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This paper is a further development of studies completed by Dr. 
William E. Dobbins [ l ]1 at the Massachusetts Institute of Tech­
nology in September, 1941. Dobbins’ work includes the derivation 
of the basic mathematical theory and an experimental verification 
of certain special cases, all of which has been reported upon in 
the paper cited. The studies of Dobbins will be described very 
briefly in this paper, but it will be necessary to refer to the original 
paper for the steps in the development of the theory and for the 
details of the experiment. The purpose of the present paper is to 
describe an approximate application of the results of Dobbins’ 
work to open-channel flow in order to predict the effect of tu rbu ­
lence in retarding settling.

The turbulent mixing process works in a manner similar to 
diffusion. Suspended material is transported in the direction of 
decreasing concentration, and the rate of transport by turbulence 
in any direction is proportional to the concentration gradient in 
that direction. I f  the suspended material has the same density 
as the fluid, there will be no separation by settling and the con­
centration will approach uniform ity throughout. I f  the density of 
the suspended particles differs from that of the fluid, there will 
also be transportation in a vertical direction due to settling (or 
rising) velocities. Settling tends to increase the magnitude of the 
concentration gradient by clearing the upper region of the fluid, 
and thus settling promotes turbulent transfer of suspended m atter 
in the opposite direction.

I f  the rate of settling is at equilibrium with the turbulent trans­

i References appear a t the end of the article.



port in the vertical direction, then in any horizontal plane at height

in which c in the concentration, w is the settling velocity of the 
particles, — dc/dy  is the concentration gradient and e is the mixing 
coefficient. Integration of this equation results in an expression 
for the relative concentration at height y  with respect to any other 
height a:

The evaluation of the integral requires that e be expressed as a 
function of y.

Eq. (2) has been verified experimentally by Rouse [2] and later 
by Dobbins [1] for constant values of e in vertical cylindrical tanks 
equipped with mechanical agitators designed to produce a constant 
intensity of mixing throughout the depth. I t  has also been verified 
by Yanoni [3] for two-dimensional open-channel flow with the 
value of e as given by the logarithmic velocity distribution.

It is pertinent to note here that the vertical distribution of sedi­
ment characterized by Eq. (2) depends upon the equilibrium of 
Eq. (1) at all horizontal planes including the bottom. That is, 
the rate of settling out of suspension must equal the rate of scour 
from the bed. To obtain the absolute concentration it is necessary 
to know the rate of scour from the bed. There is no such thing as 
transportation in suspension per se. I f  particles which settle onto 
the bed are permitted to remain there, the stream must clarify 
itself. Transportation in suspension is a continuous process of 
settling out and scour. Theoretically the equilibrium postulated 
by Eqs. (1) and (2) is reached only after infinite time. I t  is 
approached very rapidly, however. Dobbins [1] has shown experi­
mentally that the equilibrium distribution of suspended m atter is 
independent of the manner in which the sediment is introduced to 
the fluid.

In  a settling tank the rate of scour from the bottom is always 
less than the rate of settling out. The process is therefore not at 
equilibrium, and the vertical distribution of suspended m atter
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depends also upon the time of settling. In  a river the non-equi- 
librium condition is also to be expected, because of expansions and 
contractions in cross section and changes in the rate of scour from 
station to station.

The non-equilibrium condition may be investigated for discrete 
particles with two-dimensional flow in an open channel by studying 
the changes in concentration at some point m in the channel (see 
Fig. 1).

F i g . 1 .— T w o - D i m e n s i o n a l  F l o w  i n  a n  O p e n  C h a n n e l .

Let c be the concentration at m at any time t  of particles with 
settling velocity w. Let V' be the temporal mean velocity of the 
liquid at m, and % and e* be the mixing coefficients at m  in the 
direction of y  and x, respectively. Consider the elementary volume 
mm'n'n with dimensions dx, dy, and unity. By means of the 
equation of continuity, the amount of sediment transported out of 
the elementary volume in time dt across the face nn  by turbulence 
and settling and across the face m'ri by turbulence and the liquid 
velocity may be subtracted from the amount carried in across the 
faces nun and mn  in the same time. I t  may thus be shown for the 
steady state, in which the concentration at the fixed point m 
remains unchanged, that

T7, dc _  02c /  0% \  3c d2c

~ H ) d y  ' f c 1' ( )
This is the general differential equation for the concentration 

changes in the two-dimensional case. An equation similar to Eq. (3)

but which does not include the term has been presented by
dy dy

Kalinske [4].
The integration of Eq. (3) requires that V , ey and ex be express-



ed as functions of y. No solution has been found for the equation in 
its general form because of the difficulty of separating the vari-
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ables. I f  the assumptions are made that sx —— is zero and that both

ox2

V' and £y are constant throughout the depth H  and the length of 
the channel, Eq. (3) is reduced to

0c 02c . dc
V  —  =  c +  w (3a)dx 0 y 2 9 y

Now if the point to is assumed to move in the direction of x  at
dx 
dt

velocity V  =  , the time rate of change in concentration at to is

3c 02c . 0c
—  =  e -------- 1- w —  (3b)
dt d y 2 dy

Eq. (3b) also expresses the rate of change in concentration at any 
point to in a settling container in which turbulence is imposed of 
uniform intensity throughout.

A solution for Eq. (3b) has been obtained by Dobbins [1] for 
the following boundary conditions: (1 ) the rate of transport 
across the free liquid surface is zero; (2 ) the rate of transport 
across the bottom is equal to the rate of settling out less a constant 
rate of pickup from the bottom; (3) at the start, the concentration 
of suspended m atter is some function of y  ; and (4) as t  approaches 
infinity the concentration of suspended m atter approaches the

iv  y

equilibrium distribution A  e £ as given by Eq. (2) where A  

is the concentration at the bottom. I f  the initial concentration is
W y

represented by the function A 0e £i> , where A  o is the initial con­
centration at the bottom and £0 is the initial value of the mixing 
coefficient, e0 being suddenly reduced to e at time t  — 0, the 
solution for Eq. (3b) is

: .  Ae-'<g)i + «.-(ifH V r  [(£)■*•*] *C.7.



in which

( w\H

V ^

(5)

sin —  o.nV
(6)

ax, «2, «3, <xn are the successive real positive roots of the
transcendental equation

and H n is +  1 when « is in the first and second quadrants and — 1 
when a is in the th ird  and fourth quadrants.

I f  A 0 is taken as zero in Bq. (5), the solution is for the case of 
scour starting with a clear liquid. I f  A  is taken as zero in Eq. (5), 
the solution is for the case of settling out with no scour. The com­
plete solution is the sum of the two cases.

Dobbins [1] has made an experimental verification of the above 
equations with a unigranular suspension of lucite powder in water. 
The experiments were conducted in a vertical cylinder equipped 
with a reciprocating mixer similar to that used by Rouse [2], 
Two cases were verified, in both of which e„ was made equal to e. 
In  the first case, the scour was suddenly reduced to zero—that is, 
A — 0. In  the second case, the scour was suddenly changed to a 
lower magnitude—that is, A  <  A 0. Good verification was obtained 
for both cases.

The application of this theory to studies of settling and scour 
in open channels cannot be made with confidence in the results 
until an integration is obtained for the general differential equa­



tion. W ith certain bold assumptions, however, some idea may be 
obtained of the magnitude of the effect of turbulence in retarding 
settling. The solution obtained by Dobbins [1] for Bq. (3b) is 
equally applicable to Eq. (3a), since these equations are similar 
mathematically. Therefore, in order to use the only integration 
so fa r  available, Eq. (4) must be adapted to open channels through 
the following assumptions:

1. The fluid velocity is the same at every point in the channel,

2. The mixing coefficient is the same at every point in the 
channel.

In  order to isolate the effect of turbulence in retarding settling, 
the effect of scour must be eliminated. That is, A  =  0 in Eqs. (4) 
and (5). To simplify the equations further, a uniform concentra­
tion throughout the depth H  was assumed for zero time, which 
requires a value of e0 — oo. W ith these assumptions, Eqs. (4) 
and (5) may be combined in the following dimensionless form:

(8)

This equation gives the relative concentration of suspended m atter 
at any point in the channel a distance x  =  V t  from the starting 
point.

The average relative concentration throughout the depth H  may

be computed from the integral | — d ( ~  , wherein the value
% c0 \  H )

c
of — • is taken from Eq. (8) This integral is readily evaluated. The 

c o
removal from suspension by settling in the distance x  is the d iffer­
ence between this integral and the initial concentration. Since 
the relative initial concentration is unity  throughout the depth H, 
the relative removal is



a  J l "  £

2zvH /  2e

(9)

I t  will be noted that the term Y n in Eq. (8 ) has been eliminated 
by integration over the depth H  and does not appear in Eq. (9).

The quantity  w 0 in Eq. (9) is the “ overflow ra te .”  In  the 
sanitary-engineering field, the overflow rate is usually defined as 
the discharge per unit of surface area. I t  is also the settling 
velocity required for a particle to settle from the surface to the

JJ
bottom in time t. Therefore t  =  — . This value for t has been used

w<*
in Eq. (9) to facilitate comparison with the removal obtained in 
a stream without turbulence. In  a stream without turbulence, in 
which the velocity is the same throughout and the concentration is 
uniform from top to bottom at the start, the removal is

r  =  —  (10)
W o

The removal in Eq. (9) is expressed as a function of only three 
variables, w H / 2 e, a„, and w / w 0, all of which are dimensionless. 
Only two of these variables, w H /2 e  and w / w 0, are independent, 
since «„ is a function of w H /2 e  as defined by Eq. (7), The use of 
Eq. (9) for numerical computations of removal is too tedious and 
cumbersome. Some problems of practical significance require 15 
terms or more for convergence of the series. I t  is convenient, there­
fore, to have a graph for the solution of Eq. (9), and Fig. 2 is pre­
sented for this purpose.

The successive values of an required for each computed point 
on this dimensionless graph were determined to six decimal places 
by trial-and-error solutions of Eq. (7). Convergence of the series 
is rapid for low values of w H / 2 e ,  only one term being required for 
a value of 0.1. However, 14 terms were required for w H / 2 e  =  30, 
and no solution was practical for iv ll/2e  =  100.

The effect of turbulence in retarding settling is apparent from



Fig. 2. When turbulence is relatively great with a correspondingly 
high value of s, the value of wHJ2e is low and the removal is 
reduced. F o r example, for particles which would be just 100 per­
cent settled out in the stretch of stream considered without tu rbu ­
lence (i.e., w /w 0 =  1.0), the removal is only 64 percent if wH/2e —

F i g . 2 .— G r a p h i c a l  S o l u t i o n  o f  E q . ( 9 ) .

0.1, bu t is 72 percent if wH/2e  is 1.0 and is 94 percent if w'H/ 2e is 
40. The effect of turbulence on settling out of particles is much 
less if the removal is less, that is, for low values of w /w 0.

In  order to use this graph to study the effect of turbulence in an 
actual stream, a mean value for e must be estimated. The value of e 
is a function of the mean velocity and the velocity gradient as 
follows :



/  1 - Y / H
£ =  — v 2 -------- -—  (H )

8 d T
dy

The logarithmic velocity distribution in terms of the velocity defect 
is as follows :

y  max - V  1 , H  _  R(7K , H
-------— .-  =  -  I n ------- 5.<5 l o g — (12)

V V f / 8  K V V

in which /  is the friction factor for the channel and « is the von 
Karm an universal constant, taken as 0.4 in this study. I f  the value 

cTV'
of —;— as determined from Eq. (12) is substituted in Eq. (11), the 

dy
mixing coefficient becomes

=  K — i 1 - - ^  (13)
H V  V  f / 8  H \  H  

The mean value of the coefficient over the depth H  is

H V V f / 8
—  =  0.0667 (14)

I f  the value of e is assumed to be constant, the corresponding 
velocity distribution required by Eq. (11) is parabolic with a 
bottom velocity greater than zero. This parabolic velocity distribu­
tion with the value of e as given by Eq. (14) is defined in terms of 
the velocity defect as follows:

v ^ - r  _ 3/ ,  v \ =75(l _y_ \  (is)
F V / / 8  K V H  )  \  H

The values of e as defined by Eqs. (13) and (14) and the corre­
sponding velocity distribution curves are shown in Fig. 3.

The values of the abscissas wH / 2e in Fig. 2 may now be expressed 
in terms of the mean velocity of the stream by means of Eq. (14) as 
follows:

wH  3 w w . . . .
c ---------- =  = 7 5 ------=  (16)2e * rvf/8 rvf/8
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F i g . 3.— V a l u e s  o f  e a s  D e f i n e d  b y  E q s . (13) a n d  (14). 

Also, since by similar triangles

wH

~&T

I I  w 7.5 I I  w (17)
K V f /8 L w0 y ' f / 8  L wo

As an example, let it be required to find the effect of turbulence 
on the settling of particles which would be just 70 percent removed

(
—  =  0.7 W ithout turbulence in a 1000-ft. stretch of a stream 10
W0 /

ft. d e e p ^ =  0.01 )  if /  =  0.024. From  Eq. ( 1 7 ) , ^  =  0.96, and

from the graph in Fig. 2 the removal r =  0.58 or 58 percent. The 
effect of turbulence is thus to reduce the removal by about 17 
percent.

I t  should be emphasized in conclusion th a t the method proposed



in this paper for estimating the effect of turbulence in retarding 
settling is only a rough approximation. F or a more precise method 
we must await the solution of the general differential equation.
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