Are Senate Election Outcomes Predictable?

Michael S. Lewis-Beck
University of Iowa

Tom W. Rice
University of Iowa

DOI: https://doi.org/10.1017/S1049096500022678
Walking and gardening are Wildavsky's favorite recreations. These are perfect occupations for a man whose preoccupations are always with him; they afford ample scope for the uninterrupted consideration of whatever intellectual problem is on Wildavsky's mind. Because Wildavsky is always hatching something with most of his attention, he is in many of the routines of life absent-minded: until he got the hang of it rather later in life than most Americans he was a dangerously preoccupied driver of automobiles. He is an acquired taste as a conversational partner; he has almost no small talk, and indeed can be held down to medium-talk only by determined effort. His kindnesses to students and colleagues, sometimes involving considerable personal inconvenience, are legendary. So are the lapses in his attention to the niceties of human interaction.

It is not in the slightest true, however, that he fails to suffer fools gladly. Rather he is a broadly tolerant man who has work to do, and is chronically impatient to get on with it. Some hapless interviewer once asked the young Wildavsky—who was applying for a job—what he thought of the then-raging controversy over the study of political behavior. This was, to Wildavsky, not a subject: "Who studies non-behavior?" he asked, terminating the discussion.

He didn't get the position. I asked him later whether he knew what he was doing. "Of course," he said. "I decided that they had better know the worst." No doubt he was right; the worst about Wildavsky can be discovered very quickly. As for the best, political scientists need only to look about their libraries. As he says:

Every man needs a craft through which he can express himself to the extent of his abilities, and I have found mine.27

27 The Revolt Against the Masses, p. 3.

Are Senate Election Outcomes Predictable?

Michael Lewis-Beck
University of Iowa

Tom W. Rice
University of Vermont

Congressional scholars manifest great interest in models of national elections. Aggregate time series equations for predicting the outcome of House contests abound (Bloom and Price, 1975; Hibbs, 1982; Jacobson, 1981; Jacobson and Kernell, 1982; Kramer, 1971; Lewis-Beck and Rice, 1984a; Tufte, 1975, 1978). Remarkably, however, comparable work on the Senate is nonexistent. Indeed, in the only article for exception to this generalization, Hibbing and Alford (1982) refer to the Senate as the "forgotten side" of Congress. Why are there no models to predict Senate elections? Because, in what would seem the dominant view, Senate elections are unpredictable. Commenting on 1982 Senate races, Mann and Ornstein (1984, p. 43) asserted that "[s]mart political analysts don't put money on their predictions—and for good reason. They know how unpredictable politics is." The alleged unpredictability of Senate

Michael S. Lewis-Beck is a professor of political science at the University of Iowa. His substantive areas of interest are political economy and public policy. Currently, he is preparing a book on economics and elections in the United States and Western Europe, while holding a German Marshall Fund Senior Fellowship.

Tom W. Rice is an assistant professor of political science at the University of Vermont. He does research in the areas of voting behavior and political economy, and his articles have appeared in a variety of professional journals.
elections is easily attributed to the unique characteristics of the institution. Again, to quote Mann and Ornstein (1984, p. 46), “The House is not the Senate, and House elections have their own distinctive features.” Compare. The senatorial term of office is six years, just one-third of the seats are contested in an election year, Senators represent whole states, and Senate races are more strategic (e.g., more money and news follows Senate campaigns; witness the 1984 North Carolina contest between Helms and Hunt, overshadowed only by the presidential battle itself). Of course, these distinctive features do not guarantee that Senate elections are unpredictable. Still, Rosenstone (1983, p. 28) reports that senatorial races (1978) were poorly predicted by state pre-election surveys. And, more to the point for our purposes, the one relevant modeling effort managed an R-squared for a Senate seat equation of merely .33, thereby leaving so much error that, in fact, aggregate Senate election outcomes would be generally unpredictable (Hibbing and Alford, 1982, p. 511).

The lack of a model for predicting nationwide Senate election results is unfortunate for scientific reasons, as well as for some practical ones. First, there is the intrinsic interest, shared by politicians and the public, in naming the winners in congressional combat. Further, this interest is usually heightened when the focus is on the “upper chamber,” rather than on the House. Finally, correctly guessing the overall results is especially intriguing for the upcoming election year, where a net shift of just four seats to the Democrats will cause the Republicans to lose their Senate majority. Below, we develop an aggregate time series model to predict or, more precisely, to forecast, Senate elections. As shall be seen, this model is substantively plausible and, at the same time, able to generate accurate forecasts six months in advance of the election.

Developing a Senate Forecasting Model

Scientists usually seek explanations. But sometimes they want merely to forecast. At what time will the solar eclipse occur?
Will it rain tomorrow? How fast will GNP grow next quarter? Which college applicants will succeed? Can the president and his party maintain a Senate majority? These are examples of interesting forecasting questions. In the study of politics, relatively little forecasting takes place. Therefore, it is useful to clarify the most salient aspects of a good forecasting instrument (see Lewis-Beck, 1985a). Nothing is more important, obviously, than accuracy. But being right is not the whole story. The lead time is also important. An election forecast, to be called so, must come out before the election. (Interestingly, some popular models developed for the House do not meet this simple standard; see the discussion in Lewis-Beck and Rice, 1984a; Lewis-Beck, 1985a). As in meteorology, then, it is necessary "to make tomorrow's prediction before tomorrow arrives" (Economist, May 25, 1985, p. 94). Moreover, the farther in advance a forecast occurs, the more valuable it is. (Voter exit polls, for instance, are not high-quality forecasting devices because, while quite accurate, they must wait until election day itself.) With the preliminary criteria of "accuracy" and "lead" in mind, we begin our search for a Senate forecasting model by examining the House studies. Several aggregate time series equations for House elections appear fairly accurate (producing R-squared around .75), namely, Hibbs (1982), Lewis-Beck and Rice (1984a), and Tuft (1975; 1978, ch. 5). (The model of Jacobson, 1981, is not considered further, due to its relatively low R-squared.) These models are similar, in that post-World War II election outcomes are held to be a function of an economic variable and, usually, a non-economic variable. However, they also differ in important ways: (1) the dependent variable is measured either in votes or seats; (2) midterm elections are or are not included; (3) forecasting is or is not possible. The last point, which relates to the issue of "lead," deserves more attention. The well-known Tuft (1978, ch. 5) midterm House election equation uses as one independent variable the election-year change in real disposable income per capita, an indicator which is of course not available before the election. And, his other independent variable, presidential popularity in a September or October Gallup Poll, is only obtainable with a trivial lead time. The forecasting potential of Tuft's (1978, pp. 115-119) presidential-year House election model is still more limited. Beside the independent variable of real disposable income per capita in the election-year, he includes a net presidential candidate advantage measure, based on Michigan Survey Research Center-Center for Political Studies surveys analyzable only after the election (Lewis-Beck, 1985a, p. 59).

Of every two seats the president's party has up, it can expect to lose one, ceteris paribus.

In contrast, the Hibbs (1982, p. 397) on-year House election model can serve as a forecasting device. His independent variable is the OPEC-adjusted cumulative growth rate of per capita real disposable income over the fifteen pre-election quarters, the last being the July-September quarter prior to the November election. Thus, a before-the-fact election prediction is possible (assuming that the Commerce Department releases the July-September quarter figures in time for the election).

The most recent House model, that of Lewis-Beck and Rice (1984a), provides the greatest lead, utilizing measures taken six months before the election. Further, it covers all contests, on-year or off-year. And, the dependent variable is net seat change for the president's party, which eliminates the need for calculation of a votes-to-seats "swing-ratio." Accordingly, seat change is predicted, substantively, from the quarterly real GNP growth rate and Gallup Poll presidential popularity (both assessed six months prior). This equation generates an R-squared = .80, a figure none of the others surpass. Moreover, the formulation is robust across different election types and systems. That is, a comparable equation yields an R-squared = .82 for
United States presidential elections, and an R-squared = .71 for Fifth Republic French National Assembly elections (see, respectively, Lewis-Beck and Rice, 1984b; Lewis-Beck, 1985b). In sum, it offers a promising baseline from which to elaborate a Senate forecasting model.

Even the most optimistic [scenario], which envisions a highly popular president (60 percent approval) and a booming economy (2 percent quarterly growth) yields a forecast of a net four seat loss for the Republicans, just enough to cost them their majority.

Suppose, then, that Senate seat change (gain or loss for the president’s party), \(S_t \), is viewed as a linear function of real GNP quarterly growth rate, \(G_{t-6} \), and presidential popularity in the Gallup Poll, \(P_{t-6} \), both measured six months before the election, as follows:

\[
S_t = b_0 + b_1 G_{t-6} + b_2 P_{t-6} \quad \text{Eq. 1}
\]

What happens when ordinary least squares (OLS) is applied to this benchmark economy-popularity equation, using observations for post-WWII elections? It yields a low R-squared of .36. An enlightening result, hinting that the paucity of Senate election models in the literature may stem from the poor goodness-of-fit statistics which standard congressional elections formulations produce. (But recall that Hibbing and Alford, 1982, were undaunted, reporting a still lower R-squared for their Senate seats equation.)

Why does this plausible, even routine, formulation of Senate seat change in Eq. 1 give a mediocre performance, making valid forecasts out of the question? One explanation comes from the special pattern of seat changes claimed for the Senate. Mann and Ornstein (1984, p. 43) capture this position well: “In the United States Senate, we rarely see substantial party shifts from one election to another. Even when the House shifts by party margins of 40 seats, the Senate rarely changes by more than a few. When it does, the change is usually cataclysmic.”

Put another way, they are contending that the distribution of the Senate seat change variable is far from normal, and exhibits much more restricted variance relative to House seat change. Either of these conditions would, indeed, create estimation problems for OLS (Lewis-Beck, 1980, pp. 26-27, 35-37).

Let us assess each, focusing first on the normality issue. With so few observations on Senate seat change across the post-war period, visual evaluations of the distribution shape, such as a frequency polygon or a histogram, are not illuminating. However, a standard tool for small samples is a mean-median comparison. For the eighteen elections from 1950, the mean Senate seat change = \(-2.67\), the median = \(-2.00\). These figures are almost the same, indicating that the variable exhibits little departure from normality, after all.

What about the dispersion of the changes? Have the extreme seat shifts which have sometimes taken place in the Senate been “cataclysmic,” in comparison to House shifts? In 1958, presidential party losses hit a peak of twelve Senate seats. To imagine a comparable loss in the House, it is of course necessary to make allowance for the different number of seats in each body. A straightforward standardization technique consists of multiplying Senate seat changes by 4.35 (i.e., 435 seats/100 seats = 4.35). So doing, the 1958 Republican Senate loss becomes equivalent to a 52 Republican seat loss in the House. This standardized projection is, in fact, quite close to the actual 1958 Republican House seat loss of 47. Furthermore, since 1950, the incumbent party has never given up more than 48 seats in the House. Thus, the extreme of Senate seat change for this period—minus 12—approximately equals (after standardization) the extreme of House seat change—minus 48. While both these losses might be regarded as “cataclysmic” in them-
selves, those in the Senate are certainly no more so than those in the House.

The question of both extremes, incumbent gains as well as losses, needs attention, too. The Senate seat change variable goes from −12 to +2, for a total range of 14. This seems like a rather small band compared to the House figure, a range of 85 seats (from −48 to +37). However, yet again, the initial comparison is misleading because of the highly unequal size of the chambers. Standardization (multiplying by 4.35) yields an adjusted range of 61 seats for the Senate, not much narrower than that of the House.

A like problem of comparison occurs when overall variance is evaluated, using the standard deviation of the seat change variable. For the Senate, the raw standard deviation = 4.3; for the House, this standard deviation = 24. But, the standardized Senate standard deviation = 19. Once more, this supposed difference between Senate and House largely disappears. Instead, they seem about equal in the extent to which their political composition varies from election to election, after the disparate magnitudes of the bodies are taken into account.

Why do the obvious formulas for predicting Senate elections, such as that of Eq. 1, not perform better? It is not because of the distribution of the dependent variable, which is essentially normal, with a variance comparable to that of the House. Rather, it is because a critical independent variable has been neglected—the number of incumbent seats at risk (R_t). The more seats the president's party has up for reelection, the more seats it will lose, other things being equal. Suppose, for example, that the incumbent always lost the same share of its contested seats, say one-half. Then, if it had ten seats up, it would only lose five; but, if it had twenty seats up, the loss would be ten. Thus, the mere fact of having a greater number of vulnerable seats increases incumbent Senate seat losses. In other words, "the more you have, the more you have to lose." (A similar idea is pursued for the House, in Oppenheimer and Waterman, 1985.) The quantity of incumbent Senate seats at risk has varied considerably over this post-World War II period, from 25 to 9. On average, the president's party has had 17 seats contested for reelection. Looking to the 1986 races, the Republicans have 22 seats up (the Democrats only 12).

Therefore, the Republicans have a relatively high number of seats at risk in 1986. Does this mean they are likely to suffer bigger losses? Overall, this seat-at-risk variable, R_t, correlates a robust −.52 with seats gained, S_t. (In fact, we were able to find no other potential independent variable which yielded such a high correlation.) Clearly, it is a promising predictor. Hence, we revise the initial equation, now holding net seat change, S_t, to be a function of GNP, G_{t-6}, presidential popularity, P_{t-6}, and this new variable, number of incumbent seats at risk, R_t. (Also, we include a control dummy on president's party, D_t, to take into account a slight, long-run, Democratic advantage.) Estimating such a model with OLS yields the following:

$$\hat{S}_t = -1.49 + 1.42G_{t-6} + .15P_{t-6} - .63R_t + 2.78D_t$$

Eq. 2

(−.50) (2.45) (3.28)

(−4.08) (1.74)

R-squared = .73 N = 18
SEE = 2.54 D−W = 1.84

where S_t = number of Senate seats gained or lost by the president’s party; G_{t-6} = growth rate or real GNP in the second quarter of the election year; P_{t-6} = the percentage approving of how the president is handling his job in the May Gallup Poll six months prior to the election; R_t = the number of Senate seats up for reelection which are of the president’s party; D_t = dummy for president’s party (0 = Republican, 1 = Democrat); the Gallup data are from the relevant surveys in The Gallup Poll, Scholarly Resources, Wilmington, Delaware; the other variables are calculated from various issues of the Statistical Abstract of the United States, Department of Commerce, Washington, D.C.; the figures in parentheses are t-ratios (|t| > 1.77, significant at .05, one-tail); R-squared = the coefficient of multiple determination; SEE = the standard error of estimate of S; D-W = the Durbin-Watson statistic; N = the number of observations (on Senate elections from 1950-1984).
<table>
<thead>
<tr>
<th>Year</th>
<th>President's Party</th>
<th>Actual Senate Seat Change for President's Party</th>
<th>Predicted Senate Seat Change for President's Party</th>
<th>Absolute Prediction Error</th>
<th>Prediction of Bad Year for President's Party</th>
<th>Prediction Success on Bad Year Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>D</td>
<td>-5</td>
<td>-4</td>
<td>1</td>
<td>Yes</td>
<td>Right</td>
</tr>
<tr>
<td>1952</td>
<td>D</td>
<td>-2</td>
<td>-3</td>
<td>1</td>
<td>Yes</td>
<td>Right</td>
</tr>
<tr>
<td>1954</td>
<td>R</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td>No</td>
<td>Wrong</td>
</tr>
<tr>
<td>1956</td>
<td>R</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No</td>
<td>Right</td>
</tr>
<tr>
<td>1958</td>
<td>R</td>
<td>-12</td>
<td>-7</td>
<td>5</td>
<td>Yes</td>
<td>Right</td>
</tr>
<tr>
<td>1960</td>
<td>R</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No</td>
<td>Right</td>
</tr>
<tr>
<td>1962</td>
<td>D</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>No</td>
<td>Right</td>
</tr>
<tr>
<td>1964</td>
<td>D</td>
<td>-4</td>
<td>-3</td>
<td>1</td>
<td>Yes</td>
<td>Wrong</td>
</tr>
<tr>
<td>1966</td>
<td>D</td>
<td>-1</td>
<td>2</td>
<td>3</td>
<td>Yes</td>
<td>Right</td>
</tr>
<tr>
<td>1968</td>
<td>D</td>
<td>-7</td>
<td>-6</td>
<td>1</td>
<td>Yes</td>
<td>Right</td>
</tr>
<tr>
<td>1970</td>
<td>R</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>No</td>
<td>Right</td>
</tr>
<tr>
<td>1972</td>
<td>R</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>Yes</td>
<td>Right</td>
</tr>
<tr>
<td>1974</td>
<td>R</td>
<td>-5</td>
<td>-9</td>
<td>4</td>
<td>Yes</td>
<td>Right</td>
</tr>
<tr>
<td>1976</td>
<td>R</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>No</td>
<td>Right</td>
</tr>
<tr>
<td>1978</td>
<td>D</td>
<td>-3</td>
<td>0</td>
<td>3</td>
<td>No</td>
<td>Wrong</td>
</tr>
<tr>
<td>1980</td>
<td>D</td>
<td>-12</td>
<td>-12</td>
<td>0</td>
<td>Yes</td>
<td>Right</td>
</tr>
<tr>
<td>1982</td>
<td>R</td>
<td>-2</td>
<td>-1</td>
<td>3</td>
<td>Yes</td>
<td>Wrong</td>
</tr>
<tr>
<td>1984</td>
<td>R</td>
<td>-2</td>
<td>-4</td>
<td>2</td>
<td>Yes</td>
<td>Right</td>
</tr>
</tbody>
</table>

* A bad year for the president's party means it lost seats.

Evaluation of the Senate Forecasting Model

Let us evaluate the predictive properties of Eq. 2. The R-squared of .73 means a goodness-of-fit competitive with the best House models. (Further, the adjusted R-squared of .65 does not challenge this ranking.) Moreover, all the independent variables are statistically significant at about .05 or more. Not surprisingly, the coefficient of the seats-at-risk variable is the most significant ($t = 4.08$). According to that coefficient (.63), of every two seats the president's party has up, it can expect to lose one, *ceteris paribus*. Fortunately, because all of the independent variable values can be known with certainty well in advance of the election, the generation of forecasts is an easy task. However, does the model have enough accuracy to produce good forecasts, as the high R-squared implies?

In order to assess the forecasting precision of Eq. 2, it is necessary to look beyond the goodness-of-fit measure, to the seat change predictions themselves (provided in Table 1). First, is the model able to predict big political swings, such as the "cataclysmic" losses discussed earlier? Suppose we define a major electoral defeat for the incumbent party as a Senate seat loss exceeding twice the average seat loss (2.67) for the elections under study. Such major defeats took place in 1958 (-12), 1968 (-7), and 1980 (-12). The model predicted each of these major defeats, so defined, with an average error of only two seats (see Table 1).

Further, and more subtly, the model appears able to sort "good" years from "bad" years. As noted, on average, the incumbent party tends to experience a net loss of seats each election. Therefore, let us define a "good" election year for the incumbent party as one with no overall seat loss; (i.e., $S_i \geq 0$, something that has happened seven times since 1950). In a "bad" election year, then, the incumbent party experiences net losses; (i.e., $S_i < 0$). Following this standard, the model successfully classifies 14 of the 18 election outcomes, in 750 PS Fall 1985
FIGURE 1
Senatorial Election Predictions

![Chart showing predicted seat changes compared to actual seat changes over time.](chart)

terms of a "good" year or a "bad" year (see Table 1). The model of Eq. 2 monitors the senatorial fortune of the incumbent party well, because its average absolute prediction error (\(S_t - S_i\)) is so low, just 1.67 seats. In Figure 1, the predicted Senate seat change (\(S_t\)) for the president’s party is plotted against the actual change (\(S_i\)). One observes that the model impressively tracks the real hills and valleys in Senate election results. Despite this formidable performance, reservations must be entertained, for the predictions are all after-the-fact. How well would the model do if it were utilized before-the-fact? To explore the question, the last elections in the series were sequentially dropped, the model reestimated, and a prediction made for the omitted election. For example, the 1984 election was excluded, the model reestimated (on the sample from 1950-1982), then the 1984 election result predicted. This procedure was continued back five elections, until only eight degrees of freedom remained. The findings appear in Table 2. One observes that the model works quite well before-the-fact, even equalling its after-the-fact accuracy. Across the elections, the R-squared remains strong (\(\approx .7\)) and stable. Further, the average prediction error is just 1.6 seats, virtually identical to that of original Eq. 2.

Overall, the forecasting value of the Eq. 2 model seems high. Recently, Lewis-Beck (1985a) proposed some formulas to evaluate the quality of a forecasting instrument. Here is the simplest:

\[
Q^2 = \frac{(3A)(L)}{M}
\]

where \(Q^2\) = the quality of the forecasting instrument; \(A\) = accuracy, \(L\) = lead time, \(M\) = the maximum possible score in the numerator (which gives \(Q^2\) a theoretical upper bound of 1.0). Note that, according to this formulation, accuracy is the most important quality determinant (three times as important as lead). Also, observe that for high accuracy to produce a good quality score, a nontrivial lead time is necessary. (That is, the impact of \(A\) depends on the value of \(L\), which gives the numerator its multiplicative form.) Since the proposed theoretical range of the values for the accuracy and lead variables is from a low of 0 to a high
TABLE 2
Before-the-Fact Senate Election Predictions

<table>
<thead>
<tr>
<th>Year</th>
<th>President's Party</th>
<th>Actual Seat Change for President's Party</th>
<th>Predicted Seat Change for President's Party</th>
<th>Absolute Prediction Error</th>
<th>R^2 of Equation</th>
<th>Sample of Elections</th>
<th>Nc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1976</td>
<td>R</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>.69</td>
<td>1950-1974</td>
<td>13</td>
</tr>
<tr>
<td>1978</td>
<td>D</td>
<td>-3</td>
<td>-1</td>
<td>2</td>
<td>.70</td>
<td>1950-1976</td>
<td>14</td>
</tr>
<tr>
<td>1980</td>
<td>D</td>
<td>-12</td>
<td>-12</td>
<td>0</td>
<td>.67</td>
<td>1950-1978</td>
<td>15</td>
</tr>
<tr>
<td>1982</td>
<td>R</td>
<td>2</td>
<td>-1</td>
<td>3</td>
<td>.77</td>
<td>1950-1980</td>
<td>16</td>
</tr>
<tr>
<td>1984</td>
<td>R</td>
<td>-2</td>
<td>-4</td>
<td>2</td>
<td>.74</td>
<td>1950-1982</td>
<td>17</td>
</tr>
</tbody>
</table>

aThe election forecast as predicted for the Equation 2 model estimated with the election series ending just prior.

bThe R^2 of the equation estimated with the sample of elections indicated.

cThe number of observations in the sample of elections indicated.

of 3, we select these marks for Eq. 2: $A = 2.5, L = 2.5$. This yields a $Q^2 = .69$, a quality evaluation which compares favorably to the better forecasting models for the House (see Lewis-Beck, 1985a, p. 61).

Forecasts for 1986

Having established Eq. 2 as a forecasting tool of some quality, it is time to apply it to 1986. The key question, of course, is whether the Democrats will recapture majority control of the Senate, an event which many party insiders confidently predict. After all, the Democrats only need a net gain of four seats in order to do it. Will they? There are skeptics, even among friends. After a careful state-by-state assessment, Democratic pollster Harrison Hickman (1985, p. 14) reluctantly concluded that "it is difficult to find the four guaranteed takeovers assumed in predictions of a certain return to a Democratic Senate." What does Eq. 2 say will happen? As of this writing (fall, 1985), we are still more than six months from the election date, so all the final values of the independent variables cannot yet be plugged into the model. Nevertheless, different scenarios can be posited, and forecasts made from them.

First, two of the four independent variable scores are already known: $D_t = 0$, denoting a Republican president; $R_t = 22$, the number of Republican seats up for reelection. We do not know either May presidential popularity (P_{t-6}) or second quarter real GNP growth (G_{t-6}), but speculation is possible. In Table 3 we generate a set of forecasts from Eq. 2, crossing three quarterly economic growth alternatives—+2 percent, 0 percent, −2 percent—with three presidential popularity alternatives—60 percent, 50 percent, 40 percent—and fixing D_t and R_t at their known values. Interestingly, none of these scenarios produces a forecast that Republicans will maintain their Senate majority. Even the most optimistic, which envisions a highly popular president (60 percent approval) and a booming economy (2 percent quarterly growth) yields a forecast of a net four seat loss for the Republicans, just enough to cost them their majority. Of course, more sober scenarios project still greater losses for the president’s party. Obviously, the reader may prefer to experiment with other hypothetical values for these popularity and economy variables, or simply wait until spring 1986 and insert their actual values, in order to generate a forecast.

Summary and Conclusions

According to past assumptions and evidence, Senate election outcomes are essentially unpredictable, in large part
TABLE 3
Different Forecasts for Republican Senate Seat Change in the 1986 Election

<table>
<thead>
<tr>
<th>Change in the 1986 Election</th>
<th>Presidential Popularity in May (P_t-6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40 Percent</td>
</tr>
<tr>
<td>Real GNP</td>
<td></td>
</tr>
<tr>
<td>Second Quarter Growth Rate</td>
<td></td>
</tr>
<tr>
<td>(G_{t-6})</td>
<td>40 Percent</td>
</tr>
<tr>
<td>+2 Percent</td>
<td>-7</td>
</tr>
<tr>
<td>0 Percent</td>
<td>-9</td>
</tr>
<tr>
<td>-2 Percent</td>
<td>-12</td>
</tr>
</tbody>
</table>

because of the unique features of the institution. Certainly, if standard aggregate time series models, originally formulated for the House, are estimated for the Senate, powers of prediction are poor. However, with appropriate modification of the optimal House economy-popularity model, in particular inclusion of an incumbent seats-at-risk variable, accurate forecasting is possible. Such a model yields a high goodness-of-fit statistic (R-squared = .73) and a low after- and before-the-fact prediction error of about one-and-a-half seats. As well, it can foresee years of "major defeat" for the president’s party in the Senate, and can guess the "good" years and the "bad" years. Moreover, the model gives forecasts with sufficient lead time, utilizing measures taken six months in advance of the election. Overall, it receives a high rating as a forecasting instrument. Finally, when it is (prematurely) applied to 1986, the suggestion is that the Republicans will almost surely lose their current Senate majority.

References

Rosenstone, Steven J. 1983. Forecasting
Media Coverage of the Congressional Underdog

John Orman
Fairfield University

The advantages of incumbency in congressional races has been an area of scholarly concern. With incumbents who have sought reelection to the House from 1956-1980 winning 92.2 percent of the time (Jones, p. 79), scholars have tried to explain the sources of this electoral advantage. As Keefe and Ogul (1981) have observed, "The advantages of incumbency are awesome" (p. 112).

Incumbents have many electoral resources which are funded by taxpayers in annual allowances to members for personal staff salaries; travel between Washington and district; constituent communications like newsletters, questionnaires, stationery and postage; telephone and district office expenses like rent, furnishings and equipment (Cover, 1977, p. 537). House incumbents can use casework and constituent service to score political points with the electorate. The incumbent usually has an easier time of raising substantial sums of money to finance reelection and to promote name recognition (see Jacobson, 1978, 1980, 1983). These advantages take on even greater significance in light of the fact that the electorate has been increasingly relying on incumbency rather than party affiliation as a voting cue (pp. 676-677). Moreover, incumbents in the 1970s have improved their ability to tailor their "home styles" to fit characteristics of their districts (Fenno, 1978).

Yet in all of these explanations by political scientists of the incumbent advantage in House elections, little or no concern is given to the manner in which the local media covers the incumbent and the challenger. This perhaps is where the incumbent derives one of the greatest advantages over the challenger.

Local media coverage transmits the cues to the voters about who the incumbent is, what his or her record of service to constituents and district is, who is expected to win, who the challenger is and why the challenger is expected to lose the election. Local media coverage becomes the arena in which the game of election politics is played.

Case: 4th Congressional District Race in Connecticut, 1984

On July 23, 1984, I received the Democratic nomination for the House of Representatives in the 4th Congressional District in Connecticut to run against Repub-