Location

Bolton Landing, New York

Date

19-6-2013

Session

Session 7 – Poster Session B

Abstract

We attempted to model attention allocation of experienced drivers using the SEEV model. Unlike previous attempts, the present work looked at attention to entities (vehicles, signs, traffic control devices) in the outside world rather than considering the outside world as a unitary construct. Model parameters were generated from rankings of entities by experienced drivers. Experienced drivers drove a scenario that included a number of intersections interspersed with stretches of straight road. The intersections included non-hazard events. Eye movements were monitored during the driving session. The results of fitting the observed eye movement data to our SEEV model were poor, and were no better than fitting the data to a randomized SEEV model. A number of explanations for this are discussed.

Rights

Copyright © 2013 the author(s)

DC Citation

Proceedings of the Seventh International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, June 17-20, 2013, Bolton Landing, New York. Iowa City, IA: Public Policy Center, University of Iowa, 2013: 334-340.

Share

COinS
 
Jun 19th, 12:00 AM

Assessment of the SEEV Model to Predict Attention Allocation at Intersections During Simulated Driving

Bolton Landing, New York

We attempted to model attention allocation of experienced drivers using the SEEV model. Unlike previous attempts, the present work looked at attention to entities (vehicles, signs, traffic control devices) in the outside world rather than considering the outside world as a unitary construct. Model parameters were generated from rankings of entities by experienced drivers. Experienced drivers drove a scenario that included a number of intersections interspersed with stretches of straight road. The intersections included non-hazard events. Eye movements were monitored during the driving session. The results of fitting the observed eye movement data to our SEEV model were poor, and were no better than fitting the data to a randomized SEEV model. A number of explanations for this are discussed.