Document Type

PhD diss.

Date of Degree

2011

Degree Name

PhD (Doctor of Philosophy)

Department

Psychological and Quantitative Foundations

First Advisor

Joyce Moore

Abstract

Numerous social and educational psychologists propose that intrinsic motivation generated by personal interests and spontaneous satisfactions is qualitatively different from extrinsic types of motivation generated by external compensations and also that intrinsic motivation is more beneficial to learning than extrinsic types of motivation. However, in the field of neuroscience, intrinsic motivation has been little studied while extrinsic types of motivation (e.g., incentive motivation) have been thoroughly studied. The purpose of the present studies was to expand the neural understanding of motivation to include intrinsic motivational processes. To do so, a series of three event-related functional magnetic resonance imaging (fMRI) studies were conducted. Study 1 and Study 2 compared the neural activities when participants decided to act for intrinsic reasons (i.e., self-determined volitional and agentic behavior) versus when they decided to act for extrinsic reasons (i.e., non-self-determined volitional and agentic behavior). Both studies showed that the anterior insular cortex, known to be related to a sense of agency, was more activated during self-determined behavior associated with intrinsic reasons for acting while the posterior parietal regions (e.g., posterior cingulate cortex, angular gyrus), known to be related to a sense of a loss of agency, were more activated during non-self-determined behavior associated with extrinsic reasons for acting. These findings confirm the existence of neural-based intrinsic motivational processes, differentiate intrinsic motivation from incentive motivation, and document the important neural activities which function for generating self-determined agentic action. Study 3 examined these same neural activities as participants engaged in interesting and uninteresting versions of two experimental tasks. Results confirmed the results of the earlier two studies, as the anterior insular cortex was more recruited when participants performed the interesting, but not the uninteresting, version of the tasks. Results also extended the findings from Studies 1 and 2 in an important way in that the ventral striatum, a well-known brain region for reward processing, was more activated when participants performed the interesting, but not the uninteresting, version of the experimental tasks. These findings suggest that intrinsic motivation is generated based on the feeling of intrinsic need satisfaction (from anterior insular cortex activations) and the feeling of reward (from ventral striatum activations). Overall, the present research established three new findings: (1) the neural bases of intrinsic motivation lies largely in increased anterior insular cortical activities; (2) when people made decisions about self-determined intrinsically-motivated behavior, they show enhanced insular cortical activities and suppressed posterior parietal cortical activities; and (3) when people engaged in actual self-determined intrinsically-motivated behavior, they show enhanced insular cortical and ventral striatal activities. In establishing these new findings, the paper introduces a new area of study for motivational neuroscience--namely, intrinsic motivation.

Pages

v, 112

Bibliography

103-112

Copyright

Copyright 2011 Woogul Lee