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I have been invited by the Iowa Institute of Hydraulic Research 
to render my views on the subject of hydraulic shape resistance. 
This subject struck me right away as being particularly timely 
and wisely chosen. For in the fluid-motion research of the last 
decade we have been treated to so much progress on many other 
fascinating subjects — such as compressibility, and boundary lay
ers (even several kinds of the latter making their appearance both 
separately and in combination), not to mention shock waves and 
laminar boundary wing sections — that, in the excitement about 
all this, I am afraid shape resistance has somewhat been forgotten. 
I t is right that there again appear a paper about it, be it only to 
remind us that there is still such a thing as shape resistance. For 
when the need is greatest and the pilot takes to his parachute and 
bails out as a last chance to save his life, he can in no way do with
out it.

The aerodynamic brakes of dive bombers depend likewise on 
shape resistance. Without it, on the other hand, streamlining 
would be unnecessary and the friction drag could be greatly cut 
down. The profile drag of airfoils could likewise be reduced, for 
the limitation of the lift capacity of wings is closely tied up with 
their shape resistance. For all of this, shape resistance stands in 
Utter contempt with the engineers, notwithstanding its useful
ness just alluded to. Here, as so often happens, good services are 
more quickly forgotten than unfriendly actions. The physicist has 
no excuse for such bad feeling. To him, the phenomenon of shape 
resistance is, or should be, attractive and instructive, a thrilling and 
inspiring manifestation of the laws of fluid mechanics.

Before going further into this, shape resistance has to be formal



ly introduced. It is not always easy to separate it strictly from 
friction effects. There are border cases where this is very difficult 
indeed. But what could we accomplish if we would permit.the 
abandonment of proper and useful distinctions and classifications 
on account of inconvenient border cases? There are enough cases 
where the shape resistance is clearly defined. It is this portion 
of the entire problem of flow resistance, often its major portion, 
which is directly associated with the interaction of the mass effects 
and the pressure effects of the fluid, to the exclusion of its im
mediate friction effects. That is to say, shape resistance is an 
incident of such features of the flow of actual fluids as resemble 
and are dominated by the laws of the motion of perfect fluids.

This definition gives the lie to the so-called hydrodynamic para
dox. The discoverer of that paradox failed to receive any assist
ance from his mathematical analysis of the motion of perfect fluids 
in an attempt to compute the flow resistance, in that he succeeded 
only in computing the absence of such resistance. So he made the 
best of it, and reported his failure to the world as a paradox. But 
absence of resistance does not follow at all if we do not expect the 
fluid to be too perfect, but are satisfied with a perfection within 
reasonable limits.

All physical fluids exhibit viscosity, and it is going rather far to 
stipulate that their frictional effects shall be considered unnotice- 
able within the fluid, so that the forces transmitted from one fluid 
particle'to an adjacent particle are always and necessarily at right 
angles to the common boundary through which they are trans
mitted. That is the assumption defining perfect fluids. The 
framer of the hydrodynamic paradox went beyond that and further 
assumed the law to be retroactive and extreme. He also assumed 
the friction effect to be negligible at the external fluid boundaries, 
at the walls of immersed objects or of the fluid container. This, 
however, is not a good representation or idealization of what hap
pens or can reasonably be expected to happen, for the friction 
forces are proportional not only to the magnitude of the viscosity, 
but also to the crowding of velocity differences within the fluid. 
Near the walls is great crowding of velocity differences, and the 
smaller the viscosity the larger the crowding, so that very notice
able friction forces must be expected at the walls regardless of 
whether the viscosity is ever so small or not.



Aerodynamics, at an early stage of its development, abandoned 
therefore the exaggerated assumption of absence of friction even 
along the walls, and in that manner obtained numerical results 
correctly representing important features of the facts, and of 
great value for practical application. The fluid is permitted to 
glide layer over layer where it has once been separated by an ob
stacle, or, more generally, where it once has been in contact with a 
solid surface. Such gliding has, however, always to be a sideways 
gliding only, or, as the mathematicians put it, the vortex lines 
have to coincide with the stream lines in steady flows, and in 
unsteady flows they have to move with the fluid. Any other kind 
of gliding would require friction effects within the fluid, which ef
fects are still assumed negligible.

In some cases the flow may be steady, offering at all times the 
same picture to the eye of the observer. The airfoil flows which 
have been so intensely and successfully studied during the last 
decades form outstanding examples of this. Their trailing vortex 
system represents a gliding of adjacent air layers of the type refer
red to in the preceding paragraph. In this particular case the shape 
resistance has received the name of “ induced drag,” and the in
duced drag of technically employed airfoils is not much larger 
than the absolute minimum consistent with the lift of the airfoil 
under the prevailing conditions.

The total induced drag of more than one airfoil has not neces
sarily to be associated with a total lift or side force of any definite 
amount. Consider, for instance, the combination of a pair of oppos
ing airfoils, the one in normal position and the other inverted, both 
airfoils being otherwise equal and in symmetric position. The two 
lifts, one positive and the other negative, then cancel each other, 
so that no total lift remains. But the two induced drags sum up. 
Here then we have a genuine shape resistance not accompanied by 
any total lift or side force.

The two airfoils may be bodily connected with each other by 
members not producing any lift. Also, an airfoil may be bent into 
a loop such as a circle, forming then a wing-section-contoured ring, 
with variable angle of attack. The angle of attack may vary peri
odically, according to a sine law say, changing sign every 90 degrees, 
circle. Such an airfoil ring does not have to remain a child of 
or every sixty degrees, or any other even fraction of the complete



phantasy. It can easily be made and studied experimentally. I t  
will give rise to a substantially steady fluid motion and will exhibit 
a genuine shape resistance of measurable magnitude.

The fluid motion and its shape resistance can be predicted for 
the wing-section-contoured ring with moderate angles of attack 
because it is possible to see beforehand where the split fluid stream 
will reunite again. Experience and common sense agree that this 
will be at the trailing edge. With a blunt solid forming an obstacle 
in a flowing medium, the situation is different. In this case it is 
not known where the place of reunion of the fluid will be. Unless 
all fluid reunites practically at one point, this must be a line. With 
a simple solid, without perforation like a ring, this line must not 
enclose any area. Otherwise there would be fluid forming a flow 
system by itself with loop-shaped streamlines, like fluid moving 
within a closed container. That would not be in harmony with 
energy considerations. A body of immovable fluid behind a solid 
would, on the other hand, not be in equilibrium, and might also 
involve vortex lines at its boundary which did not move with the 
fluid.

The question arises at this point whether every such line, simple 
or branched, but not enclosing any area, is a theoretically possible 
line of reunion. The question arises, whether a distribution of 
vortices exists which trails from such a line and makes it in turn 
the reunion line. From analogy with the wing theory, it is likely 
that this question has to be answered in the affirmative. A mathe
matical investigation of the question would lie welcome.

Assuming for the time being that all such lines can be reunion 
lines, and that their shape and location determine the distribution 
of the strength of the trailing vortices, it would appear that an 
infinite variety of such steady quasi-potential flows is possible, each 
being associated in general with a different shape resistance. This 
kind of shape-resistance flow is dependent on the presence of local 
lift or side forces. They cannot be very large. I t  is therefore not 
likely that a simple blunt body derives a considerable shape resist
ance from a steady quasi-potential flow.

Before proceeding to unsteady quasi-potential flows, it remains 
to be mentioned that any quasi-potential flow relies on friction 
effects for coming into being. Once the flow has been established,



it can maintain itself in the absence of any further friction effects, 
but not in the presence of each and every friction effect, as we 
shall immediately see.

The relation between friction as the cause and quasi-potential 
flow as the effect fits very imperfectly into the usual picture of 
physics. Unlike the usual workings of the ordinary laws of physics, 
cause and effect are here too disproportionate; friction forces and 
mass forces are not in team work but rather in the relation of the 
driver to the horse. Physics deals ordinarily and preferably with 
happenings which are altogether in proportionate relation. Not
withstanding the classical simplicity of the basic laws of fluid 
motion, the fluids seem to exhibit in the most primitive way the 
working of cause and effect as we are accustomed to find in biology, 
not to go as far as human actions or the fate of nations. Even 
there, cause and effect are never suspended, but are a necessary 
ingredient of conception and thinking. But, the higher the order 
of manifestation, the more do cause and effect recede to the 
humble station akin to afterthought, a principle of arrangement 
not to be relied on for the prediction of events. Strange, that 
the motion of dead, homogeneous fluid so distinctly exhibits the 
weak significance of cause and effect.

Not too much hope should therefore be entertained for ever 
learning how to genuinely compute the shape resistance in all cases. 
Its simple physical laws do not do much good, because they do not 
work in a simple manner. Physics is successful only where both 
the laws and occurrences are simple.

If the fluid friction is essential in electing out of the infinitely 
many theoretically possible steady potential flows about a blunt 
body the particular one that takes place, it may easily continue to 
play its role of controlling large forces through very small ones. 
A series or plurality of quasi-potential flows may alternate more or 
less gradually. If  the rate of change is fast enough, the unsteady 
quasi-potential flows are different from the steady ones, and the 
number of the possible motions is thus again infinitely increased.

Any change would be impossible as long as all vortex lines 
strictly move with the fluid at all places, for the velocity at the 
reunion points is zero, and, strictly speaking, the surface fluid 
particles cannot cross this point. This is a mathematical truth 
which is not in keeping with common sense. To reconcile conditions,



it is not necessary to give up Helmholtz’s theorem entirely. A very 
feeble relaxation is sufficient, the fluid velocity in the vicinity of 
the reunion line being practically zero, and vortex transit there 
requiring next to no friction forces. This is therefore the region 
most and genuinely exposed to the working of small friction effects. 
That is to say, the line system of the reunion of the fluid may 
easily move, steadily and continuously, from one position to the 
next. The line must be supposed to wander, yielding to friction 
effects hard to follow up. Unsteady quasi-potential flows with 
wandering reunion lines is therefore the picture which has been 
formed for the description of the essential character of fluid motion 
associated with shape resistance.

This most general type of quasi-potential shape-resistance flow 
is still to be considered perfect, in that in the first place no energy 
dissipation or creation of frictional heat is considered to take 
place. All energy is primarily used for supplying kinetic energy. 
There come into being local and more often total side forces or lift 
forces, periodically changing in direction and magnitude. Their 
components in the direction of flow form the shape resistance. 
The effective fluid motion relative to the blunt body is inclined to 
the path of flow, and hence the side forces and lift forces, being at 
right angles to the local flow, are not at right angles to the path of 
motion, but have resistance components of the nature of the 
ordinary induced drag.

If  we consider that for a circular cylinder or a flat strip moving 
sideways, for instance, the shape resistance is great enough to give 
average resistance pressures larger than the dynamic pressure, it 
appears that the local and temporary lift coefficients must be 
enormous. They must be much larger than a drag coefficient of 
unity because in the first place they act during only a portion of 
the entire time, say during one-half of it, and because in the second 
place only a component of the lift or side force forms the resistance, 
say one-half again in magnitude. Such rough estimate would 
suggest lift coefficients having a magnitude of 4 or more. A wing 
section having permanently or steadily a lift coefficient of 4 would 
exceed in lift capacity all wing sections technically used. Here 
then the shape-resistance flow shows something outstanding, com
manding our astonishment. The mechanism of momentum exchange



between a simple fluid and a blunt body seems to be very worthy 
of intense study.

The great discoveries in physics of the past came from the study 
of phenomena which seemed utterly unprofitable and unusable. 
No such study failed to contribute something useful and instructive. 
Weighing, measuring, observing along paths already trodden hard 
is surely necessary, but that is not science nor is it basic, and the 
efficiency of such routine work is relatively small. I t  is often 
fishing where most of the fishes have already been caught, grazing 
where most of the grass has already been eaten. The true places of 
fluid research in this country should divorce themselves more than 
they do now from such routine measurement, often performed with 
new and costly equipment which nevertheless was already out of 
date before it was completed, and had long ago served its purpose. 
Basic and scientific experimental research knows no permanent 
and standard test equipment. Let idle and academic scientific 
curiosity have its way more than it now does. As to shape resistance 
and quasi-potential flow, find out what happens under controlled 
laboratory conditions, for which the sensitive and nervous flow 
pattern, ever so ready to change and to accommodate itself to ex
ternal influences of small magnitude, is a most interesting subject 
of study.

Of course, unscientific and thoughtless weighing and measuring 
will not get anybody very far. Bach test has to be prepared and 
followed up by profound scientific and mathematical analysis. 
That is hard and thankless work, but its outcome may be profound. 
One apparently minor discovery may change an entire continent. 
The outcome of the present war may be vitally influenced or even 
decided by a development relating to fluid motion which started 
from such apparently unprofitable playfulness of some genuine 
scientists and physicists.

With that in mind, and being unwilling to come before you with 
empty hands, so to speak, with nothing but generalities (true, 
perhaps, but unfruitful by themselves) may I, by way of closing 
this paper, ask for a little more of your attention. May I take the 
opportunity to present an improvement of a mathematical tool 
helpful in dealing with shape resistance, as a minor but more 
tangible contribution to the science of hydraulics.



Shape resistance is intimately interwoven with interchange of 
momentum, or of moment of momentum, and of energy. There 
exist theorems or mathematical rules by the use of which the 
momentum, the moment of momentum, and the kinetic energy of 
bodies of fluid in motion can be computed by an integration 
through such regions only where the motion has vorticity. That is 
a great simplification and there should be opportunity for using 
these integrals in the study of shape resistance.

Only recently did I arrange these theorems, and allied ones, in 
systematic order, and also a few new ones that may be of use [ l ] .1 
The following relates specifically to that paper.

These theorems give the quantity in question in the form of 
simple integrals, the integrand containing the radius vector “ r ” 
as factor—namely, the vector connecting a point of origin with the 
point to which the integration refers. These are three-dimensional 
integrals, space integrals, and surface integrals through surfaces 
that may extend in any fashion through the three-dimensional 
space. The fluid motion is supposed to be general throughout; no 
assumption restricting the motion to a two-dimensional flow is 
made.

In the application of these integrals, two-dimensional problems 
readily make their appearance. They are much simpler, and still 
may be general enough to bear out an essential point. Two- 
dimensional flows can easily be depicted 011 paper; they can be 
more easily comprehended mentally by the optical picture they 
present. The question arises, therefore, whether the three- 
dimensional integrals just referred to possess or lead to analogous 
two-dimensional theorems for use with two-dimensional flows, and, 
if so, to which, because the application of a three-dimensional 
integral to a two-dimensional flow is cumbersome, and the 
advantage of the restriction to two dimensions becomes immediately 
lost.

These integrals in question were obtained by tentatively writing 
down expressions containing the radius vector and the rotation or 
the divergence of the velocity, being otherwise of correct geometric 
dimensions. The differentiation occurring was then executed on r. 
Previous to executing the differentiation, the correctness of the

1 Reference appears at the end of the article.



transformation occurring does not depend on whether r denotes the 
radius vector or any other vector field.

Let it now be assumed that the vector field v  of the velocity 
be plane and two-dimensional, and that a new quantity r be intro
duced as a substitute for r, r, denoting the corresponding axial or 
two-dimensional radius vector—namely, the projection of any 
radius vector r on the plane of the two-dimensional flow. Three 
different kinds of differentiation occur, the dyadic, the vectorial, 
and the scalar product of A  by r or by r, giving respectively the 
derivation dyadic (or its conjugate), the rotation, or the 
divergence.

The rotation of the common radius vector is zero. So is the 
rotation of the axial or two-dimensional radius vector. In this 
respect, therefore, there is no difference between the three-dimen
sional and the two-dimensional case.

The dyadic differentiation of the common radius vector gives 
the identity dyadic, which, when multiplied by any vector, more 
particularly by the vector v, gives that vector, or v  again. The 
derivation dyadic of the axial radius vector is not the identity 
dyadic, but it can serve as such with respect to the two-dimensional 
flow in question, because when multiplied thereby it likewise gives 
v  again. In that respect then, too, the inquiry looks promising.

The divergence, at last, of the radius vector r is equal to 3. The 
divergence of the axial radius vector r is only 2. The mathematical 
development has accordingly to be scrutinized, paying particular 
attention to how far the change from 3 to 2 will affect the result.

Beginning with the expression of the momentum by means of 
the divergence

dS v =  f d S  V' t )  r +  f d o - v r  

only the dyadic product of r  and V occurred. Hence the theorem 
can be directly applied to two dimensions, without any change in 
form. There too, the momentum is equal to the static moment of 
the divergence and of the flux.

I t is different with the vector moment of the rotation. 
( V ■, r  • v — v  \ /  ■ r) is — v and is not — 2v, because the diver
gence is now 2 and not 3. It follows that in two dimensions the 
momentum equals the entire vector moment of the rotation and of 
the roll and not one half of that, is in three dimensions.



The surface integrals of the two end planes cancel each other 
for both momentum integrals.

The several theorems about the computation of the moment of 
momentum do not make use in their derivation of any divergence 
of r. I t follows that the substitution of the axial radius vector for 
the general radius vector is permissible without modification of the 
theorems. The two-dimensional integration does not include the 
two plane end faces, and the outcome is the component of the 
moment of momentum at right angle to these faces.

Preceding at last to the integral for the kinetic energy, there 
occurs, in Eq. (23) of the above paper, the following difference:

— v ■ y  ; r  • v  +  i/2 ( V ' r ) v ' v

the first term containing the identity diadic and giving simply
— v • v, the second term containing the divergence and giving 3/2 
v ■ v ■ Summing up the factor of v • v  appears therefore 1/2, the 
difference between 3/2 and 1.

Changing now to the two-dimensional flow, and to the axial 
radius vector, both terms of the above difference become equal. 
The first term remains the same, and the second term receives the 
factor y 2 times 2, or likewise unity. Hence the proof is not trans
ferable to the two-dimensional case, and it follows that the energy 
theorem (26) of the above paper holds only in three-dimensional 
statement.

I t results then that one of the two momentum theorems changes 
its factor, the moment of momentum theorems survive in form, but 
the energy theorem cannot be used at all with the axial radius 
vector.
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