Location

Salt Lake City, Utah

Date

25-6-2015

Session

Session 8 – Hybrid Presentations

Abstract

An overview of several methods of electroencephalography (EEG) analysis in order to assess driver sleepiness is presented. All methods were applied to one single data set obtained from overnight driving simulations in our lab. 10 young adults (age 22.4 ± 4.1 years) participated and drove on rural roads; time on task was 7 x 40 min and time since sleep ranged between 16 and 22 hours. Results show large inter-individual variability of all variables and moderate correlation coefficients to one subjective and one objective independent variable of driver drowsiness. Only one method, the detection of microsleep-like EEG patterns, provides a variable with strong increases immediately before sleepiness related crashes. It is concluded that EEG analysis should attach more importance to shortterm patterns and should renounce the analysis of spectral power in four bands.

Rights

Copyright © 2015 the author(s)

DC Citation

Proceedings of the Eighth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, June 22-25, 2015, Salt Lake City, Utah. Iowa City, IA: Public Policy Center, University of Iowa, 2015: 359-365.

Share

COinS
 
Jun 25th, 12:00 AM

Driver Sleepiness Assessed by Electroencephalography - Different Methods Applied to One Single Data Set

Salt Lake City, Utah

An overview of several methods of electroencephalography (EEG) analysis in order to assess driver sleepiness is presented. All methods were applied to one single data set obtained from overnight driving simulations in our lab. 10 young adults (age 22.4 ± 4.1 years) participated and drove on rural roads; time on task was 7 x 40 min and time since sleep ranged between 16 and 22 hours. Results show large inter-individual variability of all variables and moderate correlation coefficients to one subjective and one objective independent variable of driver drowsiness. Only one method, the detection of microsleep-like EEG patterns, provides a variable with strong increases immediately before sleepiness related crashes. It is concluded that EEG analysis should attach more importance to shortterm patterns and should renounce the analysis of spectral power in four bands.