Title

Selection and validation of predictive regression and neural network models based on designed experiments

Document Type

Article

Peer Reviewed

1

Publication Date

1-1-2006

Journal/Book/Conference Title

IIE Transactions (Institute of Industrial Engineers)

Abstract

Model selection and validation are critical in predicting the performance of manufacturing processes. The correct selection of variables minimizes the model mismatch error whereas the selection of suitable models reduces the model estimation error. Models are validated to minimize the model prediction error. In this paper, the relevant literature is reviewed and a procedure is proposed for the selection and cross-validation of predictive regression analysis and neural network models. Specifications on surface roughness and tolerances impact on manufacturing process plans, and differentiate product quality, and ultimately the product cost and lead times. Experimental data from a turning surface roughness study is used to demonstrate the developed concepts with regression and neural network techniques being used for the purpose of predictive rather than descriptive modeling. Copyright "IIE".

Keywords

Sustainability

Published Article/Book Citation

IIE Transactions (Institute of Industrial Engineers), 38:1 (2006) pp.13-23.

This document is currently not available here.

Share

COinS
 

URL

http://ir.uiowa.edu/mie_pubs/189