Improvement at the Iowa River Crossing - 2D Hydraulic Analysis

Andrew McCoy, PhD, PE - HDR
Chad Lambi, PE, CRANDIC
Organization

- Background and Purpose
- Model Development
- Calibration and Validation
- Design Features
- Results and Conclusions
- Recent History
Background and Purpose

- CRANDIC connects to four railroads in eastern Iowa (Amana Line)
- 1.5 mile crossing in Iowa River bottom near Amana, Iowa
- Three major structures – main channel bridge, north overflow bridge and south overflow bridge
- Crossing constructed in late 1800s
- CRANDIC purchased Amana line in 1980 from the Milwaukee Road and was flooded out of service in 1993 and 2008
Background and Purpose

- Major floods in 1993 and 2008 took CRANDIC line out of service
- Lateral bank erosion constant battle
- CRANDIC embarked on five year improvement plan to replace track and structures
- CRANDIC wanted to use their limited construction dollars the most effectively as possible
- 2D hydraulic analysis considered 2-4 ft. embankment raise, increased bridge opening to compensate for grade raise, and spur dikes
Hydraulic Criteria and Design Issues

- Environmental
 - Increase in footprint of embankment impacts wetlands requires mitigation

- Design
 - Higher embankment blocks overtopping flow
 - Increase size of relief bridges/main bridge to compensate
 - CRANDIC desired at least 100-year level of service but also evaluated performance at 2008 discharge

- Floodplain Permit
 - Meet backwater criteria (State of Iowa)
 - No increase in property damage upstream at the 1-percent annual chance flood (100-year)
2D Model Development

Pre-Processing
(SMS + GIS)

Mesh

Floodplain + Channel
Bathymetry

Surface Roughness

Boundary Conditions

Code Execution
SRH-2D

Post-Processing
(SMS, Tecplot)

SMS
2D Modeling Approach – Land Surface Model - LiDAR

- State of Iowa provides LiDAR data throughout entire state
- Vertically +/- 4 inches
2D Modeling Approach – Land Surface Model – LiDAR Filtering

- Floodplain Filtered
- Embankment Original Density
2D Modeling Approach – Land Surface Model – Channel Bathymetry

- LiDAR doesn’t penetrate water surface
2D Modeling Approach – Adding Channel Bathymetry

- Single-Beam echo-sounder
- Collected by IIHR-Hydroscience and Engineering
- Integrated with LiDAR based DTM
2D Modeling Approach – Combine LiDAR + Bathymetry

- Combine LiDAR + Bathymetry in GIS
2D Model Approach – Combine LiDAR + Bathymetry

- Finished surface includes channel
2D Modeling Approach – Computational Mesh in SMS

Elements sized according to required solution, velocity gradients, changes in bathymetry, and computational power

Structured

Un-Structured
SMS map module allows for excellent control of structured/unstructured mesh.
2D Modeling Approach – Computational Mesh + Bridge Piers

Bridge piers are modeled explicitly in mesh
2D Modeling Approach – Surface Roughness

Feature Object Legend
- Feature Arc
 - Feature Vertex
 - Feature Point/Node

Cattle Pass
3-72" CMPs
HWY 151 R Bridge
HWY 151 Box Culvert
HWY 151 Main Bridge
CRANDIC Bridge R S
CRANDIC Bridge Main
CRANDIC Bridge R N
CRANDIC Bridge 19_4
HWY 220 R Bridge S
HWY 220 Main Bridge
HWY 220 R Bridge N
Industrial
Developed
Pasture
Light Woodland
Wetland
Railroad
Road
Canal
River
Soybeans
Corn
Forest
2D Modeling Approach – Boundary Conditions

- Implemented along node strings at boundaries
- Simulated until steady-state discharge
- Stage boundary at d/s

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Flow at Marengo (cfs)</th>
<th>Flow at CRANDIC Crossing (cfs)</th>
<th>Downstream Water Surface Elevation (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-year</td>
<td>12,350</td>
<td>12,470</td>
<td>707.6</td>
</tr>
<tr>
<td>5-year</td>
<td>19,770</td>
<td>19,963</td>
<td>709.1</td>
</tr>
<tr>
<td>10-year</td>
<td>25,030</td>
<td>25,274</td>
<td>709.9</td>
</tr>
<tr>
<td>25-year</td>
<td>31,970</td>
<td>32,282</td>
<td>710.8</td>
</tr>
<tr>
<td>50-year</td>
<td>37,290</td>
<td>37,654</td>
<td>711.4</td>
</tr>
<tr>
<td>100-year</td>
<td>42,720</td>
<td>43,137</td>
<td>712.0</td>
</tr>
<tr>
<td>200 year</td>
<td>48,280</td>
<td>48,751</td>
<td>712.5</td>
</tr>
<tr>
<td>500 year</td>
<td>55,830</td>
<td>56,375</td>
<td>713.3</td>
</tr>
<tr>
<td>2008 Event- Max Discharge</td>
<td>51,000</td>
<td>51,497</td>
<td>712.8</td>
</tr>
<tr>
<td>2008 Event- Max Reservoir Height</td>
<td>38,000</td>
<td>38,370</td>
<td>715.4</td>
</tr>
<tr>
<td>1993 Event- Max Discharge</td>
<td>34,900</td>
<td>35,240</td>
<td>711.4</td>
</tr>
<tr>
<td>1993 Event- Max Reservoir Height</td>
<td>19,300</td>
<td>19,488</td>
<td>716.9</td>
</tr>
</tbody>
</table>
Calibration and Validation

- 1993 Event and 2008 Event
- Considered both peak flow and peak tail water events
2D Modeling Approach – Calibration and Validation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RM 128.2- Hwy 220</td>
<td>724.85</td>
<td>725.51</td>
<td>0.66</td>
<td>724.09</td>
<td>-0.76</td>
</tr>
<tr>
<td>RM 124.8</td>
<td>721.15</td>
<td>720.34</td>
<td>-0.81</td>
<td>718.87</td>
<td>-2.28</td>
</tr>
<tr>
<td>RM 122.0</td>
<td>718.15</td>
<td>718.07</td>
<td>-0.08</td>
<td>717.43</td>
<td>-0.72</td>
</tr>
<tr>
<td>RM 118.7- Hwy 151</td>
<td>717.45</td>
<td>714.14</td>
<td>-3.31</td>
<td>716.14</td>
<td>-1.31</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream Hwy 220</td>
<td>726.35</td>
<td>726.66</td>
<td>0.31</td>
<td>725.70</td>
<td>-0.65</td>
</tr>
<tr>
<td>Downstream Hwy 220</td>
<td>726.21</td>
<td>725.99</td>
<td>-0.22</td>
<td>725.26</td>
<td>-0.95</td>
</tr>
<tr>
<td>Upstream Hwy 151</td>
<td>717.56</td>
<td>716.32</td>
<td>-1.24</td>
<td>717.17</td>
<td>-0.39</td>
</tr>
<tr>
<td>Downstream Hwy 151</td>
<td>717.36</td>
<td>715.71</td>
<td>-1.65</td>
<td>716.97</td>
<td>-0.39</td>
</tr>
</tbody>
</table>
Design Features

- Balance between raising embankment and increasing overflow bridge capacity
- Lower velocities through overflow structures
- Minimize cost and environmental impact
- Looked at individual openings and combinations of openings
- Final design included embankment increased 4 ft., South overflow bridge increased two times and North overflow bridge increased 3 times
- Did not increase water surface elevations upstream from project at 100-year and kept Amana Line in service during 100-year event
Spur Dikes

- Lateral bank erosion a maintenance problem
- Designed submerged spur dikes arrest lateral bank erosion and promote infill
- Design confirmed with hydraulic model
- Permitting documents prepared with information from modeling
Post Construction

- Spurs Constructed in 2013
- North and South Overflow constructed in 2013
Recent History and Conclusions

- Pre-Iowa River Crossing Improvements – overtopping occurred at 32,000 cfs (25 year event)
- 2008 – Peak was 51,500 cfs
- 35,000 cfs (Top)
- 2013 ~ 35,000 cfs (Bottom) – stayed in service
- 2014 ~ 35,000 cfs - stayed in service
- Crossing updated to over 100-year design

TIMELY IMPROVEMENTS. Since construction CRANDIC and the Iowa River have experienced 2 approximately 50-year events at the site and have stayed in service through both

- The 2D hydraulic analysis provided the level of detail necessary to plan, design, permit and build the project
Thank you.
Questions?