Location

Big Sky, Montana

Date

23-6-2009

Session

Session 3 – Poster Session A

Abstract

Older drivers are at risk for vehicle crashes due to impairments of visual processing and attention, placing these drivers at greater risk in driving tasks that require continuous attention to neighboring traffic, especially lead vehicles (LVs). We investigated car following behavior in 42 younger drivers (ages 18 to 44 years) and 58 older drivers (ages 65 to 86 years) in a driving simulator. The drivers were instructed to maintain two car lengths from a virtual LV. The LV varied its velocity according to a sum of three sine waves, making the velocity changes unpredictable to the drivers. A Fourier analysis was performed using the vehicle trajectory data to derive measures of coherence, gain, and delay as indices of car following behavior. These measures as well as headway distance were compared between the two groups. Older drivers were less able to match changes in the LV velocity indicated by lower coherence (0.76 v. 0.84, p=0.019) and larger gain (2.24 v. 1.74, p=0.031). However, these drivers followed further behind the LV than younger drivers, a potential compensatory strategy that may reduce collision risk for older drivers.

Rights

Copyright © 2009 the author(s)

DC Citation

Proceedings of the Fifth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, June 22-25, 2009, Big Sky, Montana. Iowa City, IA: Public Policy Center, University of Iowa, 2009: 76-82.

Share

COinS
 
Jun 23rd, 12:00 AM

Differences in Simulated Car Following Behavior of Younger and Older Drivers

Big Sky, Montana

Older drivers are at risk for vehicle crashes due to impairments of visual processing and attention, placing these drivers at greater risk in driving tasks that require continuous attention to neighboring traffic, especially lead vehicles (LVs). We investigated car following behavior in 42 younger drivers (ages 18 to 44 years) and 58 older drivers (ages 65 to 86 years) in a driving simulator. The drivers were instructed to maintain two car lengths from a virtual LV. The LV varied its velocity according to a sum of three sine waves, making the velocity changes unpredictable to the drivers. A Fourier analysis was performed using the vehicle trajectory data to derive measures of coherence, gain, and delay as indices of car following behavior. These measures as well as headway distance were compared between the two groups. Older drivers were less able to match changes in the LV velocity indicated by lower coherence (0.76 v. 0.84, p=0.019) and larger gain (2.24 v. 1.74, p=0.031). However, these drivers followed further behind the LV than younger drivers, a potential compensatory strategy that may reduce collision risk for older drivers.