Location

Manchester Village, Vermont

Date

27-6-2017

Session

Session 2 — Poster Session A

Abstract

Task analysis is a staple of ergonomics, neuroergonomics, human factors, and experimental psychology inquiry, and often benefits from granularity beyond the task level to the subtask level. The concept and challenge of identifying the subcomponents of tasks are neither new, nor solved. Practitioners routinely identify individually internally consistent and yet conflicting subdivisions. The challenge of producing reliable, valid subtask data across efforts recommends a unified framework for identifying consistent subtask divisions within tasks. A framework is here forwarded, based upon universal “antiphony” turn-taking behavior in human-human interaction, but adapted to address the highly scripted vocabulary of human-machine interaction. Practical application to a real-world vehicle interface is demonstrated, an example discussed in the light of research design, applied use, and future improvement.

Rights

Copyright © 2017 the author(s)

DC Citation

Proceedings of the Ninth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, June 26-29, 2017, Manchester Village, Vermont. Iowa City, IA: Public Policy Center, University of Iowa, 2017: 108-114.

Share

COinS
 
Jun 27th, 12:00 AM

Toward an Antiphony Framework for Dividing Tasks into Subtasks

Manchester Village, Vermont

Task analysis is a staple of ergonomics, neuroergonomics, human factors, and experimental psychology inquiry, and often benefits from granularity beyond the task level to the subtask level. The concept and challenge of identifying the subcomponents of tasks are neither new, nor solved. Practitioners routinely identify individually internally consistent and yet conflicting subdivisions. The challenge of producing reliable, valid subtask data across efforts recommends a unified framework for identifying consistent subtask divisions within tasks. A framework is here forwarded, based upon universal “antiphony” turn-taking behavior in human-human interaction, but adapted to address the highly scripted vocabulary of human-machine interaction. Practical application to a real-world vehicle interface is demonstrated, an example discussed in the light of research design, applied use, and future improvement.