Document Type

Dissertation

Date of Degree

Spring 2014

Degree Name

PhD (Doctor of Philosophy)

Degree In

Chemistry

First Advisor

Ned B. Bowden

Abstract

This thesis discuses two very different projects. In the first project, synthesizing a polymer with the potential to release H2S. This was accomplished through the copolymerization of L-lactide and lactide monomers that has been functionalized with 4-hydroxythiobenzamide which is known to release H2S in vivo. The synthesis of the functionalized monomer required the development of a new method to attach functional groups to a derivative of L-lactide, which involved the addition of a thiol to an alpha- beta-unsaturated lactide using catalytic I2. After polymerization, the molecular weight of the copolymers ranged from 8 to 88 kg mol-1 with PDIs below 1.50. These polymers have the ability to be loaded with different amounts of thiobenzamide by controlling the ratio of the functionalized monomer with L-lactide during polymerization. The copolymers were fabricated into two sizes of microparticles with average diameters of 0.52 and 12 µm. The degradation of the smaller microparticles was studied in a PBS buffered solution at pH 7.4 which showed the slow release of the thiobenzamide over a 4 week period. These microparticles are the first to show potential to deliver H2S over a period of weeks. This research addresses a critical need in the field of H2S in medicine where no method exists to release H2S in vivo at times over a few hours.

In the second project dicyclopentadiene was polymerized with Grubbs first generation catalyst and fabricated into highly cross-linked membranes with a thickness of 100 µm. The flux of twenty-one molecules with varying polarities and molecular weights ranging from 101 to 583 g mol-1 were studied. Molecules that permeated these membranes had flux rates of 10-5 to 10-6 mol cm-2 h-1 but molecules that did not permeate these membranes had flux rates 104 to 105 times slower. The large difference in flux did not have a strong correlation to molecular weight or solubility in the membrane. However, there was a strong correlation to the cross-sectional areas of the molecules. Cross-sectional area is the smallest two-dimensional rectangle determined by molecular modeling. The cross-sectional area cut-off of the membranes was determined to be between 0.38 and 0.50 nm2. This property gives these membranes the selectivity to successfully separate constitutional isomers, such as tributylamine and triisobutylamine. The membranes have also been used to separate organic products from expensive catalyst and ligands as well as different fatty acids from each other as their respective amine salts.

Keywords

Hydrogen Sulfide, Polydicyclopentadiene

Pages

xii, 144 pages

Bibliography

Includes bibliographical references (pages 131-144).

Copyright

Copyright 2014 Tyler R. Long

Included in

Chemistry Commons

Share

COinS