Location

Salt Lake City, Utah

Date

24-6-2015

Session

Session 5 – Lectures Research Methods & Perspectives

Abstract

The relationship between a driver’s glance pattern and corresponding head rotation is not clearly defined. Head rotation and eye glance data drawn from a study conducted by the Virginia Tech Transportation Institute in support of methods development for the Strategic Highway Research Program (SHRP 2) naturalistic driving study were assessed. The data were utilized as input to classifiers that predicted glance allocation to the road and the center stack. A predictive accuracy of 83% was achieved with Hidden Markov Models. Results suggest that although there are individual differences in head-eye correspondence while driving, head-rotation data may be a useful predictor of glance location. Future work needs to investigate the correspondence across a wider range of individuals, traffic conditions, secondary tasks, and areas of interest.

Comments

Honda Outstanding Student Paper Award winner

Rights

Copyright © 2015 the author(s)

DC Citation

Proceedings of the Eighth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, June 22-25, 2015, Salt Lake City, Utah. Iowa City, IA: Public Policy Center, University of Iowa, 2015: 204-210.

Share

COinS
 
Jun 24th, 12:00 AM

Analysis of Drivers' Head and Eye Movement Correspondence: Predicting Drivers' Glance Location Using Head Rotation Data

Salt Lake City, Utah

The relationship between a driver’s glance pattern and corresponding head rotation is not clearly defined. Head rotation and eye glance data drawn from a study conducted by the Virginia Tech Transportation Institute in support of methods development for the Strategic Highway Research Program (SHRP 2) naturalistic driving study were assessed. The data were utilized as input to classifiers that predicted glance allocation to the road and the center stack. A predictive accuracy of 83% was achieved with Hidden Markov Models. Results suggest that although there are individual differences in head-eye correspondence while driving, head-rotation data may be a useful predictor of glance location. Future work needs to investigate the correspondence across a wider range of individuals, traffic conditions, secondary tasks, and areas of interest.