Document Type

Dissertation

Date of Degree

Summer 2016

Degree Name

PhD (Doctor of Philosophy)

Degree In

Physics

First Advisor

Thomas F. Boggess

Abstract

All-optical time-resolved measurement techniques provide a powerful tool for investigating critical parameters that determine the performance of infrared photodetector and emitter semiconductor materials. Narrow-bandgap InAs/GaSb type-II superlattices (T2SLs) have shown great promise as next generation materials, due to superior intrinsic properties and versatility. Unfortunately, InAs/GaSb T2SLs are plagued by parasitic Shockley-Read-Hall recombination centers that shorten the carrier lifetime and limit device performance. Ultrafast pump-probe techniques and time-resolved differential-transmission measurements are used here to demonstrate that "Ga-free" InAs/InAs₁₋xSbx T2SLs and InAsSb alloys do not have this same limitation and thus have significantly longer carrier lifetimes. Measurements of unintentionally doped MWIR and LWIR InAs/InAs₁₋xSbx T2SLs demonstrate minority carrier (MC) lifetimes of 18.4 µs and 4.5 µs at 77 K, respectively. This represents a more than two order of magnitude increase compared to the 90 ns MC lifetime measured in a comparable MWIR and LWIR InAs/GaSb T2SL. Through temperature-dependent differential-transmission measurements, the various carrier recombination processes are differentiated and the dominant recombination mechanisms identified for InAs/InAs₁₋xSbx T2SLs. These results demonstrate that these Ga-free materials are viable options over InAs/GaSb T2SLs and potentially bulk Hg₁₋xCdxTe photodetectors.

In addition to carrier lifetimes, the drift and diusion of excited charge carriers through the superlattice layers (i.e. in-plane transport) directly aects the performance of photo-detectors and emitters. All-optical ultrafast techniques were successfully used for a direct measure of in-plane diffusion coeffcients in MWIR InAs/InAsSb T2SLs using a photo-generated transient grating technique at various temperatures. Ambipolar diffusion coefficients of approximately 60 cm²/s were reported for MWIR InAs/InAs₁₋xSbxT2SLs at 293 K.

Keywords

Auger Recombination, Carrier Lifetime, Infrared Detectors, Superlattices, Ultrafast Optics

Pages

xii, 150

Bibliography

142-150

Comments

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

Research at Sandia was supported in part by the Department of Energys Office of Basic Research. Research at the University of Iowa was funded by the U.S. Government.

Copyright

Copyright 2016 Yigit Aytac

Included in

Physics Commons

Share

COinS