Title

Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model

Document Type

Article

Peer Reviewed

1

Publication Date

1-1-2011

Journal/Book/Conference Title

Particle and Fibre Toxicology

DOI of Published Version

10.1186/1743-8977-8-5

Abstract

BACKGROUND: There is increasing interest in the environmental and health consequences of silver nanoparticles as the use of this material becomes widespread. Although human exposure to nanosilver is increasing, only a few studies address possible toxic effect of inhaled nanosilver. The objective of this study was to determine whether very small commercially available nanosilver induces pulmonary toxicity in mice following inhalation exposure. RESULTS: In this study, mice were exposed sub-acutely by inhalation to well-characterized nanosilver (3.3 mg/m(3), 4 hours/day, 10 days, 5 +/- 2 nm primary size). Toxicity was assessed by enumeration of total and differential cells, determination of total protein, lactate dehydrogenase activity and inflammatory cytokines in bronchoalveolar lavage fluid. Lungs were evaluated for histopathologic changes and the presence of silver. In contrast to published in vitro studies, minimal inflammatory response or toxicity was found following exposure to nanosilver in our in vivo study. The median retained dose of nanosilver in the lungs measured by inductively coupled plasma-optical emission spectroscopy (ICP-OES) was 31 mug/g lung (dry weight) immediately after the final exposure, 10 mug/g following exposure and a 3-wk rest period and zero in sham-exposed controls. Dissolution studies showed that nanosilver did not dissolve in solutions mimicking the intracellular or extracellular milieu. CONCLUSIONS: Mice exposed to nanosilver showed minimal pulmonary inflammation or cytotoxicity following sub-acute exposures. However, longer term exposures with higher lung burdens of nanosilver are needed to ensure that there are no chronic effects and to evaluate possible translocation to other organs.

Keywords

Sustainability

Published Article/Book Citation

The definitive version was published in Particle and Fibre Toxicology, 8:5 (2011), 12 pp. DOI:10.1186/1743-8977-8-5.

This document is currently not available here.

Share

COinS
 

URL

http://ir.uiowa.edu/oeh_pubs/122