Intro
 I’m going to put this link to our site up first, so you can transcribe during the presentation, if you get bored. I’ll be talking today about our process at Iowa moving from a low-tech experiment in crowdsourcing to a more mature platform that has allowed us to expand into new content areas, improve user experience, and streamline our workflows. We’ll start out with a quick tour of the site, then talk about some of the customizations we made to the Scripto and Omeka platforms to scale the software up for library use. And since this is a contentdm audience, I want to focus on some of the challenges in reusing metadata and content outside of the repository, so I’ll be talking about a tool we created to make metadata harvesting and crosswalking easier.
Tour
So, DIYHistory is an expansion of our Civil War Letters and Diaries project in that we have expanded the scope of our content and are also encouraging users to tag and comment on historic photos in Flickr. But I’ll be talking primarily about the transcription platform.
We click on Transcribe which takes us to our transcription home. From here we can either jump right into transcribing an item in a collection or we can view all of the items in a collection first. We choose an item, then we’re presented with a choice of pages to transcribe. Completed pages are manually finalized and closed for transcription, Needs Review pages have been transcribed or edited and are awaiting further improvement or approval, and the green pages have not yet been started. We choose a page, enter our transcription in the box and save edits. And that’s it.
Background
A little background about this project. We started the Civil War Letters and Diaries Project in May of 2011 (and when I say ‘we’, I mean other colleagues on the team as I only got on board about a year ago). We started this as an experiment in May 2011, using PHP to dynamically generate content from contentdm and web forms for submitting transcriptions to us by email. We would receive the email, proofread, and re-enter into contentdm, at which point the transcription would display on the site and the page would be tallied as completed. This worked well for about a month, as we did not have a significant number of visitors, but the following month, we were featured on Reddit and the traffic crashed our site. The dust settled shortly after, but we were still getting a respectable amount of visitors, enough to prove how easily this system could be bottlenecked. (And that’s Christine dealing with the backlog of transcription emails after.) The project then began to consume staff and student worker time, and what was once a cheap tech experiment was now a commitment to user engagement.
Requirements
So we acknowledged this was a success and decided to commit resources to bringing it up to production-scale. As we were looking at software solutions, we kept the following requirements in mind. We liked the simplicity of our experimental site and wanted to keep it straightforward and easy to use. We wanted to be able to easily add new collections with little effort, especially on the part of IT, we wanted to dedicate the staff time that had been suddenly consumed by proofreading and data entry to other tasks and projects. On the user side, we wanted users to be able to see their transcription right away (there was the occasional duplication of effort with the old system as transcriptions wouldn’t show up on the website until days after they’d been transcribed.) We also wanted to encourage users to review and correct each other’s work so that it would more of a self-sustaining community effort.
Scripto/Omeka
We settled on Scripto, the open-source community transcription tool, developed by the Center for History and New Media at George Mason University. Scripto is built on MediaWiki, the same software that powers Wikipiedia, and it works a plugin to your content management system, if that content management system happens to be Omeka, Drupal, or Wordpress. Since there is no plugin for CDM we had to choose a CMS for housing the content we wanted transcribed. We went with Omeka, mostly because it was designed with digital collections in mind. Omeka is built on the Zend MVC framework and the LAMP stack.
Some of the benefits of using the software combo satisfied our requirements directly. In addition, we liked that users could track their own contributions should they create an account, and they could also bookmark pages on a watchlist, which comes in handy if you can’t decipher a word but figure it out later after learning more from the context. And on the admin side, it is easy to monitor activity, both by viewing the recent changes and with visual tools like version diffs.
Drawbacks
While we were happy to get all of these benefits out of the box, we found a few drawbacks with this solution. One major drawback was that we would have to duplicate our content and metadata in another CMS rather than just using the API to generate it dynamically as we did with the old site. But first I’m going to talk about the customizations that we had to make to both Scripto and Omeka to make the platform worth our while in a library production environment.
Theme
 To keep our site simple and easy to use, we wanted to create a theme that was uncluttered and intuitive. Omeka has 13 or so freely available themes to choose from, but it’s expected that you’ll customize a theme or create your own to meet your needs. We chose a very simple theme and customized it heavily, including hiding much of the navigation, so we could focus mainly on the transcription and not on the content management side of Omeka. I won’t talk a lot about what we did with theming and navigation, but I’ll give just one example of a customization we made: out of the box, Scripto will display the pages to be transcribed as a list of links to the respective transcription pages. We instead opted to display thumbnails, so that we could display page completion status and so users could choose at a glance what page they’d like to start transcribing.
 Functionality
We were a bit surprised to find that Scripto did not have any status or progress display functionality out of the box. Using Scripto’s defaults, the user needs to click all the way in to the transcription page to tell if a page has been started or completed. We wanted users to be able to easily get to transcribing or correcting without a lot of clicking around, so we added both page-level status and item progress. This turned out to be quite a bit more work that we imagined, but we think it was worth it to get a much more user-friendly site.
We also hid some features to keep it simple, to manage quality, and to incentivize participation. One example of a feature we hid from the public is the ability to finalize transcriptions. (If you’re familiar with MediaWiki, this is the same as “protecting” pages.) We currently have this feature limited to administrators, but we’ll be deputizing some of our power users this week to see how that affects quality. So this is what the anonymous user sees, and this is what a deputized user will see. You’ll also see this ‘watch page’ button. This feature is available to all users who have created an account and are logged in.
Import/export
We had to make some major changes to the way Omeka handles import and export in order to use the software efficiently in a library environment. As I noted earlier, we can’t pull our contentdm images and metadata directly into Omeka, so we must harvest from CDM and upload to Omeka. Thankfully Omeka offers a batch import tool called CSV Import, but unfortunately it only uploads item-level metadata, so for metadata like page labels or existing transcriptions or ocr, you have to add it manually. We have over 18,000 pages in Scripto, so this was obviously not an option. So, we customized the plugin to add the metadata in two stages, first a csv file of item-level metadata and then a csv of the page-level metadata.
We also wanted users to be able to review and correct incomplete transcriptions from the old site and also OCR for some of our typescript pages. This was a problem with the out-of-the-box configuration since the Scripto database would only pull the page label metadata from the Omeka database when it initialized transcription pages, not existing transcriptions. We had to customize the Scripto plugin to get it to pull that data in.
Another feature lacking in both the Scripto and Omeka software was easy data export. There are a few XML export options, but you can only export by item, and you would need to then run it through some sort of transformation to get an easy to read report. There is a Reports plugin, but it only includes options for exporting in html and pdf. We’re currently working on adding a csv export specific to our needs, so that we can export data in a format that will make reingest back into contentdm a little easier.
Setting content free
Up to this point I’ve been talking about our transcription project, but we’re also working on a few other projects using content outside of contentdm, we’re using flickr for tagging and commenting historic Iowa City photographs—we’re pulling a lot of metadata from those records and batch uploading them. We’re also working on a pilot of OpenGeoPortal, which is a discovery tool for geospatial data. We’ll by trying it out with some of our historic county maps. We also want to make our transcription data available for download, so we’re looking into solutions for serving that up. In working with all of these projects, I’ve seen some common challenges in repurposing metadata, so in dealing with metadata reuse issues in the transcription project, we ended up working on a solution that would help us reuse metadata in any context.
Metadata challenges
Some of the major challenges we found in this and other projects were: keeping track of content—how do easily keep track of what we put where? For the transcription project we’re just making a note in a hidden field, but it’s not the ideal solution. Related to that, we want to create meaningful identifiers in new contexts, so it’s easy to connect content back to the contentdm records, especially when we’re separating single images from the context of compound objects, which has been the case with some of our historic images in flickr. We also sometimes want to keep that context with the digital collection and analog collection. Finally, we’ve ramped up our digitization and metadata production so that we now will put a whole archival folder into a compound object with minimal description, so navigating those compound objects to get items out for reuse can be a bit of a struggle sometimes.
For identifiers, for the time-being at least, we’re just using alias plus item id to track items and alias + item id + page pointer to track pages. This works well for our Omeka installation, particularly when we need to search for a specific item on the admin side.
For the transcription site, we pull both item and page-level metadata. At the item-level, we use a python script to pull or generate the following metadata using the Api and here is what we pull or generate at the page-level. We then generate two csv files for item-level metadata and page-level metadata and upload them using the CSV Import tool I mentioned earlier. If you’re exporting metadata for reuse, then maybe this is a workflow that looks familiar to you. Or maybe you export OAI records and run some transformation on that data. We were getting tired of writing one-off scripts from scratch for every metadata reuse project and wanted to make the process a little more modular.
So for this project we developed a python module that you can import into your script to make working with the version 6 Api a little easier. It’s called pycdm and you can find it on github. I won’t get too deep in the code, but I want to give you a taste of what it does and if you don’t code or are new to programming, I hope I can show you how easy it is to get started working with python objects.
So you’d normally import the module into the program you’re writing, but for these examples I’m going to pretend I’m working interactively with pycdm in the python interpreter. We’ll start by importing the pycdm module, and after that we’ll get all of the metadata and structure for an item. So we create a variable called letter and pass the collection alias (in this case ‘cwd’) and the item id. The item function makes a few api calls, fetches the descriptive metadata and the compound object structure and packages all of that into a python Item object. So now that we’ve got all of that data packaged up nicely into our letter variable, we can dig into the attributes of that. Let’s take a look at the title which is in the info attribute. We can see the reference url by calling the refurl attribute. Here’s the finding aid url (I know the field nickname is called ‘findin’). Now let’s get the page labels for all of the pages in this object. So for each page object in the pages attribute (which is a list of page objects), let’s get the page label attribute. And that gives us a list of the labels. Let’s do the same for file urls.
So, again, this is a work in progress. I’m fairly new to python, so I would love to get feedback from on if you find this helpful, how to improve it, what features you’d like to see. I’d love to hear from you.
[bookmark: _GoBack]So we’ve been live with the transcription site for about a month now, but we don’t have everything figured out yet. Here are just some of the challenges we still need to deal with in this and other projects.
