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In t r o d u c t io n

An analogy is often used to explain an unfamiliar phenomenon 
in terms of a better known counterpart. In particular, if two physi
cal systems are described by the same mathematical relationships, 
quantitative results for one system can be obtained by studying the 
other system as an analog. Consequently, the physical system which 
performs the numerical calculations using analogous variables of 
the prototype system is known as an analog computer.

For inviscid irrotational fluid motion [1], in which the tangential 
stress on a fluid element due to viscous shear is absent, the velocity 
component in any direction can be expressed as the corresponding 
space derivative of a velocity potential <j>. This type of flow, gen
erally known as potential flow, is described mathematically by the 
equation

V 2 <£ =  o (1)

where y 2 represents the Laplacian operator

d2 d2 d2̂  

d x 2 d y 2 dz2

More generally the potential satisfies

div  (k  grad  </>) =  o (2 )

where k  is the permeability coefficient of the flow field, and is taken 
as unity for fluid motion in free space.

Although water, the fluid which is of primary concern to hy
draulic engineers, cannot be considered as inviscid, for many flow 
conditions where the thickness of the laminar or turbulent bound
ary layer due to viscous shear between the fluid and the flow bound
ary is thin as compared to the geometrical size of the flow boundary 
under investigation, it is generally safe to assume tha t the flow 
velocity at the outer edge of this boundary layer is essentially tha t 
due to potential flow, and the pressure on the flow boundary is the 
same as tha t outside the boundary layer [2]. This therefore forms 
the basis upon which potential flow theory can be applied to some 
problems which involve the study of pressure distribution along 
solid boundaries. Examples of fundamental importance in hydraulic



engineering are: designing boundary profiles that will avoid or 
minimize the destructive phenomena of cavitation, such as the in
vestigation of boundary transitions for flow inlets and contractions ; 
and testing profiles for head forms and hydrofoils. A second 
type of problem that can be treated as potential motion is the seep
age type of flow in which the fluid acceleration is negligible so that 
the velocity potential can be considered as equivalent to the force 
potential; tha t is, 0 is equal to pressure head plus elevation head

y

The gradient of this potential times the permeability coefficient k  
of the soil bed is the flow velocity in the corresponding direction

Un =  —  k - ^ -  (3)
dn

For a number of potential flow problems which involve simple 
boundary values the exact mathematical solutions can be determined, 
but for most problems tha t are of practical interest the boundary 
values are too complicated for obtaining solutions in the orthodox 
manner. Consequently, the integration of Eq. (2) is generally 
carried out by the analog method because of the ease and simplicity 
with which useful solutions can be obtained.

P r in c ip l e  o f  A n a lo g

The mathematical expression of Eq. (2) not only describes the 
potential field of fluid flow but also a number of physical fields 
such as the electric potential field, the magnetic potential field, and 
the thermal potential field in various transmitting media. Any of 
these fields may be used as an analog to study another through 
proper scaling of the physical constants. For example,, the dif
ferential equation for an electric potential field is

div  (g grad E) =  o (4)

where E is the electric potential and g is the conductivity of the 
electrical field. If one lets

E =  A<t> and g — Bk

and substitutes them into Eq. (4), the resultant expression is identi
cal to Eq. (2) for the fluid counterpart with A and B as the scaling 
constants. In most flow problems, the solutions sought can be ex
pressed in dimensionless ratios so tha t an exact knowledge of these



scaling factors is unnecessary. For instance, the solution can be 
stated in the form of velocity ratio U /U0, where U is the fluid 
velocity at any point of the field and U0  is the reference velocity, 
usually taken as the uniform flow velocity that exists in the flow 
field. If n is the distance normal to the equipotential surface, then

(5)
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Hence the velocity ratio U /U 0  of the prototype system is simply 
the ratio of the electric potential gradients a t the respective points 
in the model system.

The corresponding pressure p  of the flow field may be obtained 
from the Bernoulli relationship
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where p 0 is the pressure at the point where the reference velocity 
is U0.

Unlike mathematical solutions which operate upon numerical 
values, the analog method works on physical quantities. Conse
quently, the accuracy of the solutions obtained depends on the pre
cision with which these physical quantities can be set up and 
measured. In consideration of this fact, the electric potential 
analog is used almost exclusively because quantities such as the 
electrical potential, the electrical current and the electrical resistance 
can all be measured with great precision by simple instruments 
tha t are either available commercially or found in most laboratories. 
This paper will therefore be confined to the discussion of various 
electrical analogs which are designed to solve steady-state potential 
flow problems.

The difference in various electrical analogs lies primarily in 
the use of different media for the conducting field. Those most 
commonly used are the conducting paper, the electrolytic tank, 
and the resistance network. The application of each of these 
techniques will be discussed.



C o n d u c t in g  P aper  a n d  E l e c t r o l y t ic  T a n k  M e t h o d s

Perhaps the oldest known potential analog is the work of Kirch- 
hoff [3] who used thin copper sheet as the electrically conducting 
medium. His work was published in 1845, but only in recent years 
has his technique received increasing attention [4] partly due to 
intensive interest in the application of potential theory in many 
fields of engineering and partly due to the availability of more 
uniform conducting materials. Examples of the latter are the paper 
which is used in making tape resistors and the paper which is made 
for use in teleprinters. In fact laboratory units complete with 
accessories for solving simple two-dimensional flow fields are avail
able commercially from the General Electric Company.

Since a paper conductor is essentially a two-dimensional medium, 
it can solve only flow problems of a similar n a tu re ; i.e., two-dimen
sional flows, which satisfy the equations

\7 2 <p =  o and y 2 i / ,=  o (7)

where ij> is the stream function and y  2 is the Laplacian operator

d2 d2
dy2' ^ nce differential equations for <f> and xp are similar

they can be solved separately by the electrical potential analog. 
As an illustration, consider the solution of a two-dimensional flow- 
inlet problem shown in Fig. 1.

The dark line A-B-C-D-E-F-G represents the outline of the con
ducting paper; the sides A-B and F-G represent the two dimensional 
conduit; B-C the inlet transition; C-D is the wall of reservoir and 
E-F is the floor of reservoir or the centerline of a pipe heading 
from a semi-infinite reservoir. A-G represents an equipotential 
line which should be straight and normal to the velocity vector of 
the uniform flow in the conduit, while D-E represents an equi
potential line at a distance R  from the inlet. The latter line is an 
arc of a circle with radius R centering at F, if R  is large compared 
with the inlet opening C-F. A conducting paint applied to these 
equipotential boundaries may serve as electrodes between which 
an ac voltage is impressed to set up the flow field. The four-dial 
decade potentiometer wrhich is calibrated to read down to 1/10000  
part of the total applied potential, the sensitive null detector such 
as the Ballantine Voltmeter with a sensitivity of .0001 volts and 
the probe P, as indicated in Fig. 1, are typical accessories required 
to trace the equipotential lines <£0, 4>i, — <t>m or to measure the po
tential a t any position in the field. From these readings, velocity



ratios and pressure ratios of the corresponding fluid systems can 
be obtained through the use of Eqs. (5) and (6). From Eq. (7) it 
is further possible to trace the stream lines <j/u <p2, — «Am by impress
ing the ac potential along <j/0 and instead of along <£0 and <f>m.

The main advantage of using the conducting paper technique 
is its simplicity and low cost. However, due to the fact tha t per
fectly uniform conducting paper is still not readily available, and 
the accuracy of cutting out or setting the boundary profiles is 
somewhat dependent on human factors, the paper technique is not 
considered ideal for precision work.

The other type of electrical analog commonly used [5] is the 
so-called electrolytic tank method, in which an electrolytic solution 
serves as the conducting field. The solution is usually held in a 
glass or plastic tank whose shape and form are dictated by the 
boundary values of the flow problem. Figure 2 shows the picture 
of one such tank built for the study of inlet transitions from an 
infinite reservoir wall to a square or to a circular conduit. The tank 
for holding the electrolyte is made of 5/16" lucite plates glued 
together with chloroform. The transition boundary between the



reservoir wall and the conduit is made detachable so that different 
transition forms can be tested. This plastic tank is placed on a 
% " plate glass which in turn is set on a rigid wooden frame work 
in a manner tha t permits the tank to lie in a precise horizontal 
plane. When the tank is filled with electrolyte it will represent 
the flow field of a two-dimensional inlet transition, or when tilted 
at a 15° angle from the horizontal position, the electrolyte will 
represent the flow field of a symmetrical sector of a circular-con-

F ig . 2

duit and its inlet transition. With the tank tilted at 45° from the 
horizontal position, as shown in Fig. 2, the electrolyte represents 
the flow field which is a segment between planes of symmetry of 
a square conduit and its inlet transition. Also, varying the liquid 
level in the tank permits various contraction ratios (i.e. the size 
of inlet to the size of conduit) to be studied. Six volts ac at 60 
cycles was impressed between one electrode a t the left end of the 
tank, representing an equipotential plane of uniform flow in the 
conduit, and the other electrode made of wire mesh a t the right 
end of the tank, representing part of an equipotential sphere some 
distance from the inlet opening. The resultant electrical potential 
distribution along the flow boundary is detected by electrodes 
made of No. 36 gage copper wires embedded normal to and flush 
with the boundary surfaces. These electrodes are placed at precisely



y2-inch center-to-center spacing in an orthogonal pattern, thus 
permitting the total velocity vector Un at any point along the flow 
boundary to be evaluated ; that is

U =  
n ~  dn

' M
2 +

' A<£
2

A x I. A y  .
(8)

where A<t>/ A x  and A<t>/ A y  are the potential gradients measured 
between the corresponding pairs of orthogonal electrodes.

A typical experimental result is shown in Fig. 3 in which the 
dimensionless pressure distribution along the boundary of a square 
conduit with a 3:1 elliptic transition curve is plotted in terms of

dimensionless pressure parameter -  TT „ I t is interesting to note
pUo /  ̂

tha t the lowest pressure always occurs at the corners of the con
duit; it is no coincidence tha t the cavitational erosion found in



prototype inlet structures of high dams was also located at the 
position predicted by the electric analog.

From the viewpoint of structural economy, the most efficient 
transition curve is of course one that gives the least negative 
pressure with a shortest length of transition, provided tha t a 
complicated curve does not lead to excessive form costs. The 
elliptic transition curves were chosen for the study because of 
their form and functional simplicity. The results obtained by 
electrical analog are shown in Figs. 4, 5 and 6 for two-dimensional-,
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circular-, and square-conduit inlet transitions respectively. The

loci of cavitation parameters a = Po , or the minimum pres-
pU02/ 2

sure ratios tha t exist in a particular elliptic transition geometry, 
are plotted as functions of a /B  and b/B  ratios, where a  and b are 
lengths of the semi-major and the semi-minor axes respectively 
of the ellipses, and B is the width or the diameter of the conduit. 
From these figures one can obtain the required elliptic form and 
size for a given cavitation parameter a. Also one notes that a 
3:1 to 4:1 elliptic transition is the most efficient form to use. 
Elliptic forms with slenderness ratio greater than 3:1 have not 
been investigated, but from the trend of the above figures one can 
see that for higher slenderness ratios longer transition curves 
would be required to provide for the same cavitation number a.

The difficulties tha t arise from the use of an electrolytic solution 
as a conducting medium are many. Among the major problems



encountered are 1) the necessity of a water-tight tank to hold the 
liquid, 2) the requirement of precision leveling of the tank in case 
the free-liquid surface is used as one of the flow boundaries, and 
3) the presence of errors due to the polarization layer formed on 
the electrodes. However, with due care in designing the equipment, 
inaccuracies due to the first two problems can be effectively elimi
nated. The third problem can be taken care of by the use of con
centrated copper-sulfate solution, in the order of 100 gr. of CuS04-



'5H20  per liter of water with few drops of concentrated sulfuric acid 
added to stabilize the solution. An electrolyte made in this pro
portion will not only keep the copper electrodes clean and increase 
the conductivity of the solution with resultant better impedance 
matching (or more sensitivity) to the measuring circuits, but, above 
all, it reduces the time required for the polarized film to reach a 
stabilized condition from hours or even days, as in the case of a 
weak electrolytic solution, to the order of a fraction of a second. 
The equivalent circuit for this film can be represented by an un
wanted resistor plus an extra capacitor combined in parallel. This 
extra resistor not only takes time to reach an equilibrium value but 
causes a false increase of potential gradient in the vicinity of the 
electrodes. If ac voltage is used to excite the analog, the electro
lytic condenser effect will cause a quadrature current to flow in 
the field. However, by using an impedance-bridge system as shown 
by the dotted line in Fig. 1, one can balance out the quadrature 
voltages due to this quadrature current and thus permit the desired 
potential distribution in the analog to be measured.

With proper care and selection of model scale the electrolytic 
tank method can be considered as a precision analog for the study 
of 3-dimensional flow problems. Accuracy better than ±  1.0 per
cent in the measurement of velocity ratios and ±  2.0 percent in 
the measurement of pressure ratios can be readily achieved.

R e s i s t a n c e  N e t w o r k  C o m p u t e r

A still more versatile potential-flow analog, which may be con
sidered as an analog computer, is the resistance network [6]. In
stead of using uniform conducting media, a grid system of re 
sistors connected in the form of a net is used as the field. This is 
equivalent to dividing a continuum into a finite grid system of 
flow paths, and if the sizes of these grids are made infinitely small 
compared with the geometry of the field one obtains essentially a 
continuum. Mathematically it is the exact counterpart of the well 
known numerical relaxation method [7] (better known as the 
Hardy Cross Method or the Southwell relaxation method) in which 
the field is usually divided into small square lattices, Fig. 7. The 
basic Eq. (7) of potential flow for the two-dimensional field can 
be written in finite difference form for this lattice as

4>1 “ t" </)2 “ I-  4>3 +  <¿>4 ----- 4</>0
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neglecting the higher order terms one has

V 2 4>
<t>l ~h <t>2 ~|~ <¿>3 <¿>4 --- 4<ft„

ft2 (10)

where h is the lattice size, and </>0, <#>i, </>2, >̂4 are the potentials 
at the node points 0, 1, 2, 3, 4 respectively. Through a tedious 
mathematical accounting system the <f> function at each node 
point is relaxed step by step until it satisfies both the boundary 
values as well as Eq. (10), throughout the field. Suppose that the 
grids of Fig. 7 were to be replaced by resistors whose value R is 
made proportional to h. Then from the law of continuity the total 
electric currents flowing into the node 0 must be equal to zero or

<I>1 ---<t>0 | 4> 2----$0 , <l>3----<Po | <#>4----</>o
R R R R

__ 4>1 +  <t>2 4~ #3 +  <t>4---4</>„ __ o (11)

One notes the identity of Eq. (11) to Eq. (10). Furthermore the re
sistance network represented by Eq. (11) is self-consistent; that



is once the values of <j>u <j>2, fo, </>4 are given will adjust itself 
to satisfy the equation. In the case of a complete network, the 
potential <f> a t each node point will adjust itself to the correct 
value once the boundary values are fixed. Consequently the solution 
obtained by the resistance network is equivalent to tha t obtained by 
the numerical integration, but without the tedious relaxation proc
esses.

Neither the relaxation method nor the network analog is ab
solutely correct, because both Eqs. (10) and (11) omit the term

h2 
12

dU>
dx4 dy4 and other higher order terms of Eq. (9). How

ever, if due care is taken to provide for sufficiently small nets such 
that the potential distribution is nearly linear within each net, then 
the error due to neglecting these higher order terms will be insig
nificant.

Against this approximation of finite difference operation, the 
advantages gained by using the resistance network are many. First 
of all, the boundary geometry can be represented by simple re 
sistance values, and consequently the human elements involved 
in the construction of models, as in the case of the paper analog 
and the electrolytic tank analog can be eliminated. This ease of 
setting up the flow boundaries permits the solution of many flow 
problems involving previously unknown flow boundaries that will 
satisfy certain preset flow conditions. The free flow surface of an 
overfall under gravitational action, profiles of constant velocity- 
inlet transitions, and the water-table surfaces of seepage flow 
are some of the potential-flow problems tha t can be ideally handled. 
The process involves successive cut and try  steps which quickly 
converge to the correct solution [8, 9]. Second, the structure of 
the network permits any flow fields whose permeability k  is either 
a constant or a function of space to be accurately set up; tha t is, 
the conductivity g{x, y) of the resistance network can be distri
buted in accordance with the permeability k(x , y ) .  For the special 
case of 3-dimensional flow where the flow contains an axis of sym
metry, a sector of such a field can be represented by a two-di- 
mensional network whose conductivity g(r)  is made proportional to 
the radial distance r  from the axis. Third, the accuracy of the resist
ance network analog is inherently high. By using precision resistors 
with a consistency of ±  0.5 percent, one can easily estimate the 
corresponding space distance of each unit net with the same order 
of accuracy. With the same precision provided in the measurement 
of potentials between each node of the network, one can obtain an



accuracy of ±  1.0 percent in the calculation of potential gradients. 
Consequently the solutions obtained by the resistance network 
are highly reproducible and free from human factors.

In order to set up a network with proper resistance values for 
various boundary forms and permeabilities of flow media, some 
rules or equations are required. The most complete and general 
equations known to the writer are due to Tschiassny [10] who de
rived a basic equation by replacing a triangular element of con
tinuum with an equivalent resistance net. This elementary tr i 
angle is then the basis upon which a flow field with complicated 
boundary geometry can be constructed.

Figure 8 shows an elementary two-dimensional triangular con
tinuum A i A 2A3 which can, in the sense of finite differences, be re
placed by a triangular network of resistors with conductances gu 
g2 and g3.

Let kx'x' and k vy  be the principal conductivities of the continuum, 
where x' and if  are the arbitrary Cartesian coordinates which 
coincide with the principal axes of the conductivity tensor. As
suming only that the continuum considered is so small tha t the po
tential distribution is linear within that region, a general expression 
for the conductance of the resistor element is

1/ T ^V®' “l- ky'v' „ ,  kx'x' ky'y' cos -f- $2) /io \
<73 =  y2 [------- 2~ c0t as + ------- 2------------- sin a3 (12)

The same equation applies to gy and g 2 after proper rotation of the 
indices.

One notes three important characteristics of Eq. (12): First, 
if the field is isotropic, tha t is Ay„' — ky'v =  k, then the equation 
reduces to

y'

A, A,
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x

Qs —  2 c°ttt3 (13)

Second, if angle a is acute, right, and obtuse then the conductance 
of the resistor on the side opposite the angle is positive, zero and



negative respectively. In order to prevent negative conductances, 
obtuse angles should be avoided. Third, the conductance is indepen
dent of the absolute size of the triangle.

To combine these triangular elements into a complete flow field, 
one notes that there are always two conductances to be added up 
between two nodes unless both nodes are on the boundary. 

k*v . kyy

q = X [ k »* + k yV , , k« v - k,y coste,+ 8,)
* 2 1 2 s 2 sin a.

■ cot a .

<3 = g¡ ♦  gt

R = f

Figure 9 shows two adjacent elements with common nodes A and 
B from which it may be seen tha t the total conductance between 
A and B is g  =  gi +  gk, or the total resistance value is R =  1/g.



It may be further shown tha t if the angles a4 and ak are right 
angles, the conductance for the diagonal A-B of a square element 
will be zero. Figure 10 depicts a typical square-net system repre
senting a flow field. A coarse network may be joined to a finer one 
by an intermediate network, and the elements in the vicinity of a 
curved boundary may be represented by irregular nets. The fine
ness of network required, of course depends on the linearity of 
potential distribution within each element of net considered. As a 
rule, finer nets are required where the potential distribution is found 
to be nonlinear.
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A computer based on this network principle is shown in Fig. 11. 
The vertical panel contains a grid of sockets into which resistor 
elements may be plugged to form the flow field. The board is di
vided into 70 squares wide and 40 squares high which gives a total 
of 2,800 square nets. A four-pin socket is provided at the center of 
each net, and they are interconnected as shown in Fig. 12. A one- 
pin socket is also provided at each node point for the measurement 
of potentials or for the feeding in of boundary values. The panel 
is made of *4 inch clear Lucite plate, so a to-scale graph can be 
hung on the opposite side of the panel to provide the operator with 
a visual reference to the flow field. For regular square elements,
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four 1000-ohm precision resistors are mounted in a ring on a four- 
pin plug which forms the basic plug-in unit. These units are then 
plugged into alternate sockets on the panel, as shown in Fig. 12, to 
form a network of square nets. For irregular-net elements a special 
board is provided on the table of the computer (see Fig. 11). On 
this board 78 units of irregular nets can be set up. Each irregular 
net may consist of from one to five units of adjustable resistors 
which are special 10,000-ohms 3-dial decades made by the Telex 
Company. Each decade unit is only l 1/^ inches diameter by 3 inches 
high, and is provided with a convenient plug-in base. The necessary 
number of these decade units is plugged into the board on the table 
to form a particular irregular net element, and the precise resistance 
values are then simply dialed out on the decades. A plug-in cable 
connects this irregular unit to the main network on the vertical 
panel.

This liberal use of plug-in units permits a maximum of flexi
bility in the setting up of a problem, as well as a maximum utili
zation of the costly precision resistors and decade elements. Future 
modifications can also be performed with a minimum of alterations 
because all major parts are separated into special units.



C o n c l u s io n s

Three of the most commonly used analogs for the solution of 
potential-flow problems have been presented. Emphasis is placed 
upon the precision and on the methods of setting up the fields of 
these analogs. Much of the distrust of all forms of analogs in the 
past has been based on inability of providing an absolute check on 
the accuracy of results obtained. It is therefore a primary object 
of this paper to show tha t if proper care and attention are used in 
setting up the analog, and its tolerance and characteristics are 
understood, there is no reason why the results obtained cannot be 
reproducible and accepted with confidence.

The main characteristics of the three analogs are summarized 
in the following table:

Conducting Paper

Advantages Disadvantages

Simple and cheap; applicable 
to complicated boundary geo
metries, especially to cut and 
try  solution for correct bound
ary forms.

Limited to two-dimensional 
problems; accuracy is limited 
by the uniformity of conduct
ing material and the human 
factors.

Electrolytic Tank

Capable of handling three- 
dimensional flow problems in a 
simple manner; reasonably ac
curate if handled properly.

Needs complicated water
tight tan k s ; construction of 
precision boundary forms is 
time consuming; accuracy in
volves human factors.

Resistance Network

High accuracy, and free from 
human factors; extremely flexi
ble in the setting up of bound
ary values and fields.

More expensive; finite dif
ference manner of represent
ing a continuum needs special 
attention.

A literature survey has revealed an intensive progress in the 
a rt of electrical analogs, and the published papers on this subject 
are numerous; most of these papers deal with very specialized 
problems in other fields of engineering. Also there are many other 
forms of analogs and applications which are considered beyond 
the scope of this paper and consequently have had to be omitted.
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D i s c u s s io n

Mr. McNown initiated the discussion by emphasizing the need 
for the solutions of a great many potential-flow problems. He stated 
tha t the analogs probably offered considerably more power in the 
attack on these problems than theoretical methods which, in part 
a t least, have been exhausted. The relaxation approach is nu
merical by nature but it offers serious limitations in the time and 
patience required. However, he warned anyone who wished to use 
the electrolytic tank first to take steps to have a man with the 
dexterity and skill of Mr. Ling to set up the models.

Mr. Murray then inquired if circulation can be superposed in 
the analog. Mr. Ling replied in the affirmative. For the case in 
point the flow would be two-dimensional for which the paper-con- 
ducting technique would be suitable. Circulation is superposed up
on the field by modifying the values of the input potentials on the 
boundaries in accordance with a desired or trial circulation.

Baines pointed out tha t free-streamline problems are the ones 
for which potential flow solutions are most commonly needed in 
practical work, and tha t they are more difficult than problems with 
fixed boundaries to handle by relaxation, and asked which of the 
three techniques is best for this purpose. Mr. Ling thought tha t the 
paper technique is easier for approximate solutions, but tha t the net
work analog is superior because it also does not require the con
struction of special models and it is more precise.

Mr. Baines inquired further about application to problems in
volving gravitational effects. Mr. Ling asserted that this could 
also be done very simply by measuring the current flowing through 
the net, instead of the potential gradient, and determining the 
velocities along a trial boundary from the current readings.

An unidentified discusser commented that the network is not 
necessarily limited to the analysis of potential flows and inquired 
whether analogs have been used to study other problems. He also



called attention to the fact that M. Germain at the University of 
Brussels had made an electrolytic tank for two-dimensional prob
lems, equipped with an automatic sensing probe and a pantograph 
system, which automatically plotted the field on a sheet of paper. 
Mr. Ling replied that there are many differential equations which 
can be solved by networks, as has been shown by Mr. Kron of 
G.E. who has contributed most to this art. By using network 
principles, time-dependent and other resistance elements can be 
used to solve various types of differential equations, such as for 
the fluttering of a wing. The network described here is a very 
simple type because it is designed to solve only one equation. In 
response to the second remark he stated tha t there are many 
papers describing automatic analog systems, but that these are of 
little interest in connection with the solution of hydraulics prob
lems where interest is focussed upon the velocity and pressure dis
tributions on solid boundaries rather than upon the flow character
istics in the entire field.

Mr. Bauer wished to know the order of magnitude of the time 
required to set up and solve a typical flow problem, such as for a 
two-dimensional inlet, or an analog computer. Mr. Ling indicated 
that problems with a definite boundary form could be solved in less 
than a day, but tha t flow problems for which a trial and error 
procedure is used would take more time; although he estimated 
the analog method to be 20 times faster than the relaxation 
process.

Mr. DeHaven inquired about the adaptability of the analog to 
3-dimensional problems. Mr. Ling assured him that it was appli
cable, but tha t the set-up became much more complicated since 
many more boards are required. Nevertheless such systems have 
been built.

Mr. McPherson called attention to the fact tha t there is a paper 
analog manufactured by G.E. available on the market for about a 
hundred dollars, which includes a rectifier, a voltmeter, a panto
graph, a mounting board, and about a five years’ supply of paper. 
Mr. Calehuff contributed the additional information th a t the G.E. 
computer is now available from Sunshine Electric in Philadelphia.

Finally, Mr. McPherson asked whether, in order to duplicate 
seepage flow studies, it would be necessary to have resistances 
with a squared characteristic. Mr. Ling stated that that was not 
necessary, that in Darcy’s law, the equation for the pressure drop, 
one could operate on the force potential instead of on the velocity 
potential. Mr. McPherson also mentioned that there are many



electric-power network analyzers throughout the country in all 
metropolitan areas which might be available for the solution of 
potential flow problems.
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