Document Type


Peer Reviewed


Publication Date


NLM Title Abbreviation

PLoS One

Journal/Book/Conference Title

PLoS One

PubMed ID


DOI of Published Version


Start Page


Total Pages



There are several methods for building prediction models. The wealth of currently available modeling techniques usually forces the researcher to judge, a priori, what will likely be the best method. Super learning (SL) is a methodology that facilitates this decision by combining all identified prediction algorithms pertinent for a particular prediction problem. SL generates a final model that is at least as good as any of the other models considered for predicting the outcome. The overarching aim of this work is to introduce SL to analysts and practitioners. This work compares the performance of logistic regression, penalized regression, random forests, deep learning neural networks, and SL to predict successful substance use disorders (SUD) treatment. A nationwide database including 99,013 SUD treatment patients was used. All algorithms were evaluated using the area under the receiver operating characteristic curve (AUC) in a test sample that was not included in the training sample used to fit the prediction models. AUC for the models ranged between 0.793 and 0.820. SL was superior to all but one of the algorithms compared. An explanation of SL steps is provided. SL is the first step in targeted learning, an analytic framework that yields double robust effect estimation and inference with fewer assumptions than the usual parametric methods. Different aspects of SL depending on the context, its function within the targeted learning framework, and the benefits of this methodology in the addiction field are discussed.


OAfund, Adolescent, Adult, Area Under Curve, Databases, Factual, Diagnosis, Computer-Assisted, Female, Humans, Length of Stay, Machine Learning, Male, Middle Aged, Neural Networks (Computer), Prognosis, ROC Curve, Regression Analysis, Socioeconomic Factors, Substance-Related Disorders, Treatment Outcome, Young Adult

Granting or Sponsoring Agency

This work was funded by Consejo de Investigaciones Científicas y Técnicas Postdoctoral Fellowship 2651/2014 awarded to LA.

Grant Number


Journal Article Version

Version of Record

Published Article/Book Citation

PLoS ONE12(4): e0175383


Copyright: © 2017 Acion et al

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.