Location

Bolton Landing, New York

Date

19-6-2013

Session

Session 7 – Poster Session B

Abstract

An overnight driving simulation scenario with partial sleep deprivation was utilized to induce driver performance impairment. Heart rate (HR) was recorded over the entire experiment; frequency domain HR measures were derived and correlated to variation of lane deviation (VLD), a driving performance measure, and to the driver's state, which was estimated by the Karolinska Sleepiness Scale (KSS). The aim of this study is to evaluate whether frequency domain heart rate measures can be used to detect impaired driver performance as well as reduced driver state. We generalize the concept of the conventional frequency domain HR measures – namely the very-low frequency (VLF), low frequency (LF) band and high frequency (HF) band – into finer-grained frequency bands of 0.02 Hz width. These newly defined frequency bands show a more detailed correlation to driving performance and to driver sleepiness state, taking subjectspecific differences into account.

Rights

Copyright © 2013 the author(s)

DC Citation

Proceedings of the Seventh International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, June 17-20, 2013, Bolton Landing, New York. Iowa City, IA: Public Policy Center, University of Iowa, 2013: 390-396.

Share

COinS
 
Jun 19th, 12:00 AM

Can Frequency Domain Heart Rate Measures Detect Impaired Driver Performance?

Bolton Landing, New York

An overnight driving simulation scenario with partial sleep deprivation was utilized to induce driver performance impairment. Heart rate (HR) was recorded over the entire experiment; frequency domain HR measures were derived and correlated to variation of lane deviation (VLD), a driving performance measure, and to the driver's state, which was estimated by the Karolinska Sleepiness Scale (KSS). The aim of this study is to evaluate whether frequency domain heart rate measures can be used to detect impaired driver performance as well as reduced driver state. We generalize the concept of the conventional frequency domain HR measures – namely the very-low frequency (VLF), low frequency (LF) band and high frequency (HF) band – into finer-grained frequency bands of 0.02 Hz width. These newly defined frequency bands show a more detailed correlation to driving performance and to driver sleepiness state, taking subjectspecific differences into account.