Document Type

Thesis

Date of Degree

Spring 2017

Access Restrictions

Access restricted until 07/13/2019

Degree Name

MS (Master of Science)

Degree In

Geoscience

First Advisor

Bradley D. Cramer

Abstract

The upper Homerian Mulde Event was a mass extinction that devastated graptolite diversity and occurred before and during the onset of a major perturbation to the global carbon cycle recorded as a double-peaked positive carbon isotope excursion (CIE). Whereas the Mulde Event and associated CIE are well-documented globally, changes in global sea level associated with the Mulde Event have only been investigated in detail in the West Midlands, England and Gotland, Sweden. A critical step toward understanding both the drivers and results of global climatic change during the Mulde Event is to constrain changes in eustasy. This study integrates carbon isotope chemostratigraphy and conodont biostratigraphy of Homerian strata in Tennessee, Indiana, and Ohio in an effort to determine if a global type-1 sequence boundary is recorded within the ascending limb of the Mulde CIE, and to produce a high-resolution chronostratigraphic framework for Homerian strata in the midcontinent USA. Six sections, two from each state, were measured and described. Five were sampled for carbon isotope chemostratigraphy, and one for conodont biostratigraphy. All sections from Tennessee and Indiana evidently contain the Mulde CIE, whereas the sections from Ohio are less clear due to the truncation of upper Homerian strata. These data demonstrate that a sequence boundary identified herein in Indiana and Tennessee is the same sequence boundary that occurred during the ascending limb of the Mulde Excursion in the West Midlands and Gotland.

Keywords

Homerian, Indiana, Mulde Event, Ohio, Stable carbon isotopes, Tennessee

Pages

vii, 49 pages

Copyright

Copyright © 2017 Erika M. Danielsen

Available for download on Saturday, July 13, 2019

Included in

Geology Commons

Share

COinS