Document Type

Thesis

Date of Degree

Summer 2012

Degree Name

MS (Master of Science)

Degree In

Biomedical Engineering

First Advisor

James A. Martin

Second Advisor

Hongjun Zheng

Abstract

Cartilage lesion is a fairly common problem in orthopaedic practise. It is often a consequence of traumas, inflammatory conditions, and biomechanics alterations. However, as an avascular and aneural tissue, articular cartilage has minimal healing ability. Over the past decades, surgeons and scientists have proposed a nubmer of treatment strategies to promote restoration of articular cartilage, like arthroscopic lavage, microfracture surgery, osteochoncral autografts and allografts, autologous chondrocyte implantation, and other cell-based repairs. Nevertheless, these solutions often result in fibrocartilage, which has inferior mechanical and biochemical properties, with increased susceptibility to injury, which usually ultimately leads to osteoarthritis (OA).

Stem cell therapy techniques are widely applied in treating disease or injury. Many medical researchers have proposed stem cell transplantation treatment for enhancing cartilage repair by using mesenchymal stem cells (MSCs) along with biocompatible scaffolds. In addition to that, chondrogenic progenitor cells (CPCs) have also been discovered in OA patients and healthy articular cartilage. However, neither the method for isolating CPCs is not well established, nor the origin and function is not fully understood.

Stem cells may be measured in CFUs (Colony-forming units). Ideally, adult stem cells should be clonogenic. In other words, a single adult stem cell should be able to generate a line of genetically identical cells. Fully characteraization of stem/progenitor cell potential requires purified population. Single-cell cloned population maybe serve as a convincing source for study of stem/progenitor cells.

Therefore, a single cell clonogenecity screening system was developed to identify and isolate putative stem/progenitor cells from cartilage based on fluorescence-activated cell sorting (FACS). Also, genetical and functional characterization of isolated cells was taken.

Keywords

Cartilage, Cell therapy, FACS, Osteoarthritis, Stem cell

Pages

ix, 55 pages

Bibliography

Includes bibliographical references (pages 52-55).

Copyright

Copyright 2012 Yin Yu

Share

COinS