Document Type

Dissertation

Date of Degree

Fall 2016

Degree Name

PhD (Doctor of Philosophy)

Degree In

Mathematics

First Advisor

Palle E. Jorgensen

Abstract

Both complex dynamics and the theory of reproducing kernel Hilbert spaces have found widespread application over the last few decades. Although complex dynamics started over a century ago, the gravity of it's importance was only recently realized due to B.B. Mandelbrot's work in the 1980's. B.B. Mandelbrot demonstrated to the world that fractals, which are chaotic patterns containing a high degree of self-similarity, often times serve as better models to nature than conventional smooth models. The theory of reproducing kernel Hilbert spaces also having started over a century ago, didn't pick up until N. Aronszajn's classic was written in 1950. Since then, the theory has found widespread application to fields including machine learning, quantum mechanics, and harmonic analysis.

In the paper, Infinite Product Representations of Kernel Functions and Iterated Function Systems, the authors, D. Alpay, P. Jorgensen, I. Lewkowicz, and I. Martiziano, show how a kernel function can be constructed on an attracting set of an iterated function system. Furthermore, they show that when certain conditions are met, one can construct an orthonormal basis of the associated Hilbert space via certain pull-back and multiplier operators.

In this thesis we take for our iterated function system, the family of iterates of a given rational map. Thus we investigate for which rational maps their kernel construction holds as well as their orthornormal basis construction. We are able to show that the kernel construction applies to any rational map conjugate to a polynomial with an attracting fixed point at 0. Within such rational maps, we are able to find a family of polynomials for which the orthonormal basis construction holds. It is then natural to ask how the orthonormal basis changes as the polynomial within a given family varies. We are able to determine for certain families of polynomials, that the dynamics of the corresponding orthonormal basis is well behaved. Finally, we conclude with some possible avenues of future investigation.

Keywords

complex dynamics, fractal, functional analysis, kernel function, reproducing kernel

Pages

ix, 61

Bibliography

59-61

Copyright

Copyright © 2016 James Edward Tipton

Included in

Mathematics Commons

Share

COinS