & Pratt, 2008). In general, exploratory and expressive activities 

seem to align with the Type1 and Type 2 tasks, respectively. An exploratory model is one built 

by a teacher for students to be engaged with when investigating a problem, whereas an 

expressive model is one that students build themselves  (Bliss & Ogborn, 1989; Doerr & Pratt, 

2008). Incorporating the use of technology with mathematical tasks, Zbiek et al. (2007) describe 

this distinction as follows: “When students are given a procedure to carry out, they are engaging 

in exploratory activity; however, when students decide which procedures to use they are 

engaging in expressive activity” (p. 1181).  They describe that, in general, if a process or 

procedure for investigating a specific idea is given or suggested, the activity is considered 

exploratory; if students need to make decisions about what to investigate and how, the activity is 

considered expressive. Therefore, aligning with the Mathematical Tasks Framework (Stein et al., 
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1996; Stein et al., 2009), while an exploratory activity might be generally associated with 

memorization or teacher-given procedures without connections to tasks, an expressive activity is 

more like procedures with connections or doing mathematics tasks.  

When teachers provide the type of freedom characteristic of expressive activity in a 

technology-integrated environment, students may unintentionally—or intentionally—avoid the 

mathematical goal of the activity they are engaged in (Zbiek et al., 2007). Zbiek and her 

colleagues (2007) stated,   

Because many cognitive tools offer to students such a wide variety of approaches to 

solving problems, students might not encounter, in the course of their explorations of a 

problem with the tool, the particular mathematical ideas that were identified as goals by 

their teacher or by the developers of the curriculum materials. (p. 1182) 

Hoyles and Noss (1992) refer to this tension as the “play paradox” (p. 45), which is the issue 

between giving students the freedom to make decisions about when and how to use technology 

for exploration and the desire for them to encounter certain mathematical ideas. For example, to 

investigate the concepts of ratio and proportion using the Logo program, Hoyles and Noss (1992) 

provided students an example: Draw a house with a larger scale than the original drawing of the 

house given on the computer. While the researchers expected students to add a fixed number to 

the length of each side of house, the house from some students was not a close shape, which was 

not aligned with the activity goal. The play paradox seems most likely to become an issue when 

students are given more freedom to make decisions about when and how to use technology to 

work on an open-ended task. Within the cognitive demand framework, the play paradox would 

likely be associated with Doing Mathematics tasks due to their open-ended nature and the 

requirement for non-algorithmic thinking. In contrast, in terms of the play paradox for 
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exploratory tasks, teachers often reduce students’ freedom in making decisions with technology 

use and design the task in a procedural way (Zbiek et al., 2007). Therefore, from the results of 

McGraw and Grant (2005), a major criticism of exploratory tasks was that teachers create tasks 

for students focusing more on using the technology correctly than on the mathematics.   

Geometric Tasks with Dynamic Geometry Software 

Learning to write proofs has long been an important objective of school geometry courses 

(Mariotti, 2006; Marrades & Gutierrez, 2000; Senk, 1985). However, many researchers show 

and most high school teachers agree that students have many difficulties with the concept of a 

proof (Burger & Shaughnessy, 1986; Senk, 1985). Students' experiences with proofs often just 

do not seem meaningful to them. After engaging in proof-related activities, the students do not 

seem to understand geometry concepts any better nor do they seem able to use what they have 

learned in new problem situations (Usiskin, 1987). Because of the shortcomings of traditional 

approaches, the PSSM proposed that meaningful justification of ideas must be an important new 

goal for geometry instruction (NCTM, 2000). The geometry curriculum should require students 

to explain and justify their ideas, gradually leading them to understand the limitations of visual 

and empirical explanations so that they come to see proofs as a logical necessity.  

Dynamic geometry software (DGS), such as Geometer's Sketchpad (Jackiw, 1995), 

GeoGebra (Hohenwarter, 2001) and CPMP-Tools (Keller, 2006), can be used to design new 

approaches to proofs in geometry that can be successful in moving students toward meaningful 

justification of ideas. Such software allows students to create simple geometric figures, explore 

relationships between parts of the figures, make conjectures about their properties, and test those 

conjectures. These activities have the potential for fostering students’ reasoning skills in a way 

that traditional axiomatic approaches to proof never did. GeoGebra, used in this study, is a 
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dynamic geometry software program capable of displaying graphics and building interactive 

activities for geometry, algebra, and calculus for teachers and students (Hohenwarter, 2001). The 

GeoGebra is written in Java programming language and thus is available for multiple platforms, 

such as Windows, Macintosh, and UNIX-based machines. Furthermore, the software is free for 

non-commercial use (Hohenwarter, 2001).  

According to the study of Galindo (1998), DGS can help students make connections 

between geometric constructions and physical object in real world if appropriate mathematical 

tasks are provided. Geometry tasks with DGS can be categorized as three types, such as creating 

computer constructions, exploring loci with tracing features, and exploring black-box tasks 

(Galindo, 1998). Dynamic feature of diagrams constructed with DGS are of a different nature 

than diagrams generated using paper-and-pencil environment (Galindo, 1998; Laborde, 1995). 

The dragging feature of DGS distinguishes it from other mathematics software (Arzarello, 

Olivero, Paola, & Robutti, 2002; Galindo, 1998; Kimberling, 2003; Kondratieva, 2012). When 

students use dragging one element of a figure, the figure is changed, but the result of the 

dragging is constrained because the geometric relations used in the construction of the starting 

figure are conserved during the dragging (Galindo, 1998). This dragging function of DGS 

provides an environment in which students can investigate geometric objects freely (Guven, 

Cekmez, & Karatas, 2010). Therefore, students can easily check their intuition and make 

conjectures in the process of investigating patterns and checking the invariant properties of 

figures (Guven et al., 2010; Marrades & Gutierrez, 2000). 

Researchers observed students’ various modalities of dragging employed in geometric 

problem situations, and based on previous studies undertaken to identify the modalities of 

dragging, Arzarello et al. (2002, p. 67) described 7 different modalities of dragging as follows: 
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• Wandering dragging: moving the basic points on the screen randomly, without a plan, 
in order to discover interesting configurations or regularities in the drawings. 

• Bound dragging: moving a semi-drag[g]able* point (it is already linked to an object) 
• Guided dragging: dragging the basic points of a drawing in order to give it a 

particular shape 
• Dummy locus dragging [or “lieu muet dragging” (Hollebrands, 2007, p. 168)]: 

moving a basic point so that the drawing keeps a discovered property; the point which 
is moved follows a path, even if the users do not realize this: the locus is not visible 
and does not 'speak' to the students, who do not always reali[z]e that they are 
dragging along a locus. 

• Line dragging: drawing new points along a line in order to keep the regularity of the 
figure. 

• Linked dragging: linking a point to an object and moving it onto that object. 
• Dragging test: moving drag[g]able or semi-drag[g]able points in order to see whether 

the drawing keeps the initial properties. If so, then the figure passes the test; if not, 
the drawing was not constructed according to the geometric properties you wanted it 
to have. 

*A semi-drag[g]able point is a point linked to an object, that can be moved but only on 
the object it belongs to. 
 

The term regularity of a figure in Wandering dragging and Line dragging refers to a property 

that a ratio of sides in a geometric object is preserved despite the length change of a side in the 

object (Battista, 2007). To maintain a regularity of a figure, when a user of DGS changes a 

length of side in the geometric object, all sides change subsequently. 

Adopting the dragging modalities from Arzarello et al. (2002), Baccaglini-Frank and 

Mariotti (2010) introduced the four modalities— Wandering/Random dragging, Maintaining 

dragging, Dragging with trace activated, and Dragging test—that can describe students’ step-by-

step construction when students engage in exploration in a DGS. According to Baccaglini-Frank 

and Mariotti (2010), the modality of Wandering/Random dragging, which can be regarded as the 

combination of Wandering dragging and Guided dragging in Arzarello et al. (2002), refers to 

“randomly dragging a base point on the screen, looking for interesting configurations or 

regularities” of the geometry figure (p. 230). While, in Dummy locus dragging, users do not 

require a specific intention to keep a particular geometry properties, the users in Maintaining 

 
 



111 
 

High cognitive demand tasks in technology-enhanced lesson plans. According to the 

Task Analysis Guide (Stein et al., 2009), the high level cognitive demand tasks, which involve 

Procedures with Connections or Doing Mathematics, require students to integrate the selection of 

algorithms or strategies with an understanding of mathematical concepts. Those tasks often 

include students’ engagement in mathematical reasoning and proof. To address the research 

question 2(b)—how preservice teachers select or design geometric tasks with high cognitive 

demands, the characteristics of high level geometric tasks of the two participants, Julie and Mike, 

were discussed based on their first and second lesson plans. 

Procedures with Connections tasks. As was mentioned earlier, the two participants, Julie 

and Mike, designed two technology-enhanced lesson plans. Julie provided students with some 

low level DGS tasks in both lesson plans—the three Procedures without Connection tasks in the 

first lesson plan and one Memorization task in the second, whereas Mike did not plan any DGS 

low level tasks in either lesson plan. In terms of Julie’s low level DGS tasks, however, she did 

not provide sufficient opportunity for students to find the mathematical relationship by self-

discovery as shown in Figure 4-18 through Figure 4-20. Instead, Julie gave students the detailed 

technological and mathematical procedures, which would prevent students exploring and 

conjecturing the relationships by themselves. By providing students with high level DGS tasks as 

well as the proofs of the theorems, however, the two participants, Julie and Mike, tried to 

encourage students to build mathematical relationships and justify the findings.     

In Julie’s first lesson plan, following the three low level DGS tasks, she planned to talk 

about the mathematical proofs of the three theorems that she discussed. She prepared handouts 

for the proofs of all three theorems, in which the details were written out. She discussed the 

Secant Length theorem first with the handout as shown in Figure 4-23. She started with writing a 
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challenging, and students might tend to give up early. The second and fourth tasks of the warm-

up require high cognitive demand for students to connect their prior knowledge with 

considerable mathematical procedures for the construction. 

 

   

(a)       (b) 

 

Figure 4-26. Answer key for the high level warm-up tasks in Julie’s second lesson plan: (a) 

Construct a tangent to a circle, and (b) Construct a circle with 2 tangent lines that intersect at 1 

exterior point. 

 

Following the warm-up tasks, before Julie introduced the concept of the Power of a Point, 

she asked students the meaning of power—e.g., force or strength in general, and exponent or 

multiplication in mathematics. The Explore section in Julie's second lesson plan consisted of two 

tasks: one for conducting the DGS tasks for the concept of the Power of a Point, and another for 

applying mathematical relationships to real-life situations.  
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For the Procedures with Connections in the high level tasks, Julie provided students with 

the DGS tasks of the Power of a Point for students to make conjectures by observing and 

manipulating pre-constructed geometric figures. She stated, "We are going to work with 

GeoGebra to make some geometric discoveries about tangent lines, secant lines, and the power 

of a point. Keep in mind that the power of a point is the measure of how far a point is away from 

a circle when working through the GeoGebra handout" (Julie, Excerpt, March 13, 2014).  

Julie prepared a pre-constructed DGS file along with a worksheet for the tasks in the 

Explore phase. Students should download the file and manipulate the figure while making 

observations about the relationship between the lines. An excerpt of the task worksheet that she 

prepared, shown in Figure 4-27, shows that Julie prepared three DGS tasks: 1) Relationship 

between a tangent and secant line, 2) Relationship between 2 secant lines that intersect at an 

external point, and 3) Relationship between 2 secant lines that intersect at an internal point. 

Through the tasks, students could engage in manipulating the pre-constructed figures for the 

three cases and build their own conjectures by comparing segment lengths. While the first task is 

related to exploring the Tangent Length theorem, the combination of the second and third tasks 

consider the Secant Length theorem. Therefore, students were asked to investigate the two 

theorems from the three tasks, and then merge the three tasks into two.  

Compared to Amy's second lesson plan as represented in Figure 4-8, Julie provided 

students with a single DGS file that contained four lines around a circle on a DGS screen 

whereas Amy prepared three separate activities for the same mathematics goal. According to 

Julie, she intended to provide students with only one GeoGebra file to allow students to 

investigate the theorems with less confusion. Her expectation for the students was that they could 
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explore the two theorems—the Tangent Length theorem and the Secant Length theorem—as a 

whole by dragging point C in Figure 4-28.  

 

 

 

Figure 4-27. The worksheet for the Power of a Point in Julie’s second lesson plan.   

 

As shown in Figure 4-28, the DGS file contains four lines around a circle A when the file 

is open. With respect to the task, she stated "It is definitely a challenging activity to find the 
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relationship because there are two tangent lines and two secant lines. I like having 4 lines to 

compare for my more advanced students though. For example, when looking at a secant line and 

a tangent line, students can find a relationship between one pair of lines and then compare and 

check their hypothesis using the second pair of lines" (Julie, Interview, April 1, 2014). Two of 

the lines, 𝐶𝐶𝐶𝐶�⃖���⃗  and 𝐶𝐶𝐶𝐶�⃖��⃗ , indicated tangent lines to the circle whereas each of other two lines, 𝐶𝐶𝐶𝐶�⃖��⃗  

and 𝐶𝐶𝐶𝐶�⃖���⃗ , are interchangeable to either secant or tangent line. The point C, which is the common 

intersection of the lines, is draggable, and then students can move and place the point in the 

exterior or interior of the circle A. All segments lengths are already provided on the DGS screen 

to help students to find the relationships by comparing the lengths easily. 

 

 

 

Figure 4-28. The DGS screen for the Power of a Point in Julie’s second lesson plan.   
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In the task with DGS, Julie suggested students work on the task individually in the 

beginning followed by sharing their discoveries with group partner. Finally, she planned to 

discuss the findings as a whole class and explain the theorems.  In order to answer the first task 

of the worksheet, which is related to the Tangent Length theorem, Julie expected that students 

should compare the lengths of 𝐶𝐶𝐶𝐶 (or 𝐶𝐶𝐶𝐶),  𝐶𝐶𝐶𝐶 (or 𝐶𝐶𝐶𝐶), and 𝐶𝐶𝐶𝐶 (or 𝐶𝐶𝐶𝐶) and figure out the 

relationships. To solve the second task, where point C is in the exterior of the circle, the DGS 

screen displayed two secant lines along with two tangent lines. In this figure, she expected 

students to investigate whether 𝐶𝐶𝐶𝐶 ∙ 𝐶𝐶𝐶𝐶 and 𝐶𝐶𝐶𝐶 ∙ 𝐶𝐶𝐶𝐶 remain constant. Based on their own 

conjectures, students needed to be able to generalize the relationships between two secant lines 

by dragging points B and F, which are on the circle. Students also needed to recognize that the 

Power of a Point remains constant although the secant lines change by dragging points B and F. 

Therefore, students have an opportunity to explore the Secant Length theorem for both cases 

depending on the location of point C—outside and inside the circle.  

In the following, when point C is dragged into the circle, it is interesting to observe that 

only two secant lines are displayed around a circle. She asked students why the tangent lines 

disappeared in this case. Obviously, she recalled the fact that a tangent line should be external to 

the circle. Similar to the description of Amy's second lesson plan, regarding the exploration of 

the DGS activity, Julie mentioned "For each case we are finding the Power of a Point, which is 

the product of two segments. If you drag one point on a secant line to the other point of the 

secant line it becomes a tangent line because it intersects the circle in one point. For all three 

cases, we're finding and comparing the product of the segments. When we have a tangent line to 

find the Power of a Point we square the length—product of the length of the segment times the 

length of the same segment—because it's similar to the secant line case where we take the 
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product of segments. In all cases we are finding the product of two segments." Therefore, both 

Amy and Julie contended that the concepts of both the Tangent Length theorem and the Secant 

Length theorem are analogous each other.    

While Julie provided the details of technological procedures in her first lesson plan, in the 

second lesson plan, she prepared meaningful hints and questions to encourage students to work 

things out by themselves in an effort to keep the students participating in the DGS tasks. Julie 

asked questions related to the tangent lines about a circle such as "Are there always two lines 

tangent to a circle through an external point? (Yes, you can always find two lines tangent to a 

circle)", "If a figure does have two tangent lines, will they always intersect? (No, if the tangent 

lines are parallel to each other they will not intersect. The radii that are perpendicular to the 

tangent lines are actually the diameter.)", and "How many tangent lines are possible if we have 

two circles? (Four)". Furthermore, in terms of the Power of a Point, she also asked about the case 

when the point is on the circle and answered, "The power would be equal to 0 because the 

distance between the circle and the point is 0. There is no distance between the two." Like Mike, 

she was concerned about the technical issues of GeoGebra. For example, she expected that 

rounding decimal place values might affect students' results for multiplication of segment 

lengths. She also provided multiple hints such as "As you move the external/internal point what 

do you notice about the length of the different segments?" and "Think about the tangent lines, the 

secant lines, the length of the segments, and how they compare to each other" (Julie, Excerpt, 

March 13, 2014). She planned help for the students who had difficulties in exploring the activity, 

and suggested to them that they focus on a pair of angles or segments rather than trying to 

compare everything. Furthermore, Julie recognized students’ possible misconceptions. For 

example, she mentioned that "When looking at the secant intersection external to the circle-
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students may want to multiply the external portion of the secant line by the internal portion of 

the secant line instead of multiplying the external portion with the entire secant line....Students 

may want to compare the product of the two portions of the secant line rather than the product of 

the external portion and the whole secant line." She expected that, in the DGS figure, some of the 

students might confuse 𝐶𝐶𝐶𝐶 ∙ 𝐵𝐵𝐵𝐵 or 𝐶𝐶𝐶𝐶 ∙ 𝐹𝐹𝐹𝐹 as a Power of a Point C rather than 𝐶𝐶𝐶𝐶 ∙ 𝐶𝐶𝐶𝐶 or 𝐶𝐶𝐶𝐶 ∙

𝐶𝐶𝐶𝐶.  

Although Julie provided the high level tasks for exploring the theorems including the 

concept of the power of a point, introducing the proofs for the theorems was very similar to what 

Amy did in the second lesson plan—employing inductive reasoning. For example, in the second 

lesson plan, Julie stated "While we go through these theorems I will have the students looking at 

their GeoGebra figures, manipulating the points, and verifying the theorems with their own 

figure" (Julie, Excerpt, March 13, 2014). She did not provide opportunities for students to 

explore the formal proofs of the theorems. Instead, she asked the students to manipulate the 

GeoGebra figures by measuring segment lengths and comparing them each other to justify their 

findings. 

In the following DGS tasks for the theorems, she decided to prepare Procedures with 

Connections tasks, the Four-Circle-Square Court Game, which were described in the low level 

tasks (Figure 4-14). The tasks are based on students' previous mathematics learning as well as 

combined real-life situations with mathematical concepts.  Being inspired to create the task from 

a childhood game, Julie attempted to prepare a real-life problem with DGS. She started by 

showing the video clip for students who were not familiar with the game. The Four-Circle-

Square Court Game task had a mixture of low and high level cognitive demand activities. While 
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the first six problems among the nine problems were low level tasks, to encourage students to try 

higher level problem, Julie extended the task with three high level problems.  

After Julie completed the Explore section, she intended to wrap up the lesson with one 

low level task, which was borrowed from the textbook, and another real-life situation that was a 

high level task: “The average adult is 5’8” and so their eyes are about 5.3 feet above the ground. 

This person is standing on a shoreline and looking to the horizon. The Earth’s diameter is about 

8,000 miles. The variable x in this figure represents the distance to the horizon. What is the value 

of 𝑥𝑥?” (Julie, Excerpt, March 13, 2014). Students needed to apply the tangent length theorem to 

solve the high level task in the Summary phase. It is interesting to observe that, similar to the 

Warm-up tasks in her first plan, she added unnecessary information to the problem on purpose. 

For example, in the problem, the average height of the human is dummy information and 

students only need to know how far off the ground the human's eye are. The task is considered 

Procedures with Connections because students need to engage with conceptual ideas to solve a 

real-life problem with procedural knowledge. Another Procedures with Connections task can be 

observed in the Homework. As shown in Figure 4-29, the task requires broad general knowledge 

of the procedures of the Power of a Point concept along with algebraic skills.  
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Figure 4-29. A Procedures with Connections homework task with a solution in Julie’s second 

lesson plan. 

 

It is noteworthy that, in the second lesson plan, Julie described the benefits and 

drawbacks of using technology versus using a paper-and-pencil setting when making geometric 

figures. According to her, the benefits of DGS use are making the geometric figures easily, 

evaluating the relationship with measuring tools, being able to manipulate figures easily, and 

providing opportunities for learning to use technology, which she felt was to be "important in the 

real world as well as the classroom". However, the use of DGS has drawbacks such as a learning 

curve and possible technical difficulties. On the other hand, the benefits of a paper-and-pencil 

setting included using your knowledge of geometric topics to create figures, building a solid 

foundation of geometric principles, and providing tactile learning experiences. The drawbacks of 

a paper-and-pencil setting are less accuracy about scale, difficulties in manipulating figures, and 

time consuming. 
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In terms of the Procedures with Connections tasks from Mike’s lesson plans, similar to 

the low level tasks, Mike prepared the high level tasks by borrowing from either the textbook or 

the teacher’s companion resources that the publisher provided. When he described the 

mathematical goals of the lesson, in contrast to the first lesson plan, in the second lesson plan, he 

added the application of the theorems to one of the mathematics goals from the lesson. In 

addition, Mike provided a group activity with DGS use in the Warm-up task while none of the 

tasks were assigned as group work in the first lesson plan. Through the Warm-up task, he 

intended to remind students what secant lines and tangent lines were. He started by reviewing the 

Two Tangent Length Theorem using DGS. He prepared a handout for the Warm-up task where 

the DGS was necessary. While students started up the DGS software, he distributed the 

worksheet, shown in Figure 4-30. The Warm-up task with DGS use is considered Procedures 

with Connections since it requires students' engagement with mathematical concepts and 

students need to establish a conjecture through the procedures of the task. In particular, if 

students finished the steps early, Mike had them change point D to different positions in relation 

to the circle to see whether the conjecture was still valid or not. Mike also provided students with 

a couple of questions about tangent lines. For example, he asked, "Do you think that lines always 

intersect? If not, when don't they?" Through doing the DGS task, students could understand that 

the tangent lines do not intersect when they are parallel and distinct from each other. Although 

providing meaningful questions along with dragging the points on the circle could motivate 

students to justify their own conjectures, it was observed that he did not provide the opportunities 

of the proof for the theorem.  
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Figure 4-30. A warm-up task in Mike’s second lesson plan (Benson et al., 2009, p. 847). 

 

Following the warm-up task, in the Explore phase of the second lesson plan, Mike 

provided students with an example of using the mathematical relationship after he demonstrated 

the diagrams for the Power of a Point, which was described in the low level task section (Figure 

4-15). He selected the task, called the Conveyor Belt Activity, from the teacher’s textbook 

resources for simulating real-life situations. The task mimics a situation where a conveyor belt 

passing over a roller shut down due to a flaw in the device. For the task, he had students open up 

the DGS computer file on their computers and distributed a worksheet (Figure 4-31). For the 

Conveyor Belt Activity, he prepared hints for the students who had difficulties in exploring the 

activity. For example, for the second question of the worksheet, the hints were provided such as 

"Why not try setting certain lengths to different segments and see how one changes if the other 

one does?" The task is considered Procedures with Connections because it requires mathematics 

concepts to build conjectures and justify them in steps 4 and 5. 
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(a) 

 

(b) 

Figure 4-31. The Conveyor Belt Activity from Mike’s second lesson plan: (a) Worksheet and (b) 

DGS screenshot. 
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In the second task in the Explore phase, he planned a different Procedures with 

Connections task, called Activity-1, and made students open a DGS file along with a worksheet 

(Figure 4-32). According to his lesson plan, he intended to help students understand the Secant 

Length theorem and go through the proof of the theorem if they completed the worksheet. In 

addition to students’ understanding the theorem, he also wanted to refresh "them [students] on 

solving for unknowns".  

Using the DGS activity that Mike created and prepared in advance, he planned that 

students could make their own conjectures about the Secant Length theorem and then justify 

their own conjectures. In the activity, to answer the introductory questions from the worksheet, 

students could drag points A, B, C, and D, and the intersection point P of AB and CD is 

dependent on the conditions of those two lines. In fact, this task is based on the proof of the 

Secant Length theorem represented in the textbook.  

He wanted to explain that the theorem worked in cases of point P being located inside or 

outside of the circle. For example, in the step 2, students can drag points to place point P either 

inside or outside of the circle. They should measure segment lengths to see how the theorem 

worked. Nevertheless, it is worth mentioning that Mike started writing up what the Secant 

Length theorem was on the board without students’ exploration of the DGS task and again had 

students write the theorem down in their notes. As Mike already explained the theorem on the 

board before the activity, most of students could find the relationships from his descriptions. In 

the step 3 of the worksheet, which stated, "When point P is placed outside the circle, what 

happens if we connect point A to point C and point B to point D? Make a conjecture after 

measuring."  
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(a) 

 

(b) 

Figure 4-32. A Procedures with Connections task, Activity-1, from Mike’s second lesson plan: 

(a) Worksheet and (b) DGS screenshot. 
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Mike encouraged students to make a conjecture when point P is outside of the circle, so 

he provided brief instructions by connecting points and measuring geometric objects. In fact, the 

steps emulate the proof in the textbook to guide students to obtain a conjecture that two triangles 

APD and CPB are similar. In step 4 of the worksheet, students should justify their own 

conjectures by using pervious learnings such as the Inscribed Angle Theorem and Triangle 

similarity theorem, etc. However, the instructional procedures of the worksheet were so 

ambiguous that students might not know exactly what kind of conjectures they should build. For 

example, in step 2, he asked, "If point P is at the center of the circle, what do we notice?" and "If 

point P is on the inside of the circle, what do we notice?" His hints for this step led to a 

conjecture from visualization such as "What does each segment appear to be?  Have you tried 

measuring them?" In steps 3 and 4, Mike also prepared hints and questions for students such as 

"What happens if you measure the angles and compare them?", "What do you notice about the 

lengths of each segment?", "What is the product of these lengths?", "What theorem do you think 

would help describe what is happening?", and "Is the power of a point the same for each point 

P?" Hence students were likely to build a non-meaningful conjecture through visualization and 

simple measurement.  

According to Mike, the purpose of the third section of the Explore phase was "to get 

students comfortable with the Tangent Length theorem and how to apply it to solve problems." 

By using a similar diagram to Amy’s second lesson plan (Figure 4-10), Mike also planned to 

prove the fact that the power of point P for a circle is 𝑃𝑃𝑃𝑃2 as he wanted students to "understand 

where it comes from and why it works." However, Mike demonstrated the proof step-by-step by 

himself rather than allowing students to explore it with DGS. During the interview, he 

mentioned,  
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Interviewer: Are you going to just demonstrate the proof or just let them make a proof 
first and you are going to explain it? 
 
Mike: I think in this case, I'm just gonna [going to] go through the proof quick.  
 
Interviewer: Proof quick. Okay.  
 
Mike: Because I want them to see it. But I don't think that they should have to memorize 
it. 
 
(Mike, Interview, April 1, 2014) 

 

Mike already explored the Tangent Length theorem through the “Conveyor belt” activity. As he 

used the DGS activity and integrated the proof with students' explorations of the task, this task 

can be considered a high level task. So despite the fact that there was minimal technology use 

that focused on demonstration of the proof, this task can be regarded as a Procedures with 

Connections task.   

The final Procedures with Connections task in his second lesson plan can be observed in 

the Homework. Because he selected most homework problems from the textbook and thought 

the students could review what was learned in class through the problems, most of them are 

categorized as low level tasks. However, by borrowing a task from the teacher's resource 

materials that the textbook publisher provided, he provided a real-life problem that is the 

application of the first task in this lesson, the Conveyor belt activity, and is considered 

Procedures with Connections from the high level tasks because it requires procedures as well as 

engagement with concepts.  

Doing Mathematics tasks. Doing Mathematics tasks require students to understand 

complex situations and have the ability to use appropriate strategies to solve the task. In order to 

tackle the task, students often need non-routinized algorithmic thinking and reasoning skills. In 
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this study, when we examined the participants’ lesson plans, a couple of Doing Mathematics 

tasks could be observed.  

In the Explore phase of the second lesson plan with DGS use, Julie originally planned to 

provide a challenging task, called Monge's problem (Dorrie, 1965), where the concept of the 

Power of a Point can be applied. According to her second lesson plan, Julie stated Monge’s 

problem as “Draw a circle C, which is perpendicular to three given circles A, D, and F. Students 

needed to relate this construction to the power of point C” (Julie, Excerpt, March 13, 2014). As 

shown in Figure 4-33, students were asked to open the GeoGebra file, which had three circles 

already constructed and Monge's problem explained at the top. Students were asked to construct 

a circle that is perpendicular to the three pre-constructed circles. Once they constructed this 

figure they were able to manipulate the different circles and points and see what happened. They 

reconvened and discussed how this related to the power of a point and discussed how they 

constructed this figure. By asking the students questions, Julie introduced them what it meant for 

a circle to be perpendicular to three circles.  

During the interview, she mentioned the reason why she prepared such a task, explaining 

"So originally that theorem and then my, like, a black- my, like, tangent-secant kind of 

exploration- so I had those two but then we- I learned that we had to have a black box and then 

we needed to have more like a conceptual problems, more like problem-based" (Julie, Interview, 

April 1, 2014). Furthermore, similar to Amy's second lesson plan, Julie also emphasized the 

importance of applying the theorems to real-life situation. Julie prepared scenarios that employed 

the properties of Monge's problem such as:   

Say you're at the Baseball College World Series in Omaha and there are three games 

going on at once and the three circles represent three baseball diamonds and you're 
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standing between the three and you're trying to figure out how far you are from each 

diamond and how long it will take you to get between each diamond so you can see all 

three games that are going on. (Julie, Excerpt, March 13, 2014) 

Students learned the concept that the power of a point C to three circles were equivalent and then 

the point C was the same distance from all three points of tangency. However, despite the fact 

that the Monge's problem was more appropriate to the lesson goal—e.g., application of the 

power of a point—and can be considered Doing Mathematics tasks, Julie realized that students 

might need more time in engaging with the problem than she originally planned. She stated, 

"And so I guess… And I didn't think we had time to do the warm-up, the black box task, the 

Monge and another conceptual and so I guess I replaced it with a task that was kind of 

comprehensive of kind of what we had been doing for the year- incorporating many different 

things- and so I think that's more, like applicable in all" (Julie, Interview, April 1, 2014). 

Therefore, she decided to replace Monge's problem with the Four-Circle-Square Court Game 

task, described in Figure 4-14.  

 

 

Figure 4-33. Monge’s problem with DGS use in Julie’s second lesson plan.   
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According to Julie, the purpose of the task is “to gauge how well students can connect 

multiple concepts.” The task requires that the students “recall previously learned knowledge in 

order to solve problems that they have not seen before” (Julie, Excerpt, March 13, 2014). In 

particular, the last problem of the task, that is using DGS to construct the court and find a way to 

divide the shape into four equal parts, could be challenging to students. Julie suggested the 

students try with a regular pentagon or octagon. In fact, using DGS to divide some regular 

pentagons into four equal parts was challenging and then students might solve this problem with 

a variety of strategies.   

A different Doing Mathematics task can be found in the Homework of Mike’s first lesson 

plan where he assigned an extra credit problem that students could receive at least partial credit 

for if a valid attempt was made. He took the task from the textbook directly and it says,  

a) Suppose a circle has a radius of 5. Accurately describe the set of all points whose 

power of a point with respect to the circle is 100. 

b) Generalize Part a and prove your generalization.  

(Benson et al., 2009, p. 871) 

The first problem of the task is very similar to Amy’s early finisher’s task, which is represented 

in Figure 4-6. While Mike did not mention using DGS to solve the problem, Amy integrated 

DGS use with her early finisher’s task. Furthermore, in the second lesson plan, Amy modified 

the task by suggesting that students use the loci function in DGS. Therefore, the students could 

manipulate a figure and see how the size of the circle determines a certain power. However, Amy 

did not provide opportunities for generalizing the case and its justification. On the contrary, Mike 

made students attempt to find the set of all points having a certain power as a generalization. To 

solve the second problem of the task, students needed to think of two cases when the power of a 
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point P is greater or less than the radius of the circle. The students had to find the radius of the 

concentric circle, which is constant and represented with respect to the radius and the given 

power. Therefore, because the task requires exploration of mathematical relationships through 

non-algorithmic thinking, it is considered Doing Mathematics. However, it is noteworthy that he 

removed the Doing Mathematics task from the second lesson plan because he thought the task 

was too complicated for the students and that they would give up early.  

Summary. Tables 4-7 and 4-8 represent the results of the high level tasks in the first and 

second lesson plans for the two participants, Julie and Mike. In addition, the characteristics of 

high level DGS tasks were summarized in Table 4-9 with respect to types of geometric tasks and 

their classifications along with the dragging modality. When we compare their first lesson plan 

to the second lesson plan, the Procedures with Connections tasks in their second lesson plan 

significantly differ from the first one in terms of both the number of the tasks and their 

placement. It is apparent from the tables that, for both participants’ lesson plans, the Procedures 

with Connections tasks in the second lesson plan were more evenly placed from the Warm-up 

phase to the Homework than those in the first lesson plan. In addition, the number of tasks 

significantly increased in the second lesson plan. For example, as shown in Table 4-7, Julie 

provided students with eight Procedures with Connection tasks, whereas she only planned two 

tasks in the first lesson plan. Similarly to Julie, while Mike planned only a single Procedures 

with Connection task at the Warm-up phase in the first lesson plan, he designed five tasks in the 

second lesson plan.  

In terms of DGS tasks, both participants prepared more technology-integrated tasks in the 

second lesson plan than in the first lesson plan. In particular, Table 4-7 and Table 4-9 show that 

Julie did not provide any DGS tasks in first lesson plan. By contrast, in the second lesson plan, 
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she prepared three DGS tasks at the Explore phase including one Doing Mathematics task. 

Through the other two Procedures with Connections tasks with DGS use in Julie’s second lesson 

plan, students needed to build the mathematical relationships for two theorems—the Tangent 

Length theorem and the Secant Length theorem. The black-box approach was used in the two 

tasks as Julie prepared the DGS tasks in advance and provided opportunities to find the 

relationships through student self-discovery. In order to build their own conjectures, students had 

to measure segment lengths and compare their magnitudes using multiple types of operations. 

Those tasks are also considered expressive and Type 2 tasks because the students had to make 

decisions about what to investigate and how. By using the dragging test, the students also 

recognized that the relationship is invariant under such dragging despite the fact that the 

intersection point of two lines, which becomes a bounded object, moved to different location.  

Compared to the black-box approach in the Procedures with Connections tasks, the 

Doing Mathematics task is based on geometric construction to find a way to divide the court 

shape into four equal parts. Since Julie did not specify a shape, students would be challenged if 

they decided to use a pentagon or even an arbitrary shape. Therefore, the Doing Mathematics 

task is also considered an expressive and Type 2 task. Integrating DGS use with real-life 

situations, teachers could encourage students to explore high level tasks. Interestingly, in Julie’s 

lesson plans, no tasks were adopted from the textbook. Similar to the low level tasks, she created 

the high level tasks by herself or borrowed the tasks from websites. With regard to the resources 

for the tasks in her lesson plans, she mentioned “I guess I search a lot on the Internet for different 

ideas because I feel like textbooks, a lot of the time, they're very bland and so I try to spice 

things up a little bit or at least provide something different…" (Julie, Interview, April 1, 2014), 

and kept saying  
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I also think that to- if students have their textbook, they can look at, you know, the 

examples and the practice problems but they're kind of all the same, and so giving them, 

like, an outside source or something I created, then it's something different that they can't 

just go to their textbook, look at the example and copy exactly what they did. So they 

have to kind of use critical thinking and their own thinking a little more… (Julie, 

Interview, April 1, 2014) 

In terms of DGS use in Mike’s lesson plans, as represented in Table 4-8, he started both 

lessons by making students explore the Procedures with Connections DGS tasks at the Warm-up 

phase. In his first lesson plan, as a warm-up task, he borrowed the DGS task from the textbook 

directly to explain the concept of the Power of a Point, which is one of the core mathematical 

goals of the lesson. In the second lesson, however, he removed the task from the Warm-up phase. 

Instead, he tried to provide a different DGS task that is related to the Two Tangent theorem. The 

two warm-up tasks require considerable technological procedures to investigate certain 

mathematical relationships. In contrast to Julie’s black box approach, Mike’s warm-up tasks 

require geometric construction with DGS use, after which students are suggested to follow a set 

of specific procedures to build their own conjecture. The two warm-up tasks in both lesson plans 

were scaffolding students’ use of the DGS to construct geometric figures followed by their 

connection to each mathematics concept. Accordingly, the warm-up tasks, like the exploratory 

task as shown in Figure 4-11, belong to Type 1. 

While Mike provided a single DGS task in the first lesson plan, in the second lesson plan, 

two more DGS tasks were given to students to make them explore mathematical relationships—

the Tangent Length theorem and the Secant Length theorem. He constructed the DGS tasks 

before he carried out the lesson, so he tried to provide ample time to explore the tasks. Hence, 
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those tasks are categorized to be Type 2 and Expressive tasks. In addition, dragging the points in 

the two DGS tasks could prompt students to make conjectures about what was to be investigated. 

The students were asked to justify their individual conjecture as a last step. It is worth 

mentioning that, similar to the low level tasks, Mike took most high level tasks from the textbook 

directly. However, for the two tasks in the Explore phase, although he borrowed the task ideas 

from the textbook, he slightly modified the tasks to allow students to discover the relationships 

themselves (see Table 4-8). 

Finally, in Table 4-10 and Table 14, the low and high level tasks between Julie’s and 

Mike’s first and the second lesson plans were compared with respect to the percentage of levels 

of cognitive demands. As shown in Table 4-10, compared to Julie’s first lesson plan, in the 

second lesson plan, she significantly increased the high level tasks, from 13% to 36%. In 

particular, in her first lesson plan, she only prepared two high level tasks that were only in the 

Explore section. In contrast, she placed nine high level tasks in the second plan—eight 

Procedures with Connections and one Doing Mathematics task. Therefore, it is observed that 

most of the high level tasks in Julie’s second lesson plan are Procedures with Connection, 

creating an absence of Doing Mathematics tasks. Interestingly, while there was a slight increase 

in the number of low level tasks between the first and second lesson plans, the percentage of low 

level tasks sharply decreased. We also noticed that most low level tasks were given at the 

Homework phase in both lesson plans.  

Table 4-11 shows that, similar to Julie’s plans, the high level tasks in Mike’s lesson plans 

dramatically increased from 18% in the first to 31% in the second. Nevertheless, all of the high 

level tasks in his second lesson plan were Procedures with Connections with no Doing 

mathematics tasks. Accordingly, similar to Julie’s results, the percentage of the low level tasks 
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slightly decreased from 82% in the first to 69% in the second lesson plan. The low level tasks 

were placed in the Homework as they were in Julie’s plans. In particular, because he emphasized 

the exit slip in the Summary phase to aid students’ recall of learning in the class, the percentages 

of Memorization tasks in both Mike’s lesson plans—36% and 38% in the first and second 

lessons, respectively—were higher than those in Julie’s—13% and 16%. 

Table 4-7 

High Level Tasks in Julie’s Lesson Plans 

 Procedures with 
Connections Tasks 

 Doing Mathematics Tasks 

 LP1 LP2  LP1 LP2 
Launch (Warm-up)  2 (S)    
Explore 2 (S) 2 (S, T), 2 (S)   1 (S, T) 
Summary  1 (S)    
Early Finisher’s Task      
Homework  1 (S)    
Total 2 8  0 1 

Note. LP1 and LP2 stand for lesson plan 1 and 2 respectively. The letter S stands for a task that 
was created or selected from non-textbook resources. The letter T represents tasks by using DGS. 
 

Table 4-8 

High Level Tasks in Mike’s Lesson Plans 

 Procedures with 
Connections Tasks 

 Doing Mathematics Tasks 

 LP1 LP2  LP1 LP2 
Launch (Warm-up) 1 (B, T) 1 (B, T)  1 (B)  
Explore  2 (S, T), 1 (B)    
Summary      
Homework  1 (B)    
Total 1 5  1 0 

Note. LP1 and LP2 stand for lesson plan 1 and 2 respectively. While the letter B in the 
parenthesis represents a task taken from the textbook. The letter T represents tasks by using 
DGS.   
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Table 4-9 

High Level DGS Tasks in the Lesson Plans for the Two Participants, Julie and Mike 

 Julie  Mike 
 LP1  LP2  LP1  LP2 
 PWC DM  PWC DM  PWC DM  PWC DM 
Geometric Tasks 

Construction 
Loci/Tracing 
Black-box approach 
 

    
 
 

 (2) 

 
 (1) 

  
 (1) 

 

   
 (1) 

 
 (2) 

 

DGS Task Types 
Type 1 
Type 2 
 

    
 

 (2) 
 

 
 

 (1) 
 

  
 (1) 

 

   
 (1) 
 (2) 

 

 

Task Classification 
Exploratory 
Expressive 

 

    
 

 (2) 

 
 

 (1) 

  
 (1) 

 

   
 (1) 
 (2) 

 

 

Dragging Modality 
Wandering 
Bound 
Guided 
Dummy locus 
Line 
Linked 
Dragging Test 

    
 

 (2) 
 
 
 
 

 (2) 

   
 

 (1) 
 
 
 
 

 (1) 

   
 

 (3) 
 
 
 
 

 (3) 

 

Note. LP1 and LP2 stand for lesson plan 1 and 2 respectively. The letters PWC and DM 
represent Procedures with Connections and Doing Mathematics tasks respectively. The number 
in the parenthesis represents the number of the tasks.  
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Table 4-10 

Results of the Cognitive Demand of the Tasks in Julie’s Lesson Plans 

 LP1  LP2 
 Low Level  High Level  Low Level  High Level 
 M PWO  PWC DM  M PWO  PWC DM 
Launch (Warm-up)  2     2   2  
Explore  4  2   2 4  4 1 
Summary 
Early finisher’s task  

 1 
1 

     1 
1 

 1  

Homework 2 4      6  1  
Total 2 

(13%) 
12 

(75%) 
 2 

(13%) 
0 

(0%) 
 4 

(16%) 
12 

(48%) 
 8 

(32%) 
1 

(4%) 
 14 (88%)  2 (13%)  16 (64%)  9 (36%) 

Note. LP1 and LP2 stand for lesson plan 1 and 2 respectively. While the letters M and PWO 
represent Memorization and Procedures without Connections in low levels, the letters PWC and 
DM represent Procedures with Connections and Doing Mathematics in high levels. The number 
in the parenthesis represents the percentage of the cognitive demand category each lesson plan, 
and is round to whole number.  
 

 

Table 4-11 

Results of the Cognitive Demand of the Tasks in Mike’s Lesson Plans 

 LP1  LP2 
 Low Level  High Level  Low Level  High Level 
 M PWO  PWC DM  M PWO  PWC DM 
Launch (Warm-up)    1      1  
Explore 1 2     1 3  3  
Summary 1      3     
Homework 2 3   1  2 2  1  
Total 4 

(36%) 
5 

(46%) 
 1 

(9%) 
1 

(9%) 
 6 

(38%) 
5 

(31%) 
 5 

(31%) 
0 

(0%) 
 9 (82%)  2 (18%)  11 (69%)  5 (31%) 

Note. LP1 and LP2 stand for lesson plan 1 and 2 respectively. While the letters M and PWO 
represent Memorization and Procedures without Connections in low levels, the letters PWC and 
DM represent Procedures with Connections and Doing Mathematics in high levels. The number 
in the parenthesis represents the percentage of the cognitive demand category each lesson plan, 
and is round to whole number.  
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Trustworthiness results. In order to minimize the threat of dependability and 

confirmability, the qualitative data in this study were analyzed by two researchers, who have 

been studying mathematics education, independently. The researcher in this study and a peer 

researcher reviewed the participants’ interview transcripts twice separately to increase the 

reliability.  

Before the two researchers began coding works, they discussed the coding schemes 

described in the previous chapter and shared examples of geometric tasks in the process of 

analyzing Amy’s two lesson plans. In the following, they individually coded the other two 

preservice teachers’ two lesson plans including DGS files and handouts. After each researcher 

completed the coding, the two researchers compared their codes and discussed differences in 

coding until a consensus was obtained. Table 4-12 represents the coding reliabilities for the three 

preservice teachers’ lesson plans in terms of the cognitive demand levels of their geometric 

tasks.  

 

Table 4-12 

Coding Reliability Results of the Geometric Tasks in the Preservice Teachers’ Lesson Plans  

Participant Lesson Plan 1 Lesson Plan 2  

Amy 89.5% 100.0% 94.7% 
Julie 100.0% 90.5% 94.6% 
Mike 100.0% 100.0% 100.0% 

 95.7% 96.4% 96.1% 
 

In general, the reliabilities between two researchers’ coding were quite good except those 

in Amy’s first lesson plan, 89.5%, and Julie’s second lesson plan, 90.5%. When the reliabilities 

of each participant were examined by combining her or his two lesson plans, they indicated at 
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least 94%. In addition, the reliabilities of the first and second lesson plan 1 and 2 for the three 

preservice teachers were 95.7% and 96.4% respectively. Therefore, due to overall reliability of 

96.1%, the coding between two researchers in this study showed sufficiently high reliabilities.   

Influence of the black-box approach to teachers’ roles. The participants in this study 

agreed that the tasks based on the black-box approach in the lesson plans placed high cognitive 

demand on the students to build the mathematical conjectures through DGS use. In the black-box 

tasks, the students are able to find the mathematical relationships by measuring geometric objects 

and comparing the measured magnitudes. In addition, in the black-box approach, they also can 

test generalizations of the relationships by using the drag mode in the DGS. Therefore, exposing 

students to the black-box approach appeared to increase the levels of cognitive demands placed 

on them. In response to the research question 2(c)—how the black-box approach influenced the 

way preservice teachers conceptualize their roles in designing lesson plans, this study not only 

discusses how preservice teachers thought about the use of DGS along with the black-box 

approach in their lesson plans, but also examine the teacher’s technological roles based on the 

elaborated and extended PURIA model (Zbiek & Hollebrands, 2008). 

Designing DGS tasks. Examining the lesson plans and the interviews of the three 

participants in this study—Amy, Julie, and Mike, it was observed that they thought DGS use 

could help with students’ reasoning by constructing and manipulating geometric objects. When 

students learn geometry with the DGS use, Amy expected that they could use all possible tools 

and functions that DGS offered. For the wrap-up activity in the second lesson plan, she proposed 

that students solve the task in many different ways. For example, since the DGS has an arc-

drawing tool with three points, a student can easily construct the arc with the tool and measure its 

length. Therefore, for the students who used the tool, she suggested that they answer the 
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question: "Can you explain in detail, you know, okay, so you picked three points, why does that 

define a circle and are you sure that it-?” Otherwise, in the beginning of the wrap-up activity, she 

said she could ask students to solve the task in many different ways either mathematically or 

with the help of technology, but they had to compare the findings with other methods. Amy 

expected the use of technology would provide students multiple ways of approaching the 

solution of the tasks and stated "I know for sure that there's three ways to do it but maybe you 

can find four ways to do it or something ‘cause I'm sure some students would probably come up 

with a way that I didn't think of to do the problem" (Amy, Interview, April 1, 2014).  

Similar to Amy, Julie also mentioned, "[I]f you're using technology, you know, you can 

use tools to construct something one time but then why don't you do it another way. I think that 

that increases cognitive demands." Julie emphasized that teachers should prepare the 

technological tasks to allow students to try to solve them in multiple ways. In terms of impact of 

the DGS use on students’ engagement in mathematical discovery and reasoning or proof, Julie 

stated,  

I think that it [the DGS use] definitely helps with their [students’] reasoning in proof 

because it's so easy to manipulate, you know, and like, they [students] have created it, 

like, they'll manipulate it, like, they have figured out their discoveries, you know, they've 

made hypotheses. So I think that it always makes them want to be able to prove 

something more, you know, because they've put all this work into it.  

(Julie, Interview, April 1, 2014)   

Therefore, Julie considered student engagement in activities to be important to learn 

mathematics. She thought she would provide DGS tasks for the purpose of differentiation 

because the tasks were more engaging for them. Amy also agreed that the task with the 
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technology use would improve students' understanding the concept of Power of a Point more 

deeply than those without technology. In order for students to use DGS without any 

technological difficulties, Julie and Amy would use DGS from the beginning of the school year 

and help students get to the point where they can work with it. They also would assign 

homework problems using DGS so students would have to practice it on a regular basis.  

Interestingly, all three participants argued that the tasks with DGS use had to be 

implemented in paper-and-pencil setting. Amy said "[I]t's important that they can solve these just 

using, paper and pencil, I think.", and emphasized that students needed to solve the problems 

without technology because students would have to prepare assessments including school 

summative assessments and standardized tests—e.g., college entrance assessments. She thought 

DGS use worked in a similar way as a graphic calculator in students' learning mathematics. 

Similar to Amy, Julie emphasized that students had to learn geometric construction 

without technology first followed by construction with technology. So Julie contended that 

students would learn geometry effectively when the tasks with and without technology use were 

well-balanced. She said, “I think that in a classroom it's really important to work with 

technology, work with hands-on manipulatives and communicate with others—whether it's 

writing or verbally—, and so I think that just incorporating as many different experiences for 

every students during a class period, I think that's really important" (Julie, Interview, April 1, 

2014). Similarly, Mike also said he would use conventional geometry tools very often because 

they seemed to be more beneficial to students' learning than DGS. 

Nevertheless, the participants were concerned about students’ distraction and time 

management when technology was used in the mathematics classroom. In particular, due to a 

lack of class time, Julie and Mike expressed that they had troubles providing students with 
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opportunities to try to justify or do a proof for the theorems. Julie said that, if there was sufficient 

time, "[T]hey [Students] should be able to apply all that knowledge and so I guess it's a good 

way" (Julie, Interview, April 1, 2014). Similarly, Mike omitted the proofs of the theorems in his 

first lesson plan. Additionally, we found that the participants were not confident in doing 

mathematical proof, even in high school geometry. For example, Julie said "I think that they 

[students] could have a hard time proving something. I think that, um- It's just hard to know what 

to do and what comes next and so working with them through that." She continuously 

mentioned, “I guess I'm not very familiar with geometry in high school level. And so I think that 

that makes it hard, too” (Julie, Interview, February 18, 2014). 

Change feeling towards DGS use. In the first lesson plan, Amy skipped the textbook’s 

DGS task because she was not comfortable with the software, and she thought the task could not 

be implemented without the help of technology. While Amy had designed the lesson plans, she 

was getting more comfortable with using DGS than she had been prior to learning how to 

integrate DGS into mathematics teaching. She said, "I'm a lot better at making figures for, like, 

you know, if I was to make a test or something like I can actually make the figures on GeoGebra 

now" (Amy, Interview, April 1, 2014).  

Similar to Amy, Julie also mentioned "I have grown to like it more now that I know more 

about GeoGebra...I think that it's [teaching with technology is] really important that I am 

technologically-confident. I do like to teach with that" (Julie, Interview, April 1, 2014). Julie 

continuously stated "I feel pretty comfortable with that just because they've been around since I 

guess I joined the education program so I've kind of been raised in a, you know, the 

technological age. So I do feel comfortable using all of those things" (Julie, Interview, April 1, 

2014). 
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As the other two participants mentioned, Mike said getting more experience with DGS 

could help him be more comfortable to plan and implement mathematics lessons that include 

technology. Accordingly, the participants suggested that more practice with DGS, such as 

drawing figures and designing exploration tasks, could lead a teacher to be comfortable with the 

software. In particular, Mike added a comment such as "[S]eeing more and more tasks that other 

people have created, I think that would help give me ideas for what I could do in the future." 

Thought on the black-box approach. In terms of the black-box approach, Amy thought 

students could learn mathematics better using the black-box approach because they could 

construct the conjectures on their own. For example, in the task for the Secant Length Theorem 

in the second lesson plan, if the black box approach was given to students, Amy expected that 

students could understand the theorem better than when she just gave the task by step-by-step 

instruction. With regard to pre-constructed task in the black-box approach, Amy felt better 

teaching the subject because it omitted several specific technological procedures. Because the 

task would be more complex than other types of geometric tasks, however, she thought students 

might need more time to explore the task.  

Using technology such as DGS, Julie considered her second lesson plan was well 

organized to meet her mathematics goal by encouraging students to build conjectures and 

deductive reasoning though the black-box approach. Julie stated,  

So I think that- especially by using a black box task- I think it really makes them make 

observations on their own and so that was kind of one of my mathematical goals and then 

exploring with the black box task, the secant-length theorem and tangent-length theorem 

and so those were met using technology. (Julie, Interview, April 1, 2014) 
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Mike also mentioned, in terms of advantages of the black-box tasks over other types, "I mean 

allows a lot more than just a procedural because if you give them step-by-step, they'll have to 

follow those whereas there are more. If you're manipulating, you can measure it however you 

want. I'd say it definitely it gives them a lot more freedom of choice” (Mike, Interview, April 1, 

2014). 

Among the geometric tasks with DGS, two out the three participants, Amy and Mike, 

preferred the black-box tasks the most and thought these tasks were most helpful in learning 

geometry because students could manipulate the task, come to their own conjectures, and explain 

it themselves. Mike mentioned,   

I honestly did like the black box task because I think that that- instead of walking the kids 

through it, I think that if they're able to manipulate it and come to their own conjectures 

that- and they can actually explain it themselves and then show a pretty deep 

understanding of it. (Mike, Interview, April 1, 2014) 

Amy argued that, through the black-box approach, students were "kind of asked to explore on 

your own and make a conjecture about something." She mentioned that, if the black box 

approach could be mixed with real-life situation problems, it could motivate students more. She 

also agreed that the black-box approach definitely increased the level of cognitive demand in 

mathematics because it was an open task.  

On the contrary, Julie was most confident and comfortable to design geometric 

construction tasks because she had been doing geometric construction tasks for a longer time 

than other types of tasks. According to Julie, while the DGS tasks in her first lesson plan seemed 

to be considerably directive, in the second lesson plan, she tried to provide the tasks with a 

geometry concept as the basis rather than providing the task with conventional step-by-step 
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procedures. However, in terms of the black-box tasks, Julie also thought, even though they were 

more challenging, they were the most helpful to her and to students.  

Nevertheless, all participants were concerned that students might give up the task with 

black-box approach, because a higher cognitive demand is necessary for the black-box tasks in 

general, and students might get frustrated easily. To avoid this issue, Julie helped students by 

"having hints and just letting them work in groups or, like, with a partner at least...and just 

asking questions" (Julie, Interview, April 1, 2014).  

In parallel with Julie’s comments, although Amy conceded in the pre-interview that she 

did not personally enjoy group work, she prepared her lesson plans mostly requiring a group 

work setting and emphasizing communication among students. Amy also argued that it was 

essential for teachers to prepare hints and questions.  In addressing the impact of technology on 

questioning skills, Julie answered that dragging points of geometric objects in designing DGS 

activities could improve questioning skills because she found unexpected shapes or results in 

manipulating the objects by dragging.  

Sometimes, however, the black-box approach could be very limited unless teachers 

recognized what students knew previously—in both mathematics and technology—which could 

make it difficult for students to know how. Therefore, the participants acknowledged that 

teachers had to understand what mathematical knowledge students had when the teachers 

provided the black-box tasks.  

Teacher’s technological role with the black-box approach. When the participants 

prepared the black-box tasks in their second lesson plans, we examined their technological roles 

based on the PURIA model (Zbiek & Hollebrands, 2008). As a result, we found that Amy and 
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Julie were in the modes of incorporating technology into classroom along with assessing 

students’ use of technology, whereas Mike still remained in the incorporating technology stage.  

Amy thought that the tasks in her second lesson plan gave students the tools to 

accomplish the mathematics goals better because the technology made it feasible for students to 

do whatever they tried to. During the interview with Amy, when tasks are integrated with 

technology, she claimed that students would have the ability to understand the mathematical 

concepts at a deeper level. Therefore, she put emphasis on the appropriate guidance as the role of 

mathematics teachers when technology was used, and then she stated,  

I think you have to specifically tell them how technology leads to their learning, 

otherwise they use it incorrectly, like, you know, using their calculators to solve 

everything when they really should, you know, like understand the quadratic equation or 

something- quadratic formula. So I think you have to kind of guide them so that they 

understand the benefits of using technology and when technology isn't necessarily 

necessary. (Amy, Interview, April 1, 2014) 

Similarly, Julie called herself an advocate of student-centered teaching and mentioned "I 

think that the teacher's role is to… not lecture and not just spit out things to the students and have 

them memorize theorems. I think it's their goal to make sure to bring about the right previous 

knowledge the students have, give them the right tools, the right materials in order for them to 

make the discoveries themselves and figure out the relationships." Julie also stated,  

[M]y teaching style isn't ever, like, giving answers, it's always ask them “Why?”, like, 

“Explain that to me”. And I think that that can be motivating to students like having to 

prove themselves and like, proving themselves like “I am right” and like, “You have to 

believe me”. I think that's kind of self-motivating for me. Like, um… so, yeah. And just 
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really probing students to keep working further- And just by me asking questions and by 

other students asking questions and having them explain things to each other, I think it 

kind of- a little camaraderie is motivational. (Julie, Interview, February 18, 2014) 

On the contrary, however, there is a controversy between Mike’s lesson plans and the 

answers he gave during the interviews. During the interview, Mike mentioned he supported 

student-centered teaching and intended to emphasize group work with partners. In terms of 

teaching geometry, he mentioned "I think it's [teacher's role is] to help guide students. I think it's 

to be able to be there to answer questions that may arise, but not just give them the answer. I 

think too often teachers just give the answer or just tell them how to do it rather than why we do 

something…" (Mike, Interview, April 1, 2014) 

However, it is interesting to find that Mike neither prepared group work nor planned 

sufficient meaningful questions for the lesson. Therefore, Mike seemed to design the second 

lesson plan with a teacher-centered approach when technology was involved. He emphasized 

demonstrations of the proof, and then he mentioned,  

I think, first off is the teacher has to show students how to use it because if they, uh, just 

go into it blind and don't know what they're doing, they won't know how to using the 

tools. First off, I‘ll show them how to use it and then- but also, to guide them so, say, 

show them most of the stuff you can use but there might be some more specific stuff that 

they have to use, you can guide them to it instead of just showing them outright.  

(Mike, Interview, April 1, 2014) 

Therefore, instead of examining how the students use DGS and what they had to know, he 

seemed to focus on demonstrating what he intended by using the DGS. 
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CHAPTER 5  

DISCUSSION AND CONCLUSION 

Based on the findings from the previous chapter, I summarize the results of the study 

with regard to the following research questions: 

1. Do(es) preservice teacher(s) change the level of cognitive demand in the geometric tasks 

they design for lesson plans once they have been introduced and exposed to dynamic 

geometry software and types of geometric tasks? If so, how do they change?   

2. When dynamic geometry software is used to design lesson plans, 

a) How do preservice teachers select or design geometric tasks at low cognitive 

demands? 

b) How do preservice teachers select or design geometric tasks at high cognitive 

demands? 

c) How does the black-box approach influence the way preservice teacher conceptualize 

their roles in their lesson designs? 

This chapter will consider the major factors that influence the level of cognitive demands 

in preservice teachers’ preparation of DGS lesson plans and their perception of DGS use with the 

black-box approach in designing geometric tasks. Final remarks are made by relating the issues 

in this study to implications, future suggestions, and limitations.  

Summary of the Results 

With regard to the results of the first research question, only Amy’s lesson plans were 

examined because she was the only participant who did not have any experience using DGS 

before the current study. Comparing Amy’s two lesson plans, it was found that the lesson plan 

that used DGS had a greater number of high level tasks than that without DGS use. In the case of 
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Amy’s lesson planning without DGS, she provided a considerable number of Memorization 

tasks, and high level tasks were not planned in the major phase, the Explore section, which 

means students would not have an opportunity in that phase to experience the sort of learning 

associated with high level tasks. In the lesson plan that used DGS, however, high level tasks 

were nearly evenly placed across teaching phases, and more than half of them required DGS use. 

All types of geometric tasks—geometric construction, tracing loci, and the black-box 

approach—in this study were noticeable in her DGS lesson plan, in this way exposing students to 

high level cognitive demand tasks through classroom activities.  

For the lesson plans of the other two preservice teachers, Julie and Mike, the second 

research question investigated the characteristics of low and high level tasks with the use of 

DGS. In the following, the preservice teacher’s role with DGS use was also examined. With 

regard to low level tasks, while Mike planned more Memorization tasks than Julie did for both 

lesson plans, Julie prepared more Procedures without Connections tasks than Mike did. None of 

the low level tasks in either of Mike’s lesson plans incorporated DGS, and Julie only employed 

low level DGS tasks to illustrate geometric construction type using step-by-step procedures. 

Regarding high level tasks in Julie and Mike’s lesson plans, similarly as Amy’s scenario, 

the high level tasks were distributed fairly evenly from Warm-up to Summary and Homework. 

All three types of DGS geometric tasks were planned for high level tasks. It was found that the 

use of the black-box approach generated lesson plans with more high level tasks. 

All three participants also put emphasis on simultaneously using both DGS and 

traditional geometry tools—e.g., compass, ruler, and protractor. They claimed that students have 

to learn geometry without technology first followed by construction with technology for 

enhancing conceptual understanding of mathematics. They still thought the DGS was an 
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alternative tool to paper-and-pencil-based explorations, despite the fact that students can 

construct geometric figures in same ways as in paper-and-pencil settings. They were likely to 

provide procedural tasks—both technologically and mathematically—often in order to make 

students proficient in assessment, where DGS is not allowed.  

Influences of the black-box approach to design lesson plans were examined from the 

interviews with all three preservice teachers. They demonstrated positive attitude towards the 

black-box approach for fostering students’ deep thinking. The black-box approach tasks had to 

be accompanied by the dragging test modality for students to have more opportunities to build 

mathematical relationships through self-discovery. When I examined the preservice teachers’ 

conceptualized role with the black-box approach to plan lesson plans, Amy and Julie were in the 

modes of incorporating technology along with assessing students’ use of technology, but Mike 

remained in the incorporating technology stage.  

Factors that Influenced Preservice Teachers’ Lesson Planning 

The major factors influencing preservice teachers’ preparation of high level tasks in this 

study include teacher’s subject matter knowledge, teacher’s knowledge about students, 

curriculum resources for selecting tasks, teacher’s technological knowledge, as well as teachers’ 

abilities to set appropriate lesson goals and prepare for real-life situations. I will discuss how 

those factors influenced the three preservice teachers’ lesson planning and how geometric tasks 

were integrated with their DGS lesson plans. 

Influence of teachers’ perceived subject matter knowledge. The PSSM states that 

“Teachers must know and understand deeply the mathematics they are teaching and be able to 

draw on that knowledge with flexibility in their teaching tasks” (NCTM, 2000, p. 17). Much of 

the research also supports the assertion that teachers’ mathematical content knowledge plays an 

 
 



158 
 

essential role in their effective teaching by allowing them to select appropriate mathematical 

tasks for students’ learning (e.g., Ernest, 1989; Richardson, 1996). Despite the fact that 

preservice teachers’ mathematical content knowledge was not explicitly measured in this study, 

it was possible to infer something about their mathematical content knowledge through their 

lesson plans and responses during the interviews. Examination of preservice teachers’ lesson 

plans revealed that they did not fully understand what the Power of a Point represents 

mathematically. Consistent with Zbiek (2005), the participants in this study showed that they 

may not have had a clear conceptual understanding of the Power of a Point nor connected the 

concept to design tasks.  

During the interviews, a participant of this study, Amy, mentioned that, despite having a 

bachelor degree of mathematics before this study, she never learned the mathematical 

relationships between lines (or segments) and circles. Failure to understand the concept of the 

Power of a Point also influenced Mike’s lesson plans. He mentioned that the Power of the Point 

P, which designates an intersection between two segments (or lines), remains constant no matter 

where the point P is located. Since the concept of the Power of a Point is a primary lesson topic, 

consistent demonstration of this incorrect description might lead to students’ misunderstanding 

this concept. Mike kept mentioning that, in explaining the Secant Length Theorem, the Power of 

the Point P is greatest if the point is at the center of the circle. However, he did not know that the 

intersection of two segments must occur inside the circle for the statement to be valid. He 

demonstrated the concept of the Power of a Point on an interactive whiteboard with a diagram 

borrowed from the textbook. Although a high level DGS task was planned for exploration of the 

Power of a Point, he failed to connect the DGS task to his explanation of the theorem. Fennema 

and Franke (1992) state, “[I]f teachers do not know how to translate those abstractions into a 
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form that enables learners to relate the mathematics to what they already know, they will not 

learn with understanding” (p. 153). Even though Mike had opportunities to maintain students’ 

findings from the high level DGS task by connecting to the diagram, his lack of subject matter 

knowledge did not maintain students’ high level thinking and instead shifted the high level task 

to a cognitively low level task. 

While the preservice teachers prepared high level DGS tasks for students to investigate 

mathematical relationships and build their own conjectures, the preservice teachers failed to 

maintain such high level tasks by either demonstrating proofs on a whiteboard or immediately 

providing procedures-focused tasks that require procedural skills rather than opportunities to 

justify the findings by self-discovery. A possible explanation for the reason that the preservice 

teachers provided such low level tasks immediately after high level tasks may be due to weak 

subject matter knowledge of the content they are teaching. Researches show that many 

preservice teachers who possess weak mathematics content knowledge favor inductive 

arguments or procedural exercises to enhance mathematical reasoning (e.g., Martin & Harel, 

1989; Simon & Blume, 1996).  

Influences of teachers’ perceived pedagogical knowledge. Mathematics pedagogical 

knowledge facilitates effective teaching practices with the purpose of helping students access 

more meaningful learning (Shulman, 1986). Although preservice teachers have taken upper-level 

mathematics classes, they may have difficulties teaching and explaining mathematics to students. 

Thompson (1984) shows that even a teacher who demonstrated strong reasoning skills might 

have difficulties explaining mathematics conceptually. Although Amy has a bachelor degree in 

mathematics, her case offers an example of a situation where she was not able to convey this 

information to her students. She misidentified the level of cognitive demand required for the 
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tasks she prepared in the first lesson plan. As a result, students were left with a gap in their 

understanding. Perhaps Amy’s lack of pedagogical content knowledge prevented her from 

addressing students' preconceptions. This example demonstrates that, as Shulman (1986) 

asserted in his framework, in addition to strong content knowledge, high quality pedagogical 

content knowledge is essential for teachers. 

In examining teacher’s pedagogical knowledge, many studies contended that factors of 

strong pedagogical knowledge for effective teaching include teachers’ knowledge about 

students’ mathematical misconception (Ball & McDiarmid, 1990; Ball, Thames, & Phelps, 2008; 

Hill, Ball, et al., 2008; Shulman, 1986) as well as qualities of posing questions and hints 

(Cognition and Technology Group at Vanderbilt, 2002; Tran & Lawson, 2007). For instance, in 

the current study, Julie understood that teachers have to recognize students' possible 

misconceptions. In order to facilitate student understanding of mathematical relationships, she 

prepared open-ended questions to be discussed as a class and hints to help struggling students in 

both mathematics and technology use. In contrast, although Mike prepared a high level DGS task 

in his first lesson plan, questions that he planned mainly focused on student's identification of 

geometric properties by visualization. Hence, his questioning may reduce students' engagement 

in deep thinking, and thus maintaining the level of high cognitive demand may be difficult in the 

implementation of the lesson, which was not studied here though.  

Although Julie showed that she seemed to have strong pedagogical knowledge by 

preparing sufficient open-ended questions along with meaningful hints, Julie also uncovered an 

issue about recognizing students’ prior knowledge. In Julie's first lesson plan, it was found that 

she did not fully determine students' prior knowledge for the lesson. For example, although the 

inscribed angle theorem was necessary to prove mathematical relationships in her lesson plans, 
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she did not recognize its necessity as prior knowledge. She also made a mistake when explaining 

the Secant Length Theorem because she described only the case that an intersection point is 

located in the exterior to the circle despite the fact that the relationship is valid in the interior of 

the circle. 

Influence of curriculum resources for selecting tasks. A quantitative study of 

Aubusson, Burke, Schuck, Kearney, and Frischknecht (2014) points out that teachers preferred 

tasks that used a variety of resources such as multiple tools, materials, and manipulatives. In the 

current study, there were no constraints for the participants in terms of resources they were 

allowed to use; and thus they were able to freely select or borrow tasks from any resources 

including other textbooks and Internet websites. Julie took the most advantage of this 

opportunity and her lesson plans benefited from it. Julie created geometry tasks on her own or 

borrowed them from websites and other textbooks in both lesson plans.  

In terms of teachers’ selection of tasks, Sullivan and Mornane (2014) reported that 

teachers and textbooks might not have same affordances and constraints. The findings are 

aligned with this study. For instance, Julie prepared different tasks from a textbook, which was 

provided in this study, and argued that students were able to solve the tasks in the textbook at 

home; and thus teachers have to provide students with other tasks that they would not encounter 

in textbooks.  

On the contrary, Mike selected every tasks in the textbook. Mike’s case is consistent with 

results from Remillard (1999), where teachers’ selection of tasks can be largely influenced by 

their tendency to use textbook tasks strictly. Regardless of DGS use in designing lesson plans, he 

mostly took the representative examples and the corresponding exercises from the textbook. A 

set of similar exercises were prepared to show students how the theorems work. Comparing two 
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cases between Julie and Mike, the findings are agreement with those of Christiansen and Walther 

(1986) who suggested that teachers need to use other resources in order to encourage students to 

actively participate in tasks.   

The study of Nie et al. (2013) argues that, in selecting mathematics tasks, teachers using 

non-reform textbooks more often attempt to follow the guideline in the textbooks than those 

using reform textbooks. Son and Kim (2015) also contend that teachers who use the guidelines of 

traditional textbooks are more likely to select low level tasks than those using reform textbooks 

in general. However, the results of this study slightly deviated from the findings of Son and Kim 

(2015). For example, although Mike used a reform textbook for his lesson planning, he prepared 

a significant number of Memorization tasks requiring students to recall previous knowledge 

without mathematics connection. Although he mentioned he favored student-centered teaching 

during the interviews, it was found that he did not plan to pose enough open-ended questions and 

meaningful hints in his lesson plans. He adopted most questions from the teacher’s edition 

textbook.  

During the interviews, Mike said most geometry tasks in his high school geometry class 

were taken from textbooks. This can explain Mike’s selection of geometric tasks from the 

instructional textbook as educators commonly say, "teachers teach the way they have been 

taught" (Buerk, 1985, p. 12). Thus, in his lesson plans, DGS integration was less student-

centered than it could have been. Oner (2009) finds that most high school geometry textbooks 

fail to provide proof opportunities, which require students’ high cognitive demand, within DGS-

oriented tasks. Based on the findings of this study, it is recommended that geometry textbooks 

include more DGS-oriented tasks with clear guidelines for meaningful questions so that teachers 

can utilize them effectively.  
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Influence of teacher’s perceived technological knowledge. The two participants in this 

study, Julie and Mike, had experience with DGS use, but they did not feel comfortable enough to 

use DGS in the beginning of the study. Another participant, Amy, had minimal experience with 

any technology use previously. Amy did not even use a graphing calculator in high school 

geometry class to say nothing of DGS. For this reason, Amy was uncomfortable in using 

technology at the beginning of the study so that DGS use was not involved in her first lesson 

plan.  

It was found that, however, the participants were getting comfortable with the use of 

DGS as they practiced during the Methods course. As the preservice teachers practiced DGS 

tools, they became confident in designing lesson plans using DGS. These findings of the three 

participant scenarios are supported by research literatures (Koc & Bakir, 2010; Pope, Hare, & 

Howard, 2002; Wright & Wilson, 2005), which examine teacher’s perception about technology 

integration. The research studies indicate the need for more technology training in order to lead 

teachers to be confident. As teachers have been trained and felt confident in using DGS and its 

tools, the results of the studies have found that teachers tended to encourage students to solve 

DGS tasks in multiple different ways.  

For instance, Amy’s arch problem and Julie’s Four-Circle-Square Court Game task in the 

current study are considered high level tasks. If students solve the problems directly with help of 

embedded tools in DGS, the tasks would be changed to low level tasks. The tasks can be 

maintained in the level of high cognitive demand by asking extra mathematical questions about 

how the DGS tools work or modifying tasks—e.g., find the solution in three different ways. 

Preservice teachers’ confidence with DGS use can guide them to select and create high level 
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tasks by expecting students to use DGS for the tasks and making up the corresponding questions 

and hints. 

Influence of setting lesson goals. Effective lesson planning has to begin with manifestly 

stated mathematics goals that describe what students are expected to learn at the end of the 

lesson. In general, teachers may adopt these goals from mathematics standards, and then the 

goals become the basis of lesson planning for a specific topic (Brahier, 2013). As the Common 

Core State Standards for Mathematics notes “Understand and apply theorems about circles” 

(CCSSI, 2010, p. 77), all participants in the current study intended to make students explore the 

relationships between lines (or segments) that are formed about a circle.   

Although the preservice teachers in this study mentioned that they focused on making 

deductions from properties of radii, chords, and tangents, as well as applying the theorems to 

real-life problems, this study found that they had difficulties in setting up their lesson goals 

clearly. For example, Julie and Amy explicitly mentioned that deciding lesson goals in this study 

was one of the most difficult parts. They struggled with selecting or creating real-life situations 

problems to apply mathematical relationships, which was one of their primary lesson goals.  

When DGS geometric tasks with the black-box approach was exposed to their lesson 

plans, however, all participants attempted to increase the number of real-life problems with DGS 

use, which required high level of cognitive demand. They allowed student to utilize any DGS 

built-in tools, which enable students to try to solve the task in multiple different ways 

mathematically or even technologically. For instance, in Amy’s DGS task for finding arch 

length, students could simply use a DGS tool that draws a circular arc by selecting three points, 

rather than solve it mathematically. Other students might use different combinations of DGS 

tools for the same tasks without applying mathematics. For students who found a solution 
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directly with the help of DGS use, she planned to ask additional questions of the students to help 

them understand how the DGS tools worked mathematically. Therefore, it was found that the 

inclusion of DGS along with various geometric task types helped preservice teachers reach their 

lesson goals easily and be able to prepare high level tasks. This findings further support the 

results of Pierce and Stacey (2011), where the DGS use can improve students’ understanding 

mathematical concepts by exploring real world problems. 

Influence of teachers’ preparing real-life problems. Problem solving with real-life 

situations is a common technique in mathematics classrooms to make the concepts and 

procedures students learn more meaningful as well as to help students to understand how 

mathematical ideas and skills they study are useful in practice (NCTM, 2000). Teachers have to 

help students to be able to apply mathematics learnings to solve daily life problems and 

understand mathematical competencies such as representing, calculating, interpreting, justifying, 

and reasoning their ideas mathematically. Results from this study reinforced the findings of 

Aubusson et al. (2014), who highlights that teachers prefer tasks that are related with real-world 

situations when the use of technology is involved in lessons. All the participants in the current 

study emphasized the application of mathematical learning to real life problems.  

Using technology in mathematics education allows students to discuss daily life problems 

more effectively and contributes to student recognized that learning mathematics with 

technology integration is important (Siller, 2011). In this study, I found that, by linking real-life 

situations with DGS tasks, the preservice teachers were attempting to provide opportunities for 

students to explore mathematical relationships effectively. The preservice teachers wanted to 

make students know how the relationships could be applied, and then eventually students can 

improve their understanding of the mathematical concepts through exploration.  
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A substantial example can be found in Julie’s lesson plans. Julie created a real-life task to 

see how well students can connect multiple concepts. In order to do this, she recalled her 

childhood experiences of playing games and tried to connect them to create her own tasks. For 

example, the Four-Circle-Square Court Game task has a mixture of low and high level tasks with 

DGS use and paper-and-pencil setting. Julie chose the topic on purpose to meet students' interest 

in a real-world setting they may have experienced themselves. Therefore, it is recommended that 

teachers think about what their students do in schools or at home, and then consider it when 

creating or selecting tasks to motivate students. 

Preservice Teachers’ DGS Integration in Designing Tasks 

 In this section, I will describe not only how DGS is integrated in designing preservice 

teachers’ lesson plans, but also how the introduction of the black-box approach influenced their 

designs. 

Selection and creation of geometrics DGS tasks. Examination of the three participating 

preservice teachers’ lesson plans showed that they planned less tasks at a high level than at a low 

level regardless of whether they designed the lesson plans using DGS. This result is consistent 

with much of the research literature (e.g., Sherman, 2014; Stein et al., 1996; Stein & Lane, 1996; 

Stigler & Hiebert, 2004).  

 It is noteworthy that Amy reduced the number of low level tasks, especially 

Memorization tasks, and raised the number of high level tasks when she used DGS to plan a 

lesson. As Sherman (2014) claims, Amy agreed that there was a positive relationship between 

DGS use and preparation of higher level tasks. For example, as can be seen at the Exit task in 

Amy's first lesson plan, even though she was not comfortable using DGS at that time, she 

recognized that DGS would improve students' understanding of concepts for the Power of a 

Point than without technology. 
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 When the preservice teachers plan a task from the three types of DGS tasks—geometric 

construction, tracing loci, and the black-box approach, they used geometric construction tasks in 

both low and high level tasks. Other types of tasks, such as tracing loci and the black-box 

approach, were seen in high level tasks that require students' deep thinking to make conjectures 

about mathematical relationships.  

 In Amy's lesson plan without DGS use, although a textbook in this study provided 

geometric construction tasks for students to discover mathematical relationships, she did not use 

the DGS tasks in the textbook due to a lack of confidence using technology. She prepared a low 

level task by significantly reducing the chances of student's self-discovery and simply 

demonstrating the proofs on a whiteboard. In contrast, when DGS was used to Amy’s second 

lesson plan, the DGS use shifted the focus from simple representation of mathematical 

expressions to more complex exploration and examination of geometric tasks. The findings are 

consistent with Rochowicz (1996), where teachers facilitated more active learning when 

technology was integrated in mathematics lessons. 

 When teachers intend to help students follow a task’s technological procedures but do not 

know what technological difficulties might exist while designing lesson plans, they will certainly 

encounter troubles teaching the task. For example, a preservice teacher, Julie, provided tasks that 

construct a tangent line on a circle using a ruler and a compass during the Warm-up phase in the 

second lesson plan. When Julie was asked to re-construct the line during the interview, she did 

not recognize what prior knowledge students needed and how much technological knowledge 

was required to construct a tangent line on a circle. She simply thought students would use a 

mathematical property, in which the radius of a circle meets a tangent line to the circle in a right 

angle. Without a protractor, however, students could not guarantee that the angle between the 
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tangent line and the radius is perpendicular. As Stols and Kriek (2011) argue that the degree of 

teacher’s technology proficiency is the most important predictors of teachers’ successful use of 

the technology, teachers are advised to be familiar with technology and aware its limitations in 

planning mathematical tasks.  

With regard to aspects for the preservice teachers in this study to prepare high level DGS 

tasks, they considered technological tasks to allow students to try to solve them in multiple ways. 

Zbiek et al. (2007) contend that teachers put emphasis on “think out open-ended mathematics 

technology that provides students with multiple ways of solving problems and representing 

concepts” (p. 309). These actions were obviously found in DGS lesson plans from Amy and 

Julie. They planned students to solve DGS tasks in multiple different ways so that they did not 

limit the use to certain tools in DGS. Students were allowed to use all possible embedded tools 

and functions that DGS provided. In order for the DGS task to be maintained high level of 

cognitive demand, Julie and Amy either modified the task slightly to make students find 

solutions by multiple strategies or planned to ask further questions to students who use the tools 

directly. In this study, it is recommended that teachers prepare meaningful questions to keep high 

level tasks even in unexpected situations.  

DGS integration with geometry lesson plans may not be successful always. For instance, 

although Mike introduced DGS a high level task in his first lesson plan, he would fail to make 

students connect the findings of DGS tasks with the concept of the Power of Point. When he 

completed the DGS task, he did not explain anything about integrating students’ findings from 

the task with diagrams for the Power of a Point, which is displayed in the textbook. Due to the 

complexity of the diagram (see Figure 4-15), students may not understand what the diagram 

represents if further discussion was not planned. When preservice teachers set up lesson plans, it 
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is suggested that the preservice teachers have to understand why DGS tasks are necessary for 

fostering a particular mathematics concept (Guven et al., 2010; Hollebrands, 2007; Sherman, 

2012) and how DGS use can contribute student's understanding for the concept (Hollebrands & 

Dove, 2011; Hollebrands et al., 2008; Zbiek et al., 2007). 

 The current study found that the preservice teachers yet planned many low level non-

DGS tasks even in technology-enhanced lesson plans. Most low level tasks that they prepared 

were involved in Procedures without Connections tasks. The preservice teachers thought students 

should be able to solve the problems without technology use, as mathematics teachers use 

calculators in classrooms. Many research studies (e.g., Ozgun-Koca, 2010; Pierce & Ball, 2009; 

Zbiek et al., 2007) described that, although a lot of mathematics teachers and students use 

calculators to teach and learn mathematics, they mainly rely on using paper-and-pencil in many 

cases. According to Pierce and Ball (2009), some mathematics teachers still thought that when 

students use calculators for mathematics, they are learning how to use technology, not really 

learning mathematics. A similar scenario was found in this study. 

 For instance, although Julie prepared technology-enhanced lesson plans, she was 

concerned that the technology use might reduce students' learning on geometric concepts. She 

put emphasis on using traditional geometric tools first followed by exposing DGS use. She 

argued that tasks with and without technology use have to be evenly distributed for students to 

learn geometric concepts effectively. Just like Julie, all participants in this study intended to 

provide students with large portion of non-technological tasks that requires mathematics formula 

and procedures. Those low level tasks were located in most primary phases of lesson plans, such 

as Explore, Summary, and Homework.  
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 All participants in this study were concerned about the assessment, in which DGS use is 

not available. They prepared procedural tasks for students to be proficient at the assessment. For 

example, Mike and Julie claimed that they would use traditional geometry tools—e.g., compass, 

ruler, and protractor— very often because they thought the tools could benefit students' learning 

more than DGS. The preservice teachers perceived that DGS use might hinder students' learning 

sometimes. These findings deviate from the results of much of research literature (Arbain & 

Shukor, 2015; Barton, 2000; Hembree & Dessart, 1986; Saha, Ayub, & Tarmizi, 2010), where 

technology use significantly and positively influenced student mathematics achievement for most 

grade levels even in case of not allowing technology on the assessment. In particular, the results 

of a quantitative study from Arbain and Shukor (2015), who investigated the effectiveness of 

DGS use on mathematics, showed that students with learning using DGS obtained significantly 

better achievement in traditional standardized assessment than those without DGS use. The 

findings of Saha et al. (2010) would eliminate the preservice teachers’ concerns about student’s 

achievement by contending that students who learned coordinate geometry using DGS 

significantly better performed in achievement than those who were taught by traditional setting. 

 In preparing geometric proofs tasks in lesson plans, I found that the preservice teachers in 

this study were influenced by their high school geometry learning experience. They did not have 

enough opportunities of doing formal geometry proofs in high school. They mostly learned 

geometric proofs by practicing drills and memorizing proof statements in high school geometry 

class. When Mike learned geometry in high school, his teacher emphasized loose proofs and then 

students had become ‘naïve’ (Balacheff, 1988, p. 218) empiricist because the students tended to 

justify their findings by a finite number of cases. As it has been found that many high school 

students have great difficulties in learning mathematics proofs (Chazan, 1993a; Senk, 1985), all 
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participants in this study thought teaching proofs is time consuming and then seems to be 

unnecessary for high school geometry. They thought that demonstrating steps of proofs on a 

whiteboard or distributing handouts might be sufficient. 

 Although there are prevailing agreements that proofs have to be fundamental aspect of all 

student’s mathematics learning (Clements, 2003; Clements & Battista, 1992; Knuth, 2002a) and 

DGS can help students to foster reasoning (Guven et al., 2010; Laborde, 2000), preservice 

teachers still have difficulties with doing proofs and are likely to select low level tasks in a way 

that students can follow more easily. When DGS was used in lesson plans, no preservice teachers 

in this study felt the need to perform formal proofs for students because DGS provides relatively 

accurate geometric figures and measures. They agreed that the instructional method of displaying 

the proof on whiteboard and making students carry out the procedures—e.g., measuring segment 

lengths and angles—, would be sufficient. Similar findings have been reported in many studies 

(Arzarello et al., 2002; Chazan, 1993a; Jones, 2000; Allen Leung, Baccaglini-Frank, & Mariotti, 

2013), which point out that the teachers frequently justify this approach in high school geometry 

class. Many students seem to be in danger of accepting that showing multiple examples using 

DGS may be a proof work for mathematics relationships. However, some researchers (e.g., 

Chazan, 1993a; Hanna, 1989) contend that this justification can be valuable for encouraging 

students, especially when beginning to learn geometry proofs, to start discussing formal 

mathematical proofs.  

Designing tasks with the black-box approach. Researchers argue that teachers have to 

provide students tasks to facilitate affordances of their acting on the tasks (Sherman & Cayton, 

2015; Sinclair, 2003). Through DGS tasks associated with the black-box approach, students may 

fully benefit by their own interpretation and exploration of geometric invariants. In this study, 
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dragging test modality has to be accompanied to the black-box approach DGS tasks since 

students have to build a conjecture and understand the mathematical relationship is invariant 

under dragging action in DGS. The finding reinforces the results of many research studies 

(Arzarello et al., 2002; Baccaglini-Frank, 2010; Baccaglini-Frank & Mariotti, 2010; Hollebrands, 

2007; Hölzl, 1996; Laborde, 2005; Allen Leung, 2008; A. Leung, Chan, & Lopez-Real, 2006; 

Lopez-Real & Leung, 2006). The research studies argue that the dragging test is important to 

solve rich tasks because students can use the modality dragging test on geometric figures to 

check their own conjecture to see the conjecture is valid or not. Students’ actions of building 

their own conjectures, investigating invariants through dragging, and justifying the relationship 

contribute the DGS task to be high level task.  

 For example, for the second lesson plans that all preservice teachers prepared, they 

provided the black-box approach tasks that allow student to find mathematical relationships, 

such as the Secant Length Theorem and the Tangent Length Theorem, by dragging points and 

accompanying geometric objects measures in DGS figures. As Sinclair (2003) argues that task 

statements have to ‘provide affordance’ (p. 312) for students to follow the steps, the statements 

shown in the black-box approach tasks in this study consisted of minimal steps for encouraging 

student’s self-discovery.  

 The differences of the statements between technology-procedures-based task and the 

black-box approach task can be clearly found by comparing Julie’s two lesson plans. For 

example, with regard to exploring the Tangent Length Theorem, the technology-procedures-

based task, which Julie prepared in the first lesson plan, provided students with detailed 

instructions to generate geometric constructions followed by performing measures as well as to 

observe invariance under dragging. This type of the task may provide student’s thinking 
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minimally (Pea, 1985; Sherman & Cayton, 2015). In such technology-procedures-based task, 

constructing figures by drawing step-by-step procedures and statements guides students to 

deliver same results about the relationships. This study found that such technology-procedures-

based tasks—e.g., Julie’s DGS tasks in first lesson plan—are considered low level tasks as well 

as Type 1 activity (McGraw & Grant, 2005). Due to limited dragging opportunities, all students 

should have a same conjecture for the same task rather than building their own conjectures. The 

findings of this study are consistent with the results of Sherman and Cayton (2015), where DGS 

tasks had to be designed to promote students' individual observation and then to build their own 

conjectures, and claim that technology-procedures-based tasks have to be revised to be more 

open-ended. 

 In the second lesson plan where the black-box approach was introduced, Julie tried to 

engage students with more freedom of exploration without unnecessary information or 

statements in the black-box approach DGS task. She did not provide statements of the task in 

detail. The task’s statements in which the black-box approach was applied seemed to be very 

simple since exploring instructions were only located in a pre-constructed file and a worksheet. 

For this reason, the black-box approach tasks that Julie prepared may not meet with the 

suggestions from Sinclair (2003), who argues that "It [The sketch] must provide affordance so 

that the student can take the required steps" (p. 312). Instead of providing unnecessary steps in 

DGS tasks, however, Julie decided to prepare questions and hints for checking students' interim 

activity and further exploration as well as for encouraging struggling students to participate in 

the DGS tasks. Such DGS task and accompanying open-ended questions and appropriate hints 

can deliver ‘more robust experiences’ (Sherman & Cayton, 2015, p. 310) that provide student’s 

thinking in a way of high-level. As Trocki (2014) argues, by reducing written technological 
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directions related to manipulate the sketch but reinforcing mathematical prompt with open-ended 

questions, DGS tasks with the black-box approach are likely to require students to high cognitive 

demand and engage them in fostering mathematical reasoning.       

With regard to preservice teachers’ perceptions of the black-box approach, all preservice 

teachers thought that the approach is very helpful to enhance student's deep thinking by building 

their own conjectures. While two of the three preservice teachers, Amy and Mike, preferred the 

black-box approach tasks the most, Julie was most confident and comfortable to design 

geometric construction tasks because she was already familiar with designing such type of tasks. 

In addition, all preservice teachers thought those tasks were most helpful in learning geometry 

because students could have opportunities to manipulate the tasks, build their own conjectures, 

and explain them themselves. In order to give a full opportunity to tackle the task, Amy 

anticipated that students do not know the conclusive results by referring to a textbook before 

doing the task. This study suggested that teachers regularly provide the black-box approach 

tasks, in which students hardly expect the conclusion of the task in advance. This claim is also 

suggested from the study of Sherman and Cayton (2015).  

 In summary, improving teacher's knowledge of mathematics contents and of pedagogical 

skills with technology use is a key component of successful implementation of the black-box 

approach. In preparing black-box approach tasks, the preservice teachers acknowledged that 

teachers have to understand what mathematical knowledge students possessed previously. The 

preservice teachers are also required to have appropriate questioning techniques, which make 

students focus on using technology as an interpretation tool rather than a computational tool, and 

then the designated lessons are able to produce meaningful mathematical relations.  
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Preservice teachers’ concerns for preparing high level DGS tasks. This study found 

that exposure to the black-box approach could provide preservice teachers with abilities of 

designing high level tasks. Examination of their lesson plans showed that high level tasks, 

especially Procedures with Connections tasks, were prepared more and became more evenly 

distributed across lesson phases—from Warm-up to Homework—than low level tasks. However, 

Doing Mathematics DGS tasks were not sufficiently planned due to some concerns in preparing 

high level DGS tasks. Particularly, the preservice teachers were concerned about lack of class 

time, lack of teacher knowledge, low expectation on students’ mathematical and technological 

abilities, anticipating students’ giving up early, teachers’ misunderstanding of lesson goals, and 

teachers’ misjudgment of cognitive demand level. 

First, the most common concern with the black-box approach tasks is the fact that such 

tasks may require more time and a higher level of teacher’s knowledge for preparation of lessons 

than other types of geometric tasks. The preservice teachers in the current study were mainly 

concerned that they might fail to manage time successfully in their classrooms if they used such 

tasks during the class period. This finding is supported by the study of Pierce and Ball (2009), 

where teachers were reluctant to use technology in classrooms due to lack of time, mathematical 

and technological knowledge, and confidence. Interestingly, although the preservice teachers in 

the current study could provide sufficient time for high level tasks by assigning them as 

homework, neither technological tasks nor Doing Mathematics tasks were planned as homework 

assignments in lesson plans. This study advised teachers to consider assigning high level DGS 

tasks more often to foster student thinking by providing sufficient time to tackle the task. 

Second, Amy’s first lesson plan reflected her low expectations in students’ abilities in 

mathematics and technology use. She initially thought the concept of the Power of a Point was so 
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abstract that not all students needed to know the property. Amy allowed only fast learners to try 

this high level task, which required manipulating figures as well as proving work. These results 

are consistent with those of other studies (Knuth, 2002b; Steele & Cervello Rogers, 2012), where 

teachers are more likely to provide proofs activities only for high-achieving students than they 

are to consider these activities a primary practice for all students’ mathematical learning. Amy 

also mentioned that justifying a student's own conjecture with the help of technology seemed to 

be better than doing so with formal proofs because proofs working might be too abstract to 

students.  

Similarly, all participants in this study seemingly hesitated to prepare black-box approach 

tasks in their lesson plans because of the higher cognitive demand necessary for the black-box 

tasks in general, which they expected might frustrate students easily. For example, although 

Mike assigned the Doing Mathematics task as a homework in the first lesson plan, he removed 

the task from the second lesson plan because he thought the task was too complicated for 

students and was concerned that they would give up early.  

Additionally, all preservice teachers agreed that they only demonstrated proofs on a 

whiteboard and did not assign them because they felt many students might not be ready to 

perform the rigorous proofs that they had prepared. These findings are consistent with the results 

from many research studies (Desforges & Cockburn, 1987; Stein et al., 1996; Watson & Ohtani, 

2015), which argue that teachers sometimes reduce the cognitive demand of tasks for students 

who avoid and give up rich tasks. As teacher education programs train preservice teachers to be 

able to recognize students’ prior knowledge and misconceptions more accurately as well as to 

prepare more appropriate questions, the programs should encourage these teachers to not give up 

planning high level tasks.     
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 The last concern is that preservice teachers misjudge the cognitive demand level. Amy 

thought that mere involvement of DGS to a low level task may turn it into a high level task. For 

example, in the Warm-up task in Amy's second lesson plan, she provided a task for students to 

draw geometric objects using DGS and then define them in their own words. Even though she 

classified it as a high level task, the task is obviously a low level task because it only needs 

recalling previous knowledge. 

Another example was found in Amy’s first lesson plan, where she asked students to draw 

each of two separate cases of the Secant Length Theorem in the textbook—depending on if the 

point P is located in the exterior or in the interior of a circle—and made them write the 

expressions using mathematical notation. Such a task is considered a Memorization task in this 

study. Findings from Amy’s preparation of the low level task reinforced the results of Van 

Dooren, Verschaffel, and Onghena (2002), where preservice teachers tend to use equations more 

often to solve word problems than to apply mathematical reasoning skills. However, frequent 

exercise of these types of tasks might help students think conceptually and build their ideas they 

will meet in real world, which is why Malisani and Spagnolo (2009) recommend that students 

need to have more opportunities to translate between words and equations, and vice versa. 

Implications of the Study 

This study has important implications for the way that in-service mathematics teachers, 

teacher educators, and textbook publishers organize mathematics teaching. As the use of DGS 

software becomes common in mathematics classrooms, mathematics teachers have to know what 

kinds of software are available and how to integrate that software in classrooms. They can use 

the findings from this study to make decisions about types of DGS tasks for classroom 

instruction. When mathematics teachers prepare DGS tasks using the black-box approach, they 
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can provide students with relatively ample time to explore mathematical relationships because 

DGS sketches of the tasks are constructed in advance and given to students without the need for 

procedural geometric construction. While students work through the tasks, they can build their 

own conjectures, investigate invariants, and justify conjectures by dragging and measuring 

geometric objects.  

The results of this study can provide mathematics teachers with ideas for revising low 

level technology-procedures-based tasks into high level DGS tasks. Mathematics teachers can 

design high level tasks if they integrate the black-box approach DGS tasks with real life 

situations. In order to successfully maintain high level cognitive demand tasks, mathematics 

teachers have to pose open-ended questions to be discussed as a class. Even though the black-

box approach DGS tasks were limited to geometry lesson planning in this study, various types of 

DGS tasks also can be applied to other mathematics subjects such as algebra, trigonometry, and 

even calculus. 

 In order to effectively introduce advanced mathematical technology to preservice 

teachers, teacher educators need to explore classroom technology issues—both benefits and 

problems— during mathematics education course work. In the beginning of this study, 

preservice teachers did not feel comfortable or confident designing DGS tasks. As the preservice 

teachers received training, however, their confidence integrating DGS tasks increased; 

accordingly, they intended to provide students with real-life DGS tasks that can be solved in 

multiple different ways. This finding suggests that educational methods courses have the 

potential to increase preservice teachers’ abilities to recognize the embedded tools and functions 

that DGS can provide.  
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In order to implement the black-box approach successfully, it is critical that teachers are 

prepared to ask meaningful questions and provide scaffolding for students. Preparing meaningful 

questions develops over time. Therefore, unless they have sufficient experience interacting with 

students’ responses, preservice teachers may not be prepared to engage high level thinking.  

All preservice teachers in this study agreed that the four-column lesson format provided a 

useful structure for preparing meaningful questions. The four-column lesson plan format 

includes students’ prior knowledge, teachers’ questioning and corresponding expected responses 

from students. Well-preparation of those components in the format are positively correlated with 

increasing the level of cognitive demand for mathematical tasks. Adoption of the four-column 

lesson plan format in teachers’ lesson planning is useful to conduct inquiry-oriented lessons that 

begin with a mathematics task and help students' work on the task, and encourage final 

discussion for solving the task. When teachers planned their lesson plans, the four-column 

format could help them assess students' thinking in advance because the format could prompt the 

teachers to consider what kind of mathematics knowledge was necessary for students to work on 

the tasks and how the students respond to the tasks they prepared. Introducing the four-column 

format to teacher education programs would help educators think about the differentiation 

process, and then they were able to carefully about meaningful questioning and hints for the 

students who may have difficulties to the tasks. 

Preservice teachers in the current study reported difficulties understanding and teaching 

the relationships between circles and lines described in the CCSS-M (CCSSI, 2010) and the 

PSSM (NCTM, 2000). The CCSS-M suggests that high school students have to learn 

mathematics rigorously in order to take more advanced courses in colleges and apply the 

knowledge professionally (CCSSI, 2010). Taking into account these findings, teacher educators 
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have to prepare preservice teachers with strong mathematics content knowledge in order to 

design and implement the high level tasks they will encounter in schools.  

Textbook publishers also can use the findings from this study to design high level DGS 

tasks. Because teachers may not easily find high level DGS tasks in textbooks, it is desirable to 

include high level tasks and more support for technology. Textbook publishers have to develop 

and publicize high level DGS tasks for teachers to be able to share their experiences and give 

feedback. When textbook publishers include high level DGS tasks in textbooks, they provide 

specific guidelines for teachers to help students connect those DGS tasks to formulate 

mathematical conjectures through self-discovery.     

For future researchers, a couple of aspects of this study can be further investigated. This 

study contributes to find factors that influence preservice teacher’s lesson planning for high level 

geometric tasks with DGS use. Even though it has been found that teachers’ knowledge is a 

major component when teachers select high level DGS tasks, the participants’ mathematical 

content knowledge and pedagogical knowledge were not explicitly measured in the current 

study. In order to examine the effectiveness of high level DGS tasks, including the black-box 

approach, pre- and post-tests will be conducted by controlling participants’ knowledge by using 

the  frameworks of technological pedagogical content knowledge (TPACK; Mishra & Koehler, 

2006) and mathematical content knowledge for teaching (MKT; Hill, Blunk, et al., 2008; Hill, 

Rowan, & Ball, 2005; Hill, Schilling, & Ball, 2004). In order to measure teachers’ knowledge 

about geometry, participants’ Van Hiele levels (Hiele, 1986; Usiskin, 1982) also can be 

examined and controlled. Level changes of cognitive demand for planned tasks will be also 

addressed when participants’ lesson plans with DGS use is implanted. Finally, further studies 
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also can address to examine the ways that teachers pose questions when they use DGS in 

teaching mathematics.  

Limitations of the Study 

 Limitations of this study include the small number of participants and duration. For this 

study, I sought secondary mathematics preservice teachers because I believe they have to begin 

preparation of technology integration for meaningful mathematics teaching. I tried to recruit 

participant when I was shadowing the Methods course of high school mathematics for one 

semester. I had a difficulty acquiring sufficient number of participants because only three 

preservice teachers were registered in the course at that time. Fortunately, however, all of the 

three preservice teachers agreed with willingly participating in the study.  

In addition, the participants of this study was assumed to be able to use DGS flawlessly 

in designing high school geometry mathematics since I thought all of them already learned DGS 

use in prerequisite courses. However, I found that a preservice teacher was not required to take 

the prerequisite courses because she was a graduate student for Science Education. I also found 

that all participants were not familiar with the specific geometry topic subject I chose. Due to 

possible lack of experience with DGS use accompanying with an unfamiliar mathematics content 

may affect to the participants’ designing high level DGS tasks.  

Furthermore, teacher’s knowledge about mathematics content, pedagogy, and technology 

was not measured explicitly although the factors were discussed. Finally, this study only focused 

on designing lesson plans without implementation. Thus, although it has been revealed that many 

high level tasks in setup phase would turn into low level tasks frequently, this study assumed that 

the participants’ lessons plans would be implemented as they described in the lesson plans.   
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Technology with GeoGebra 

START:  

Go to http://www.geogebra.org  Select Download option from menu  Select Java Webstart 

SET 1: Basic (Use of Construction and Dragging Tool) 

Practice 1: Constructing an Equilateral Triangle 

Goal: Be familiar with using circle tool, measuring interior angle of a polygon and length of 
segments. 

The idea is to use the intersections of two circles and the two centers to form triangles. 

 

1) To hide the Coordinate axes for geometry activity, click 
show/hide axis below Graphics. 
    

2) Optional) To hide the Algebra panel, click View  Select 
and uncheck Algebra. But I recommend you to keep 
Algebra panel open to manage object properties easily later.  

3) Construct 𝐴𝐴𝐴𝐴���� by using Segment between two points .    
If the labels of the points are not displayed, click the Move 

button , click right mouse button at each point and click 
Show label from the context menu or highlight the mark of 
the point in Algebra panel.   

4) Click the Circle with Center through Point .  
 Construct ⊙(𝐴𝐴,𝐴𝐴𝐴𝐴)   Construct ⊙(𝐵𝐵,𝐵𝐵𝐵𝐵).  
Note that ⊙(𝐴𝐴,𝐴𝐴𝐵𝐵) represents a circle A with a radius AB.   
 

5) Select New Point button  and move a point to an 
intersection of two circles ⊙A and ⊙B. When the circles are 
highlighted, select the intersection point of the circles and 
name it as C.  

6) Construct 𝐴𝐴𝐴𝐴���� and  𝐴𝐴𝐴𝐴���� with Segment between two points 

. 
 

7) To hide the two circles, right click each object and click the 
Show Object option to uncheck it. Or unmark the object in 
Algebra panel.  
 Points A, B and C form an equilateral triangle. 
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8) Using the Move button , drag the vertices of the 
triangle. 

 
Question:  What do you observe when you move points A, B, and C? 
 
 
 
 
 
 
 

9) Display the interior angles of the triangle. Using Angle tool 

, select three points or two segments of the triangle. 
Note that the angle measures are shown as interior or 
exterior angles depending on the direction of points. Usually, 
the clockwise selection shows the interior angle.   

 
Question: What do you observe? Move the vertices of the triangle. 
Is your observation still the same?  
 
 
 
 
 

10) Verify the length of the sides using Distance or Length tool 

. Note that the lengths of the sides of triangle have 
already shown in Algebra panel.   

 
11) Save your file as “Practice-1.ggb” and submit it to the 

dropbox folder, Technology with GeoGebra, in ICON.  
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Practice 2: Constructing a Right Triangle 
 

Goal: To be familiar with using the perpendicular line tool and the transformation tool.  

In this activity, we are going to use the Perpendicular line tool to create right triangle ABC where 
angle B is the right angle.  

1) Select Segment between two points  and construct a 
segment AB. 

2) Select Perpendicular Line tool . Select the point B and 
segment AB to construct a perpendicular line to segment AB 
passing through B.  

3) Select New Point tool . Create a point C on the 
perpendicular line.  
 

4) By connecting B to C and A to C with the segment tool, 
construct 𝐴𝐴𝐴𝐴���� and 𝐵𝐵𝐵𝐵���� to create a right triangle ABC.  

5) Select Move button .  
Hide the perpendicular line by clicking right mouse button on 
the perpendicular line and unchecking Show Object or by 
deselecting highlight of perpendicular line on Algebra panel.  

6) Use Angle tool  and display the interior angles of the 
triangle. 
 

 
 
 
 
 
 
 
 
 
 

 

Extending the exercise, we are going to construct an isosceles right triangle by using rotation 
tool.  

1) Select Segment between two points  and construct a 
new segment DE at right side of above construction.  
 

2) We are going to rotate 𝐷𝐷𝐷𝐷���� with center of E by 90° 
colockwise. Select Rotate Object around Point by Angle 

tool . Select 𝐷𝐷𝐷𝐷����,  
then point D, and enter 90° and select clockwise option. 
 

3) Unselect the point E’ at Algebra panel and connect a 
segment D to D’ to create an isosceles triangle by using 

Segment between two points  . 
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4) Use Angle tool  and display the interior angles of the 

triangle. In addition use Distance or Length tool  to 
measure 𝐷𝐷𝐷𝐷���� and 𝐷𝐷′𝐸𝐸�����.    
 

5) Save your file as “Practice-2.ggb” and submit it to the 
dropbox folder in ICON.  
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Activities for SET 1 

Activity 1 Construct the bisector of an angle AOB (Adopted from Benson et al., 2009). 

1) Create three points A, O, and B. Draw rays 𝑂𝑂𝑂𝑂�����⃗  and 𝑂𝑂𝑂𝑂�����⃗  to any ∠𝐴𝐴𝐴𝐴𝐴𝐴. 
2) Construct  ⊙(𝑂𝑂,𝑂𝑂𝑂𝑂).  

Name ⊙(𝑂𝑂,𝑂𝑂𝑂𝑂)  ∩  𝑂𝑂𝑂𝑂�����⃗ = {𝐶𝐶}, which is the intersecting point between a circle O with 
radius OA and a ray 𝑂𝑂𝑂𝑂�����⃗ .  

3) Construct  ⊙(𝐴𝐴,𝐴𝐴𝐴𝐴) and ⊙(𝐶𝐶,𝐶𝐶𝐶𝐶). Name ⊙(𝐴𝐴,𝐴𝐴𝐴𝐴) ∩⊙(𝐶𝐶,𝐶𝐶𝐶𝐶) = {𝑂𝑂,𝐷𝐷}. 
4) Construct 𝑂𝑂𝑂𝑂������⃗ . 
5) Save your file as “Activity-1.ggb” and submit it to the dropbox folder in ICON.  
 
Sample Construction: 

 

Question: Prove 𝑂𝑂𝑂𝑂������⃗  is a bisector of ∠𝐴𝐴𝐴𝐴𝐴𝐴, that is, 𝑚𝑚(∠𝐴𝐴𝐴𝐴𝐴𝐴) =  𝑚𝑚(∠𝐵𝐵𝐵𝐵𝐵𝐵).  
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Activity 2 Circle-and-Square Intersections 

 

There are three possible types of intersections between a circle and a square, side-tangent, side-
crossing, and vertex intersection (Blair & Canada, 2009).  

 

Do:  

1) Open the file “Activity-2.ggb”.  
2) Construct a circle with 1 side-tangent, 2 side-crossing, and 2 vertex-tangent intersection 

points to a square ABCD. 
3) Save your files and submit it to the dropbox in ICON.   

 

Question: Write down the coordinate of the center and the length of radius of the center.  

 
 
 

Question:  Explain briefly how you picked the center and the radius of the circle.  
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Activity 3 Treasure hunts  

The following story is adapted from the article of Conteras and Martinez-Cruz (2009):  

 
Dr. Indiana Jones obtained a written set of directions to the location of a hidden treasure in 
an isolated desert island, which is called SAHARA Island. The directions are written as:  
 

In the middle of SAHARA Island, there is a lonely oak, a lonely pine, 
and an old cottage. Walk from the cottage to the oak and count steps. At 
the oak, make a 90° turn to the right. Walk the same number of steps 
and put a spike in the ground. Return to the cottage. Walk towards the 
pine counting the steps. At the pine, make a left turn and take the same 
number of steps. Put a second spike in the ground. Behold! The treasure 
is halfway between the spikes. 

 
The man found the island but to his dismay the cottage was gone. Frantically, he began 
digging everywhere randomly but without any luck. Finally, he gave up and returned home 
with empty hands, so the treasure may still be there. 
 

 

1) Open the file “Activity-3.ggb”. 
2) Try to find the treasure by using GeoGebra.  

Question: How can you determine the location of a cottage? 

 
 

 

Question: What is the location of the treasure? Express it in the form (x, y).  
 

 

3) Drag the point representing the cottage you have picked and see what happens.  

Question:  What do you observe when you drag the point? Describe your findings.  
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4) Save your file and submit it to the dropbox in ICON.  

Question: Justify your findings. Are they mathematically correct? Explain why or why not.   
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SET 2: Exploring Loci with Tracing 

The trace feature of GeoGebra traces the path of an object when it is dragged. This feature 
exploits the big advantage of GeoGebra over static paper-and-pencil environment.  Furthermore, 
when students observe the geometric object generated by the trace feature, they may be 
motivated to see the need for a proof (Galindo, 1998).  

Activity 4 Two Overlapping Circles  

Read the following task: 
Given two overlapping circles, ⊙𝑂𝑂1 and ⊙𝑂𝑂2, consider the set of points that have the same 
distance to both circles. In other words, the point A and B are on circles ⊙𝑂𝑂1 and 
⊙𝑂𝑂2respectively. Suppose the point P is chosen such that AP = BP (i.e. d1 = d2) always, what 
kind of geometric shape can be formed with the set of all such points P?  
 
1) Open the file “Activity-4.ggb”.  

2) Select Move button  and drag the point A along the circle 
⊙𝑂𝑂1. Can you see shape of the set traced out by the point P as A 
moves? 
 

3) Locate the mouse cursor on P. Click right mouse button and select 
Trace On. 
 

4) Move point A along the circle ⊙𝑂𝑂1 again and see what happens. 
What kind of geometric shape can you see? 
 

5) There are two slider bars, r1 and r2, which represent the radius of 
⊙𝑂𝑂1 and ⊙𝑂𝑂2respectively. Is it a special case with specific 
values of r1 and r2?  
To confirm your shape, change the values r1 and r2 on Sliders and 
repeat steps 4.   

6) To see the loci of the point P, choose Locus tool  and select 
the point P followed by the point A.  

 
 
 

 
 

 
Question: Describe your conjectures based on your observations. 
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Question: Explain why the loci of point M generate the shape you have noticed. (Hint: Recall 
the definition of the shape you found.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Question: Do you observe any other interesting relationships among objects in this activity? 
Describe them.  
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SET 3: The Black-Box Approach 

What is black-box approach?  

In black-box tasks with dynamic geometry software, teachers should prepare a geometric sketch 
in advance so that the students do not know how the sketch was constructed as far as the teacher 
knows. Using tools in dynamic geometry software, students are asked to investigate the sketch to 
meet a certain condition with dragging objects, build and justify a conjecture, and finally prove 
their own conjecture. Teachers can motivate students to give geometric proofs by using black-
box tasks with dynamic geometry software (Galindo, 1998; Hollebrands, Laborde, & Sträßer, 
2008).  

Activity 5 Black-box Task #1 (adopted from Marrades and Gutierrez, 2000). 

A, B, and C are three fixed points (see the figure at right).  
What conditions have to be satisfied by point D for the 
perpendicular bisectors to the sides of ABCD to meet in a single 
point? 

1) Open the “Activity-5.ggb”.  
 

2) Drag the point D to meet the condition. 
 

3) Find the relationships among geometric objects.  
(Hint: Measure angles at each vertex or distances of 
segments.) 
 

4) Make a conjecture about what the condition on D is. 

 

 

 

5) Justify your conjecture.  
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Activity 6  Black-box Task #2 (adopted from Keyton, 1997) 

In Exercise 1, we considered the perpendicular bisectors to 
the sides of ABCD. In this activity, we are going to 
investigate the angle bisectors of a quadrilateral ABCD.  

1) Open the file “Activity-6.ggb”.  
2) Depending on the shape of a quadrilateral ABCD, the 

intersections of the angle bisectors may or may not 
generate a quadrilateral, such as EFGH.  
Drag points A, B, C, or D and fill out the below: 
  
• If the quadrilateral ABCD is a parallelogram, the quadrilateral EFGH becomes a(n) 

_________________________. 
 

• If the quadrilateral ABCD is a rectangle, the quadrilateral EFGH becomes a(n)  
_________________________. 
 

• If the quadrilateral ABCD is an isosceles trapezoid, the quadrilateral EFGH becomes a(n) 
_________________________. 
 

3) In general, a quadrilateral such as EFGH is generated by the bisectors of the angles of a 
quadrilateral ABCD, what kind of a quadrilateral will be? Make your conjecture after 
examining the measures.  

 

 

 

 

4) Justify your conjecture in Step 3).  
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5) Similar as Activity 5, assume the vertices A, B, and C of a quadrilateral to be fixed. What 
conditions have to be satisfied by point D for the bisectors to the angles of ABCD to meet in 
a single point? Make your own conjecture.  

 

 

 

 

 

6) Justify your conjecture in Step 5. 

 

 

 

 

 

 

 

  

7) Do you observe any other interesting relationships among objects in this activity? Describe 
them.  
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219 
 

Pre-Interview Protocol 

Background Information 

1. How long have you been in your program at the university?  

2. Currently, what programs are you looking for, such as degrees or certifications?  

3. Do you have any teaching experience? If so, where did you teach? What subjects? How 

long? 

Learning Mathematics as a Student 

1. Please tell me about your learning experiences with mathematics as a student both in high 

school and in college. How about geometry learning experiences?  

2. When you learned mathematics, was any technology involved? If so, what kinds of 

technology were used? How were they utilized in learning mathematics? 

3. Based on your learning experiences in mathematics and/or technology use, what aspects 

supported or hindered your learning?  

a. If you had any difficulties in learning geometry, how did you overcome the 

difficulties? 

b. Do you feel comfortable learning geometry now? 

4. How do you think high school students learn geometry best? 

Designing Geometry lesson Plan 

1. Now, we are going to talk about your lesson plan. What types of things did you think 

about when you planned the geometry lesson plan? Why? 

2. How well are your mathematical goals described in your lesson plan? 

3. Do the tasks that you selected or created meet your intended lesson goals? 
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4. What difficulties do you expect students may encounter during your lesson? 

5. The Mathematical Task Framework was introduced during the Methods class.  

When you designed your lesson plan, did the framework influence your creation or 

selection of geometric tasks? If so, how? If not, why not? 

6. What do you think a mathematics teacher’s role in a classroom is? 

Post-Interview Protocol 

Designing a Geometry Lesson Plan with Technology 

1. When you designed your lesson plan with technology, do you think the Mathematical 

Task Framework influenced your creation or selection of the geometric tasks? If so, how? 

If not, why not? 

2. Please tell me about your experiences teaching with technology.  

a. Have you taught mathematics with graphic calculators before? 

b. Have you taught mathematics with dynamic geometry software (for example, 

GeoGebra or Geometer’s Sketchpad) before?  

3. What are your feelings about teaching with technology? 

a. How comfortable are you with teaching with technology in general? 

b. How comfortable are you with teaching with dynamic geometry software? 

c. If you have a teaching job in a high school and computers are sufficiently 

equipped for all students, will you use dynamic geometry software for geometry 

class? If so, why? If not, why not? 

d. What would increase your comfort level with dynamic geometry software?    

4. When you decide to teach mathematics with using technology, is there anything that may 

change your visions of teaching and learning mathematics? 
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5. What do you think about a mathematics teacher’s role in classrooms when technology is 

involved?  

6. Now, we are going to talk about your second lesson plan, which is technology-enhanced. 

How well are your mathematical goals described in the lesson plan? 

7. For your second lesson plan, do the tasks that you selected or created meet your intended 

lesson goals?  

8. When you were planning the technology-enhanced geometry lesson plan, what types of 

things did you consider? Please explain why.  

9. How do you expect the levels of cognitive demands for the tasks to differ with and 

without technology?  

10. When you setup the geometry lesson plan with dynamic geometry software, do you 

expect planning more, or less, than you have in the past (without technology)? 

11. During the Methods class, you learned three types of geometric tasks—geometric 

construction, loci with tracing, and the black-box approach.  

If you are planning a geometry lesson plan, what types of things do you think about? 

Please explain why. 

a. Which one do you like the most? Why? 

b. Which one do you think is most helpful? Why? 

12. How does the black-box approach task help geometric tasks increase their cognitive 

demand levels? 

a. Do you think the black-box approach task allow enough opportunities for students 

to choose their own strategies? How? 
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b. Do you think the black-box approach task encouraged students to build and justify 

their own conjectures?   

13. If you decide to use dynamic geometry software in setting up a lesson plan again, what 

challenges do you expect to confront in encouraging students to engage in mathematical 

discussions?  

 
 


