Document Type

Thesis

Date of Degree

2008

Degree Name

MS (Master of Science)

Degree In

Occupational and Environmental Health

First Advisor

William A. Heitbrink

Abstract

This work characterized burn-off emissions from automobiles. After an exhaustive literature review, engine temperatures were determined to reach a maximum temperature of approximately 110oC, while exhaust system components reached a maximum temperature around 600oC. Metal-drawing fluids were used to bend the exhaust system components during manufacturing. Because these components were not rinsed prior to incorporation into a vehicle, residues could be left on the surfaces. An experimental test chamber was constructed to conduct controlled testing of three metalworking fluids of various types to mimic real-world conditions. Real-time particle number measurements were made using a condensation particle counter and an optical particle counter. The temperature at which burn-off begins to occur was found to be around 120 to 150oC. This burn-off was found to be an evaporation-condensation phenomenon when metalworking fluid residues vaporize and condense forming fine (0.1µm to 2.5µm) and ultrafine (<0.1µm) aerosols. The temperature dependency of this phenomenon was observed to follow the Clausius-Clapeyron equation that states as temperature increases, vapor pressure increases. Most aerosol particles were observed to be in the range of less than 0.01µm to approximately 2.0µm.

Keywords

Metalworking Fluids, Burn-off Emissions, Automotive Industry Exposures

Pages

vi, 45 pages

Bibliography

Includes bibliographical references (pages 43-45).

Copyright

Copyright 2008 Krista Janette Scott

Share

COinS