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The logic of measurement is a chapter in the philosophy of 
science. One cannot, therefore, discuss it without possessing a few 
notions that belong to the philosophy of science in general. My first 
task is thus, inevitably, to acquaint you with some such notions. 
In doing this I shall for the most part talk about words, sentences, 
and language in general. Lest tha t mode of presentation leave you 
unnecessarily bewildered, I had better, first of all, say a few words 
about the so-called linguistic turn, which is probably the most im
portant single thing that has happened in analytical philosophy 
in this century. I shall limit myself to science and its philosophy. 
The idea is tha t while the scientist watches the world, the analytical 
philosopher watches the scientist watching the world. Let me un
pack this formula so that we may see exactly where language comes 
in. Using the word thing very broadly, one may say that the 
scientist attends to things, observing them, manipulating them, and 
so on. Having done that for a while he states what he has seen in 
words. His language is thus about things, or, more generally, about 
the world. The analytical philosopher watches and eventually 
speaks about the scientist’s watching and eventually speaking about 
the world. What, then, one may ask, distinguishes the analytical 
philosopher from either a psychological student of linguistic be
havior or a grammarian? The answer is revealing. There is in our 
tradition a group of questions th a t have never ceased to challenge 
intellectual curiosity such as, say, the nature of causation or the 
peculiar certainty of deductive inference. These are, of eourse, the 
classical philosophical questions. The linguistic philosopher believes 
that they are all linguistic questions, not in the sense tha t they are 
mere questions of grammar or of linguistic behavior, but rather in 
the sense that the only commonsensical and therefore safe way of 
answering them begins with an investigation of how language re
flects what it is about. These, to be sure, are but poor hints. But 
I fear that I must let it go at that.

I begin with a dichotomy among words, that is, with a division



of all words into two kinds such that each word belongs to one and 
only one of the two. One of the two classes is exemplified by, say, 
‘cat’, ‘color’, ‘specific heat’ ; the other, by ‘or’, ‘some’, ‘is’. The words 
of the first kind, that exemplified by ‘cat’ and so on, are called 
descriptive. Those of the second kind, exemplified by ‘or’ and so on, 
are called logical. The two names, descriptive and logical, allude 
to the difference between the two kinds. After it has once been 
pointed out, the difference is, I think, clearly felt. Cats, colors, 
and specific heats are, to be sure, things very different from each 
other. Yet they have something in common. They are all “things” 
or, to put it linguistically, the three words ‘cat’, ‘color’, and ‘specific 
heat’ each refer to something or name something in a sense in 
which logical words such as ‘or’ or ‘some’ could not by any stretch 
of the imagination be said to name anything. What the distinction 
is, is thus clear. To convince one’s self tha t it is worth making one 
merely has to reflect that in spite of this peculiar feature of logical 
words, namely, their not referring to anything, no langauge could 
conceivably get along without them. But let me here add a word 
of caution that applies equally to all further distinctions. The 
illustrations I have chosen are clear-cut. Our natural languages, 
though, English, French, German, and so on, are built for expedi
ency, not for the purpose of exhibiting logical structure. About 
some words of a natural language there may therefore be doubt 
whether they belong to the one kind or to the other or, perhaps, 
depending on how they are used, to both. At this point the ana
lytical philosopher appeals to the schematic languages constructed 
by the mathematical logician. In such schemata the distinctions 
are clear-cut. We had better realize, though, that this method 
raises the question whether one may for the purposes of philo
sophical analysis without loss or violence replace our natural 
languages by those schemata. The question must be argued. The 
answer is affirmative. I shall of course not present the very in
volved argument on this occasion.

The dichotomy we must consider next is one among sentences. 
Take the two sentences ‘Either it is raining or it is not raining’ 
and ‘If everything is green then this is green’. The members of the 
class they exemplify are called analytic. Take next ‘Peter is tall’ 
and ‘Water if heated boils’. These two sentences belong to the 
second class. Its members are called synthetic. The difference 
which makes the difference is that while a synthetic sentence says 
something, an analytical one is tautological or empty. Accordingly, 
whether a synthetic sentence is true or false depends on what is 
the case. An analytic sentence, since it says nothing about the



world, could not possibly be false. It fits well with this that 
whether or not a sentence is analytic does not depend on the mean
ing of the descriptive words which occur in it. Or, to say the same 
thing positively, whether or not a sentence is analytic depends only 
on its form, that is, on the logical words in it and on the order and 
arrangement of the descriptive words it contains. But then, one 
may wonder why anyone should bother with analytic sentences at 
all. At first sight it would appear that, saying nothing, they are 
merely the pathological limiting case of sentences. To understand 
why the appearance is deceptive, one only needs to remember the 
crucial role of deductive inference. Take Euclidean geometry. 
Every Euclidean theorem, those already known as well as those still 
to be discovered, is a deductive consequence of the Euclidean axioms. 
What holds for geometry holds equally for every scientific theory. 
Deductive inference is thus crucial; and there is only one way to 
explicate what we mean by deductive inference. The conclusion C 
can be deduced from the premiss P if and only if the compound 
sentence ‘If P then C’ is analytic. Presently I shall return to the 
point; but it will pay if we familiarize ourselves with one more 
dichotomy among words.

Assume that a foreigner who does not know English very well 
comes for the first time across the word ‘mare’. If he asks us what 
it means we can do either of two things. If a female horse is at 
hand we can point a t it and say ‘This is a mare’. In this case our 
foreigner learns the meaning of the word directly. Or we could say, 
without pointing at anything, ‘A mare is a female horse’. In this 
case we have provided the questioner with a definition. If he knows 
what ‘horse’ and ‘female’ mean, he will then also know what ‘mare’ 
means. Now it is immediately evident that we could not possibly 
learn the meaning of all words by definition. The meaning of at 
least some descriptive words, for instance, can be acquired only 
by becoming acquainted with their referents. On the other hand, 
it is one of the most important philosophical ideas tha t we could, 
in principle, get along with an amazingly small number of undefined 
words, introducing all others by definitions. Words are thus in 
principle of two kinds, either defined or undefined  (basic). In a 
schematic or artificial language the distinction is again clear-cut. 
To grasp its philosophical significance one merely has to consider 
that, with one exception, to which I shall attend at the end, even 
the most abstract descriptive terms of science, with whose referents 
we are not directly acquainted, can be defined by means of a basic 
descriptive vocabulary with whose referents we are so acquainted. 
At the moment, though, I am more interested in the defined logical



words. A defined word, by the way, is descriptive if and only if at 
least one basic descriptive word occurs essentially in its definition; 
it is logical if only logical words occur in its definition.

Let me take stock. I have introduced you to three dichotomies. 
Sentences are either analytic or synthetic. Words are either logical 
or descriptive and either defined or undefined, which yields, in the 
familiar fashion, four possibilities. Modest as this apparatus is, 
it permits one to state intelligently and, I hope, intelligibly, one of 
the most fundamental results of recent philosophical analysis. All
arithmetical words, from the integers 1, 2, 3 ........ and the humble
‘+ ’ to the most complicated notions of higher analysis, are logical 
words. All arithmetical truths, from the simple ‘1 +  1 =  2’ to the 
most esoteric theorem about Hilbert spaces are analytic. The de
cisive idea is that, rather surprisingly, the integers themselves and 
the elementary operations among them can be defined in terms of 
indubitably logical words such as ‘and’, ‘or,’ ‘all’ and ‘some’. The 
great names connected with this discovery are Peano, Frege, and 
Russell. The classical document, though of course not the last word, 
is Principia Mathematica  by Russell and Whitehead.

Measurement is the assignment of numbers to objects or events 
according to certain rules. That is why it was necessary to begin 
as I did. Consider the two statements ‘5 +  3 =  8’ and ‘5 feet and
3 feet are 8 feet’. One who understands fully the differences and 
similarities between these two statements has the key to the logic 
of measurement; but even to state these differences and similarities 
one needs our little apparatus. At the moment I shall only mention 
the differences. ‘5 +  3 =  8’ is analytic. The *+’ in it, not naming 
anything, is a logical word of the kind called an operator, that is, it 
is a word that makes out of two or several words, in this case out 
of ‘3’ and ‘5’, an expression, in this case the phrase ‘5 +  3 ’, which 
functions itself in many respects like a word. The second state
ment, ‘5 feet and 3 feet are 8 feet’, is a synthetic sentence of the 
kind called an empirical law. The ‘and’ in it is a descriptive opera
tor. What it names, very elliptically, is what we do when we put 
two straight sticks end to end so that they are in a straight line 
and then, perhaps, either nail or glue them together. But I notice 
that I just used several words tha t need explication.

I shall not undertake to explain what a law is beyond mentioning 
that, as I use them, the word ‘law’ and the phrases ‘empirical law’, 
‘law of nature’, and ‘synthetic generality’ are synonymous. But it 
will be necessary for us to distinguish laws from what analytical 
philosophers call relations. Take Boyle’s law, pv =  c. Scientists 
often say that this law is or establishes a relation between the



volume and the pressure of a quantity of gas at a constant temper
ature. Thus they use ‘law’ and ‘relation’ more or less synonymously. 
This usage blurs a distinction. Strictly speaking, a relation is a char
acter. Being taller, being contiguous, being later are three simple 
instances of relations. A relation, in other words, is like a property, 
the only difference being that while a property is exemplified by 
one thing, a two-term relation is exemplified by two things, a three- 
term relation, such as betweenness, by three things, and so on. 
Accordingly, relations are referred to either by words or by phrases 
which function like words. Laws are expressed by statements. Let 
‘Peter’ be the name of an adult elephant, ‘Paul’ that of an adult 
chihuahua. The sentence ‘Peter is taller than Paul’ says that a 
certain relation obtains between the individuals Peter and Paul. 
Accordingly, it contains the relational expression ‘is taller than’. 
But, not being a generality, it is not a law. Take next the sentence 
‘All crows are black’. I t is a generality or law. Yet it does not 
mention a relation. Accordingly, none of the four words in it is a 
relation term. ‘Crow’ and ‘black’ are the names of descriptive 
properties; ‘all’ and ‘are’ are nonrelational logical words. Take 
finally ‘An adult elephant is taller than an adult chihuahua’. This 
statement says that every individual of a certain kind stands in a 
certain relation to every individual of a certain other kind. It is 
therefore a generality or law. Also, this particular law does men
tion a relation, as the law ‘All crows are black’ does not. These 
examples should go a long way toward convincing anybody tha t we 
had better be careful about the way we use ‘law’ and ‘relation’1.

Relations are either descriptive or logical. Take two straight 
sticks, put them along side of each other so that one end of the 
one coincides with one end of the other. If in this position stick 
a protrudes beyond stick b, we say tha t a is longer than b. If the 
two ends we have not put together coincide, so that neither stick 
protrudes beyond the other, then we say that a and b are equally 
long. “Longer” and “equally long” are two descriptive relations. As 
it happens, they are also defined relations. I have, in fact, just de
fined them in terms of two other relations, namely, coinciding and 
protruding; nor would it be difficult to define protruding in terms of 
coinciding and thus our two relations in terms of coinciding alone. 
Notice also the following empirical law about straight sticks. Of 
any two sticks, either the first is longer than the second or the

1 I t is worth noticing tha t every empirical law can be construed as a sta te 
ment to the effect tha t the descriptive characters (up to and includins type n) 
mentioned in it satisfy a logical relation (of type » +  1). In this sense 
every empirical law has a “logical structure.” See also footnotes 2 and 3.



second is longer than the first or they are equally long. Let us 
next provide ourselves with some instances of logical relations. 
Those obtaining among numbers are a very important kind of such 
relations. To be “divisible,” for instance, is a relation that may or 
may not obtain between integers. 6 and 3 exemplify this particular 
relation, 6 and 5 do not. “Sum” is a three-term relation exemplified 
by 5, 3, and 8 in this order and in the order 3, 5, 8 but not in any 
other order nor, say, by 5, 3, and 9. Again, to be “larger” and to 
be “identical” are logical two-term relations among real numbers 
and numerical expressions. Notice finally the following analytical 
truth. Of any two real numbers or numerical expressions either 
the first is larger than the second or the second is larger than the 
first or they are identical.

I just called attention to an empirical law for straight sticks, 
“Of any two (straight) sticks, either the first is longer than the 
second, and so on,” and to an analytic truth, “Of any two (real) 
numbers, either the first is larger than the second, and so on.” 
Clearly, there is some connection between these two generalities; 
the one, synthetic, about things; the other, analytic, about numbers. 
Clearly, this connection is essential for measurement, tha t is, as I 
put it, for the rules by which numbers are assigned to things or 
events. Equally clearly, I think, our task is therefore to state this 
connection both as precisely and as generally as possible. As to 
precision, I can of course not offer much on this occasion. As to 
generality, a few preliminary remarks are necessary.

So far I have spoken as if there were only two kinds of things 
in the world, individuals, whatever that may mean, and characters, 
either properties or relations, such that the characters are ex
emplified by individuals. Now we must rid ourselves of this simpli
fication. Properties and relations do in turn have properties and 
stand in relations to each other. Or, to say the same thing in 
Russell’s words, there are characters of different types. Consider 
the sentence ‘Green is a color’. If, as on this level of abstractness 
one must, we take our cue from grammar, the very fact tha t this 
sentence makes sense (it is even true) indicates that ‘color’ names 
a descriptive character of characters. For our purposes, though, 
the logical characters of characters are of particular interest. 
Transitivity, for instance, is such a character, as may be seen from 
our saying, truly, that the descriptive relation of being longer, 
which obtains among straight sticks, and the logical relation of 
being larger, which obtains among real numbers, are both transi
tive. As everybody knows, a two-term relation is called transitive 
if and only if, for any three things, it obtains between the first and



the third provided it obtains between the first and the second as 
well as between the second and the third. Since I just defined it, 
transitivity obviously is a defined relation2. As to its being logical, 
one merely has to convince one’s self that the definiens, that is, 
the clause following ‘if and only if’ in the definition I just wrote 
down, contains only logical words. This is indeed so. The only two 
words about which one could have any doubts are ‘thing’ and ‘re
lation’. In a schematism these two words would be represented by 
what are called variables of unlimited range. That such variables 
are logical signs is indeed plausible. Even so, the case must be 
argued; it can of course be argued; but I am sure you will not ex
pect me to expound so subtle a point in the philosophy of logic 
proper on this occasion. I instead call your attention to the fact 
tha t when we say of a descriptive character that it has a certain 
logical character, e.g., that being longer is transitive, then we state 
an empirical law, while when we say the same thing of a logical 
character, then we state an analytic truth.

We notice, then, that the descriptive relation of being longer, 
whose field is the class of (straight) sticks, shares a logical property, 
namely, transitivity, with the logical relation of being larger, whose 
field is the class of (real) numbers. It is easily shown that the same 
holds for the descriptive relation of being equally long in the field 
of sticks and the logical relation of identity in the field of numbers. 
They, too, share some logical properties, e.g., they are both sym
metrical, transitive, and reflexive. Similarly, there are certain 
logical relations exemplified by longer and equally long in the field 
of sticks as well as by larger and identical in the field of numbers3. 
I shall express this state of affairs by saying that the two fields, 
that of sticks and that of numbers, share with respect to these 
two pairs of relations a certain structure, or a certain logical 
structure. This, by the way, is one specific meaning of that desper
ately vague word, structure. I hurry to add that the word field, 
in the sense in which I use it here, also can and must be defined 
precisely. But I trust no harm will be done if, for brevity’s sake, 
I shall continue to use it without further explication.

3 There are no undefined logical relations.

3 Let R  be the logical relation between two relations r  and s that is defined by 
Df.

R (r , s) — {x, y, z) [r (x , y) ■ s(x, z) D s(y,  *)■].

Substitution of ‘equally long’ and ‘longer’ for ‘r’ and ‘s’ respectively yields, 
for the case of length, one of the axioms of rank  order.



I am now ready to generalize from our example. Consider two 
classes of objects (I use ‘object’ very broadly, really only to fill the
need for a grammatical “object”), a, b, c, ............. and a, p, y,
............. . such tha t the first is the field of 11 relations, ru r2,
.......... , r,„ the second the field of 11 other relations, pi, p2, ps,
................ p„.  Assume that these two groups of relations share a
certain logical structure in which /■, corresponds to pi, r2 to p2, and 
so on, up to and including n, as in our example being longer and 
equally long correspond to being larger and being identical, re
spectively. If this is so, then it will often be possible to coordinate 
to each object a of the first field one and only one object a of the 
second field so that a certain relation r obtains among objects of 
the first field if and only if the corresponding relation P obtains 
among those objects of the second field which are coordinated to 
them. Again I must warn you that all this is not as precise as it 
can and must be made. But again, it will serve our very limited 
purpose. In the case of measurement, the a and the p are of course 
the numbers and the arithmetical relations among them ; the ob
jects a and the relations r are the things we measure and the de
scriptive relations among these things. What makes measure
ment possible is tha t the two fields share a certain logical structure. 
But then, as we just saw, to say that a descriptive relation or a 
group of such has a certain logical structure is the same thing as 
to say that these relations satisfy certain empirical laws. It follows 
that measurement can be introduced into a field if and only if the re
lations which obtain among its things fulfill certain empirical laws.

I am virtually certain that some of you are ready to question 
the value of all this strained and studied generality. Let me antici
pate this sort of criticism. With respect to our example I have, 
roughly speaking, said no more than this. Since any two straight 
sticks are either equally long or one is longer than the other and 
since being longer is transitive, one can to each stick so coordinate 
a number that (1) two sticks are equally long if and only if the 
numbers coordinated to them are identical and that (2) one is longer 
than the other if and only if the number coordinated to the former 
is larger than that coordinated to the latter. (This, by the way, is 
merely a rank order and therefore not yet as desirable a measure
ment as can be established in view of the so-called additivity of 
length.) I grant cheerfully that you have known this before. Yet 
I insist that there was some point to our labors. The example is 
obvious. Naturally; examples ought to be obvious. The point is 
that the formulation I based on it is so general that it comprehends 
everything and anything any scientist, either physical or bio



logical or behavioral, ever called and, I venture to predict, ever 
will call measurement. If, for instance, some among you wonder 
whether the formulation also comprehends what physicists call 
vectors (behavior scientists speak of multiple scores or profiles), 
let me remind them that what goes for numbers also goes for 
ordered pairs, triples, and n-tuples of numbers, if for no other 
reason than th a t these latter entities are themselves defined in 
terms of numbers. The generality we achieved is thus complete; 
and to have achieved such generality is the same thing as to have 
analyzed or explicated the logical nature of measurement. In what 
follows I shall support this contention by showing tha t some fur
ther comments, which are I think of some interest, all flow from 
our general formulation.

Measurement, I suggested, is the assignment of numbers to 
things according to certain rules. The word rule in this formula 
is ambiguous. Yet I used it deliberately, because I was then not 
ready to dissolve the ambiguity. Now I am. One meaning of ‘rule’ 
is that of convention. Rules in this sense are arbitrary or matters 
of social agreement. Another meaning of ‘rule’ is that of law of 
nature; and there is nothing arbitrary or conventional about laws 
of nature. As to our formula, I now amend it to read tha t measure
ment is the assignment of numbers to things according to both laws 
and conventions. The laws on which measurement is based are of 
two kinds. To distinguish among them, it will be convenient to 
introduce a new term. Instead of always speaking laboriously of 
a field and the descriptive relations within it, I shall, as one usually 
does, speak of a dimension. Measurement may then be based on 
no other laws than those within the dimension, that is, on no other 
laws than those connecting its descriptive relations. Such measure
ment is called fundam ental. This is the only case we have so far 
considered. Or measurement may also utilize laws that connect 
the characters of one dimension with those of others. Such mea
surement is called derived. I shall attend to it presently. As to 
the conventions entering measurement, we often find that even if 
we utilize as many empirical laws as we possibly can, the co
ordination of numbers to things is not yet uniquely determined. 
Consider two obvious examples. If the empirical laws utilized are 
those of a rank order and of nothing else as, for instance, in the 
Mohs hardness scale, then any assignment of numbers tha t pre
serves the order is as good as any other. But even in the case of 
a measurement as desirable as the ordinary measurement of length 
the choice of the so-called unit is still a matter of convention. The 
result of the assignment of numbers to the things of a dimension



according to certain laws and conventions is called a scale. Thus 
we are led to make another distinction. We had better not confuse 
a dimension with the several scales tha t may be constructed to 
measure it.

Straight sticks can be ranked. In such a rank order a one-inch 
stick may receive rank 1, a seven-inch stick rank 2, a 19.5-inch 
stick rank 3, and so on, quite wildly, provided only that the longer 
stick always receives the higher rank. But sticks can also be 
measured in the ordinary way, say, in inches. Everyone agrees that 
the second measurement is more desirable or better than the first. 
This agreement sets us the task of stating exactly what it is that 
we mean when we express such preferences. The answer is not 
difficult. The essence of measurement is tha t some arithmetical 
relations among the numbers assigned correspond, by virtue of a 
shared logical structure, to descriptive relations among the things 
to which they are assigned. The measurement we prefer to others 
is so constructed that a m axim um  number of arithmetical relations 
has such descriptive correlates or, as one also says, empirical mean
ing. In a mere rank order, for instance, the so-called equality of 
differences has no empirical meaning. Specifically, it makes no 
sense to say that the difference in hardness between two minerals 
of Mohs ranks 2 and 4 is equal to that between two minerals of 
ranks 7 and 9. What holds for a rank-order hardness also holds 
for a rank-order length. In ordinary length measurement, on the 
other hand, the equality of differences has a familiar meaning to 
which I shall presently attend. First, though, I should like to 
make another point. The first one who saw it was, as far as I 
know, the great Helmholtz, in his essay “Ueber Zaehlen und Mes- 
sen.”

It follows from our explication that counting is not a species 
of measuring, or perhaps better, mere counting is not yet measuring. 
The reason is that numerosity, that is, being of a certain number, 
is a logical property of classes, not of things, and tha t the grouping 
of things in classes, in the sense of ‘class’ which is here relevant, 
is arbitrary in a sense in which the grouping of things on the basis 
of the descriptive characters they exemplify is not. This, however, 
is not to deny that counting may be an ingredient of measuring. 
It very often is. If, for instance, we assert that a certain ledge is 
three inches long, we have counted the layings-off of a unit. But 
then, these layings-off are the descriptive relational ingredient 
that is not to be found in mere counting.

The peculiar excellence of ordinary length measurement rests 
on tha t feature of the dimension which is known as additivity.



Again, I am sure that you know what is involved. To remind your
self, remember the two sentences with which I started, ‘5 +  3 =  8’ 
and ‘5 feet and 3 feet are 8 feet’. I shall again state the matter as 
generally as possible. A dimension is called additive if and only if 
it permits of an operation within it that fulfills two conditions. 
(1) The operation, called “physical adding,” coordinates uniquely 
to any two objects of the dimension a third, called their “physical 
sum.” (2) The descriptive operator has the logical structure of 
arithmetical addition. In the case of length the physical operation 
consists, schematically speaking, in laying two straight sticks end 
to end in a straight line and then either nailing or gluing them 
together. Now for two comments. First: Notice tha t I spoke of 
operations within the dimension. What that excludes is best 
shown by examples. Take temperature, which is a linear but not 
an additive dimension and assume that a rank-order scale for it 
has somehow been constructed. Suppose tha t someone proposes 
to make this rank order additive by defining as the “sum” of ranks 
Tx and T2 the rank T1 T2. We shall point out to him tha t he has 
done nothing of the sort, since in his definition no physical oper
ation is mentioned. All he has said, in a rather misleading manner, 
is that the number 7\ +  7’2 is the arithmetical sum of the numbers 
T i and T2. Assume next tha t someone else proposes as the physical 
sum of temperatures 7\ and T2 the temperature T  tha t prevails 
in two objects, originally of temperatures 7\ and T2, respectively, 
after they have been brought into contact and thermic equilibrium 
has established itself. This time there is a physical operation. Un
fortunately, it does not fulfill our first condition. 7” , as we all 
know, is not uniquely determined by 7\ and T2. This defect, how
ever, can be remedied. If we specify that the two bodies are to be 
of the same weight and of the same chemical composition, then T' 
is uniquely determined by 7\ and T2. Thus, our first condition 
being fulfilled, it would seem that we have at least a candidate for 
a physical sum. Again, we all know that however the rank order 
may have been scaled, this operation does not fulfill our second 
condition, tha t is, it does not have the logical structure of addition. 
This, though, is not the point I want to make. The point is, rather, 
that even if the second condition were fulfilled, the operation 
would still not be one within the dimension since, in order to secure 
the definiteness of T' we had to draw upon extraneous factors,



namely, the dimension of weight and chemical composition4. Sec
ond: Notice tha t I spoke throughout of the additivity, not of a 
scale, but of a dimension. To grasp this point, consider again 
length, this time scaled logarithmically, that is, the way we actually 
measure it when we use a slide rule. With this scale the number 
assigned to the physical sum is not, as with the ordinary scale, 
the arithmetical sum but, rather, the arithmetical product of the 
numbers assigned to its physical constituents. All one can say, 
therefore, is this. If a dimension is additive, which is an empirical 
matter and not one of scales, then it can always be so scaled that, 
as in the case of ordinary length, the number assigned to the 
physical sum is the arithmetical sum of the numbers assigned to 
its physical constituents.

We have come upon a new question, namely, whether it is merely 
a m atter of habit that we prefer, as we actually do, except for 
some very special purposes, the ordinary foot-rule scale to the slide- 
rule scale of length. The answer, which is again quite general, is 
this. Other circumstances being equal, we prefer tha t scale which 
gives to a maximum number of laws, or, perhaps, to a  certain group 
of laws in which we are specially interested, the simplest mathe
matical form. In a sense there are thus rational grounds for this 
kind of preference, too. If I say “in a sense,” it is because I, for 
one, believe that the notion of simplicity itself is by no means 
simple, or, perhaps better, that it is essentially a psychological 
notion. This, however, is a long story and a rather controversial 
one a t that. So I shall assume that we know what we mean by 
mathematical simplicity and show next how this notion operates 
in the case of derived measurement.

With a few idealizing assumptions it is possible to introduce 
through fundamental measurement a rank order in the dimension 
known as density. In the case of nonmixing liquids, for instance, 
we discover that when we pour any two of them together either one 
always goes to the top or the one poured last, whichever of the two 
it may be, stays at the top. On these two empirical relations a rank 
order can be based. Such a rank order may be quite wild; say, 
olive oil 1, water 2, concentrated sulfuric acid 17, and so on. Assume

* Some might object tha t by analogy with this example even mass and weight 
would not be additive and, perhaps, not even rankable within the dimension 
since, if we use a balance based on the lever principle, we must specify tha t 
its arms are of equal length. I would answer tha t in this case the extraneous 
dimension, length, is not, as in my example, a relevant property of the ob
jects to be scaled. Or, to speak metaphorically, the balance plays the role of 
a parameter, not that of a variable.



next that we have also discovered the law that connects this
J

dimension with two other ones, namely, weight and volume, each 
of which is additive and already provided with a scale very rich 
in empirical meaning. The law is, of course, that the rank order 
we established by fundamental measurement is identical with that 
produced by the quotient of weight over volume. Under the cir
cumstances we may choose these quotients themselves as the 
numbers of our original rank order. What we achieve by this 
choice is that the law connecting the three dimensions takes the 

W
simple form d — I am sure y°u see how this example hits two

birds with one stone. It shows how arithmetical simplicity enters 
and it also shows what we mean by derived measurement. For de
rived measurement, you remember, is measurement that utilizes 
the laws which connect the characters within a dimension with 
extraneous ones. Ordinary density is thus a derived scale with 
weight and volume as the extraneous dimensions. In the case of 
density, we saw, fundamental measurement within the dimension 
is, a t least in principle, possible. But there is also the possibility 
of defined magnitudes such tha t no scale can be based on any re
lations among them, so that we can in their case no longer strictly 
speak of a dimension. Even in these cases very satisfactory mea
surement may be possible. All tha t is needed is that the defining 
magnitudes be satisfactorily scaled. The definition then yields auto
matically a meaningful scaling of the magnitude defined. That is, 
as it were, the limiting case of derived measurement. The centi- 
meter-gram-second units of theoretical physics are probably the 
most important application of this idea.

I am ready to sum up. Details and some unavoidable prepa
rations apart, I have asked and answered two questions. The first 
question was: How is it possible for arithmetical relations among 
numbers assigned to things to mirror descriptive relations among 
these things themselves? The answer is: By virtue of a shared 
logical structure. The second problem with which I dealt is in both 
question and answer a corollary to the first. The question w as: On 
what rational grounds do we prefer one measurement to another? 
The answer is: We call that measurement best which manages to 
endow a maximum of arithmetical relations with empirical mean
ing. A little reflection will show you that these are the only two 
problems with which, however sketchily, I have dealt. They are 
indeed the logical heart of the matter, although they are not the 
whole of it. In conclusion I shall therefore at least mention four 
further issues that arise in the logical analysis of measurement.



1. There is an important difference between, say, assigning a 
number to the momentary strength of an electric current in a wire 
and assigning numbers to the momentary position or velocity of an 
electron. The difference is not that in the case of the current we 
read the number directly from a dial while in the other case, that 
of the electron, we obtain it by computation from the number or 
numbers read from one or several dials. The difference is, rather, 
that the strength of a current can be defined in terms of what we 
are directly acquainted with while such entities as electrons belong 
to what is called a model or, more generally, a partially interpreted 
calculus. I t follows that in the case of the electron the numbers 
assigned depend essentially on the features of the model itself as 
well as on the way it is fitted to what we are acquainted with. To 
appreciate the importance of the distinction consider the possibility 
that by the very way the model is constructed and fitted it yields, 
even upon the most accurate measurement, not a definite value of, 
but merely a range for, say, the position of an electron. Clearly, 
such indeterminacy in assignment must be distinguished from what 
could reasonably be meant by a lack of accuracy in measurement. 
As you know, situations whose analysis requires this distinction 
actually occur in modern physics.

2. No measurement yields or ever will yield a real number. In 
the ordinary course of events we are satisfied with two or three 
digits; to ascertain reliably five or six digits is, as every scientist 
knows, a major effort. All we obtain operationally are thus frac
tions. In our computations we nevertheless consider those frac
tions as real numbers or as approximations to such. The advantage 
of this procedure is essentially computational, tha t is, logical. That 
it is advantageous, there is no doubt. The question that arises 
concerns the legitimacy of the jump from the fractions which we 
actually obtain through physical operations to the real numbers 
with which we “operate” verbally. The answer is that whenever 
we do mention real numbers in synthetic statements we have in 
effect introduced a partially interpreted calculus.

3. I just spoke several times of accuracy and once of reliability. 
These words, too, stand in need of elucidation. Reliability is a 
statistical notion, defined by some such terms as, say, the inverse 
standard deviation of a series of successive measurements. What 
I mean by precision is, simply, the number of digits of a given unit 
ascertained in a single measurement. The word accuracy is, I be
lieve, often used very inaccurately. The two clear notions are 
reliability and precision. When we speak of accuracy, we mean



either the one or the other or, perhaps, some ill-defined compound 
index of both.

4. Imagine a temperature measurement so precise tha t the 
heat exchange between the measuring instrument and the system 
measured cannot be neglected. In this case we do not expect re
peated measurements to yield the same result. Quite to the con
trary, we would be baffled if they did. This shows tha t the ex
plication of reliability I just suggested is not yet as general as it 
could be and, therefore, ought to be. The general issue involved is 
that of the interaction, or possible interaction, between the object 
measured and the yardstick with which we measure it. This issue, 
too, arose in a rather radical form in modern physics. Its analysis 
leads far beyond the limits of this very elementary discussion.*
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