Document Type


Date of Degree

Spring 2013

Degree Name

PhD (Doctor of Philosophy)

Degree In


First Advisor

Thomas F. Boggess


All-optical time-resolved measurement techniques provide a powerful tool for investigating critical parameters that determine the performance of infrared photodetector and emitter semiconductor materials. Narrow-bandgap InAs/GaSb type-II superlattices (T2SLs) have shown great promise as a next generation source of these materials, due to superior intrinsic properties and versatility. Unfortunately, InAs/GaSb T2SLs are plagued by parasitic Shockley-Read-Hall recombination centers that shorten the carrier lifetime and limit device performance. Ultrafast pump-probe techniques and time-resolved differential transmission measurements are used here to demonstrate that Ga-free InAs/InAsSb T2SLs and InAsSb alloys do not have this same limitation and thus have significantly longer carrier lifetimes. Measurements at 77 K provided minority carrier lifetimes of 9 μs and 3 μs for an unintentionally doped mid-wave infrared (MWIR) InAs/InAsSb T2SL and InAsSb alloy, respectively; a two order of magnitude increase compared to the 90 ns minority carrier lifetime measured in a comparable MWIR InAs/GaSb T2SL. Through temperature-dependent lifetime measurements, the various carrier recombination processes are differentiated and the dominant mechanisms identified for each material. These results demonstrate that these Ga-free materials are viable options over InAs/GaSb T2SLs for potentially improved infrared photodetectors.

In addition to carrier lifetimes, the drift and diffusion of excited charge carriers through the superlattice growth layers (i.e. vertical transport) directly affects the performance of photodetectors and emitters. Unfortunately, there is a lack of information pertaining to vertical transport, primarily due to difficulties in making measurements on thin growth layers and the need for non-standard measurement techniques. However, all-optical ultrafast techniques are successfully used here to directly measure vertical diffusion in MWIR InAs/GaSb T2SLs. By optically generating excess carriers near one end of a MWIR T2SL and measuring the transit time to a thin, 2 lower-bandgap superlattice placed at the other end, the time-of-flight of vertically diffusing carriers is determined. Through investigation of both unintentionally doped and p-type superlattices at 77 K, the vertical hole and electron diffusion coefficients are determined to be 0.04±0.03 cm2/s and 4.7±0.5 cm2/s, corresponding to vertical mobilities of 6±5 cm2/Vs and 700±80 cm2/Vs, respectively. These measurements are, to my knowledge, the first direct measurements of vertical transport properties in narrow-bandgap superlattices.

Lastly, the widely tunable two-color ultrafast laser system used in this research allowed for the investigation of nonlinear optical properties in narrow-bandgap semiconductors. Time-resolved measurements taken at 77 K of the nondegenerate two-photon absorption spectrum of bulk n-type GaSb have provided new information about the nonresonant change in absorption and two-photon absorption coefficients in this material. Furthermore, as the nondegenerate spectrum was measured over a wide range of optical frequencies, a Kramers-Kronig transformation allowed the dispersion of the nondegenerate nonlinear refractive index to be calculated.


carrier lifetimes, InAs/GaSb superlattices, InAs/InAsSb superlattices, time-resolved pump-probe, type-II superlattices, vertical transport


xvii, 231 pages


Includes bibliographical references (pages 220-231).


This thesis has been optimized for improved web viewing. If you require the original version, contact the University Archives at the University of Iowa:


Copyright 2013 Benjamin V. Olson

Included in

Physics Commons