Document Type

Thesis

Date of Degree

Spring 2015

Degree Name

MS (Master of Science)

Degree In

Civil and Environmental Engineering

First Advisor

Jerald L. Schnoor

Abstract

By the year 2020, the nanotechnology market is expected to be three trillion dollars. With a quasi-exponential increase in consumer products, which contain nanomaterials, there is likely to be an equal increase in nanoparticles entering the environment. As a result, it is imperative to fully understand the relationship between nanomaterials and the food chain, including plants.

In this study, the relationship between gold nanomaterials and the edible food crop, Helianthus annuus was investigated. First, an attempt to inhibit the uptake of nanoparticles into the roots of H. annuus was investigated by decreasing temperature. Second, the interactions between citrate-stabilized 20 nm diameter Au nanoparticles and sunflower seedlings were explored by exposing sunflower to a range of concentrations (3.0-40.0 mg/L). Nanoparticle sorption to roots was estimated using a linear isotherm with a distribution coefficient, Kd. Finally, sunflowers were exposed to 20 nm Au nanoparticles and 25x69 nm CTAB-stabilized Au nanorods. Results showed there was no change in biomass growth and transpiration between sunflowers that were exposed to nanoparticles and the unexposed controls. Thus Au gold nanoparticles (20 nm) were shown to have no phytostimulatory or phytotoxic effect on sunflower seedlings during eight to ten day exposure experiments. However, 25x69 nm gold nanorods were phytotoxic to sunflowers at 6.0 mg/L, indicating a potential charge or chemical effect of the surface coating of the nanorods compared to the spherical gold nanoparticles.

Public Abstract

By the year 2020, the nanotechnology market is expected to be three trillion dollars. With a quasi-exponential increase in consumer products, which contain nanomaterials, there is likely to be an equal increase in nanoparticles entering the environment. As a result, it is imperative to fully understand the relationship between nanomaterials and the food chain, including plants.

In this study, the relationship between gold nanomaterials and the edible food crop, Helianthus annuus was investigated. First, an attempt to inhibit the uptake of nanoparticles into the roots of H. annuus was investigated by decreasing temperature. Second, the interactions between citrate-stabilized 20 nm diameter Au nanoparticles and sunflower seedlings were explored by exposing sunflower to a range of concentrations (3.0-40.0 mg/L). Nanoparticle sorption to roots was estimated using a linear isotherm with a distribution coefficient, Kd. Finally, sunflowers were exposed to 20 nm Au nanoparticles and 25x69 nm CTAB-stabilized Au nanorods. Results showed there was no change in biomass growth and transpiration between sunflowers that were exposed to nanoparticles and the unexposed controls. Thus Au gold nanoparticles (20 nm) were shown to have no phytostimulatory or phytotoxic effect on sunflower seedlings during eight to ten day exposure experiments. However, 25x69 nm gold nanorods were phytotoxic to sunflowers at 6.0 mg/L, indicating a potential charge or chemical effect of the surface coating of the nanorods compared to the spherical gold nanoparticles.

Keywords

publicabstract, interaction, nanomaterials, nanoparticle, nanorod, plant, sunflower

Pages

xii, 95

Bibliography

91-95

Comments

This thesis has been optimized for improved web viewing. If you require the original version, contact the University Archives at the University of Iowa: http://www.lib.uiowa.edu/sc/contact/.

Copyright

Copyright 2015 Meaghan Estelle Kern

Share

COinS