Document Type

Dissertation

Date of Degree

2013

Degree Name

PhD (Doctor of Philosophy)

Degree In

Genetics

First Advisor

John M. Logsdon, Jr.

Abstract

Sex and meiosis are ubiquitous in eukaryotes as the primary mode of reproduction. This suggests that despite the theoretical energetic advantages of asexual reproduction, organisms capable of sexual reproduction are at a much greater long-term evolutionary advantage. Rotifers, a group of microinvertebrates, offer unique opportunities to examine the evolution of sex due to their extensive proliferation, successful adaptation to a wide variety of ecological niches, and the diversity of reproductive modes represented in the group. The cyclically parthenogenetic monogonont rotifers have overcome constraints on the loss of sexual reproduction in order to frequently transition between sexual and asexual generations, making them a powerful system with which to address the maintenance of sex in animals. Obligately asexual bdelloid rotifers appear to have thrived without sex for tens of millions of years, a period of time much longer than expected given the hypothesized advantages of sexual reproduction. However, the molecular nature of sex and parthenogenesis is poorly understood in any rotifer species.

To expand our knowledge of the molecular mechanisms of monogonont reproduction, we sequenced genomes of two distantly related species, Brachionus calyciflorus and Brachionus manjavacas and identified over 80 homologs for genes involved in meiotic processes. Several of these genes have undergone duplication events specific to the monogonont lineage, including genes with known roles in regulation of cell cycle transitions during meiosis. In addition, global gene expression patterns were determined using obligate parthenogenetic (OP) and cyclical parthenogenetic (CP) strains of B. calyciflorus. Quantitative comparison of expression between these strains revealed differentially expressed genes specific to sexual and asexual reproduction in this species, including genes related to dormancy/resting egg formation, meiosis, and hormone signaling pathways that are thought to be involved in the induction of sexual reproduction in monogononts. Finally, we analyzed gene expression in bdelloid rotifers for evidence of sexual reproduction or the utilization of meiotic genes under conditions inducing high levels of recombination.

Through this work, we have established molecular markers for sexuality and asexuality in monogonont rotifers, and used these markers to evaluate reproduction in bdelloids. The data generated specifically allows for more informed analyses of the evolution of cyclical parthenogenesis and rotifer reproduction. Furthermore, this work extends the use of monogononts as a model system for addressing broader questions regarding the evolution of sexual reproduction.

Keywords

Cyclical Parthenogenesis, Genomics, Phylogenetics, Rotifer, Sexual Reproduction, Transcriptomics

Pages

xvii, 289 pages

Bibliography

Includes bibliographical references (pages 245-289).

Comments

This thesis has been optimized for improved web viewing. If you require the original version, contact the University Archives at the University of Iowa: http://www.lib.uiowa.edu/sc/contact/.

Copyright

Copyright 2013 Sara Jeanette Hanson

Included in

Genetics Commons

Share

COinS