ABSTRACT

Non-invasive measurements of physiological chemicals such as glucose are made using infrared radiation and a signal processing system that permits the construction of a device suited for home use. The level of a selected physiological chemical in a test subject is determined in a non-invasive and quantitative manner by a method comprising the steps of: (a) irradiating a portion of the test subject with near-infrared radiation such that the radiation is transmitted through or reflected from the test subject; (b) collecting data concerning the transmitted or reflected infrared radiation using a detector; (c) digitally filtering the collected data to isolate a portion of the data indicative of the physiological chemical; and (d) determining the amount of physiological chemical in the test subject by applying a defined mathematical model to the digitally filtered data. The data collected may be in the form of an absorbance spectrum, i.e., a representation of the variation in absorbance as a function of wavelength; or in the form of an interferogram, i.e., a representation of infrared light intensity as a function of the retardation of the moving mirror in the interferometer, and thus of time.

20 Claims, 10 Drawing Sheets
FIG. 1

IRRADIATE PATIENT WITH NIR RADIATION

COLLECT DATA CONCERNING TRANSMITTED OR REFLECTED NIR RADIATION

DIGITALLY FILTER COLLECTED DATA TO ISOLATE GLUCOSE INFORMATION

APPLY MATHEMATICAL MODEL TO FILTERED DATA TO DETERMINE GLUCOSE LEVEL IN PATIENT

FIG. 2

OBTAIN FOURIER TRANSFORM OF NORMALIZED AMPLITUDE/FREQUENCY SPECTRUM

MULTIPLY THE TRANSFORMED SPECTRUM BY A GAUSSIAN FUNCTION

APPLY INVERSE FOURIER TRANSFORM TO CONVERT BACK TO AMPLITUDE/FREQUENCY SPECTRUM
FIG. 4
FIG. 9

Interferogram magnitude (arb. units) vs. glucose concentration (mM).

FIG. 10

Glucose concentration from spectra vs. actual glucose concentration (mM).
FIG. 13

FIG. 14
FIG. 15

- CALIBRATION
- PREDICTION
METHOD AND APPARATUS FOR NON-INVASIVE DETECTION OF PHYSIOLOGICAL CHEMICALS, PARTICULARLY GLUCOSE

The invention described in this application has been developed in part with funds received from the National Institutes of Health under grant number DK 45126. The United States Government may have certain rights under this invention.

BACKGROUND OF THE INVENTION

This application relates to a method and apparatus for the non-invasive, quantitative measurement of physiological chemicals, particularly glucose, in a patient.

Determination of blood glucose is a routine procedure performed several times a day by many diabetics. In general, this procedure involves the taking of a small blood sample and evaluating the level of glucose in the sample. Common instruments used for this purpose use the enzyme glucose oxidase to convert glucose and oxygen to gluconic acid and hydrogen peroxide, and then measure the level of peroxide by either spectroscopic or electrochemical means.

While these daily measurements provide the diabetic patient with the ability to self-monitor and thus better control blood glucose levels, they are not without drawbacks. In particular, the taking of blood samples several times a day can be painful and exposes the patient to a risk of infection. Moreover, using this existing technology it is impossible to obtain a continuous blood glucose measurement. Thus, during the night, a patient must either be awakened periodically for testing or run the risk that glucose levels will drop to dangerous levels as they sleep.

In view of the foregoing, there exists a need for a non-invasive method of measuring blood glucose in a patient. It has been suggested that this could be accomplished using near-infrared (NIR) radiation. Thus, U.S. Pat. No. 5,086,229 of Rosenthal, which is incorporated herein by reference, describes a system using a plurality of infrared light emitting diodes and a detector to measure blood glucose. The infrared measurement of glucose in the body is immensely complicated, however, because of the substantial absorptions of fats and proteins in the near-infrared. Thus, while the Rosenthal patent presents an interesting theory, there is no published documentation that demonstrates the ability of the Rosenthal system to measure glucose non-invasively. Furthermore, the wavelengths used in the Rosenthal system have never been shown to possess useful glucose information.

It is an object of the present invention to provide a practically useful non-invasive near-infrared detector for blood glucose and other physiological chemicals that is adaptable for continuous use.

It is a further object of the present invention to provide a method for the non-invasive quantitative measurement of physiological chemicals and particularly glucose in a patient that can be used either continuously or intermittently.

It is still a further object of the invention to provide an apparatus for continuous or intermittent non-invasive monitoring of blood glucose and other physiological chemicals in a patient.

SUMMARY OF THE INVENTION

In accordance with the invention, non-invasive measurements of physiological chemicals such as glucose are made using infrared radiation and a signal processing system that permits the construction of a device suited for home use.

Thus, the level of a selected physiological chemical in a test subject is determined in a non-invasive and quantitative manner by a method comprising the steps of:

(a) irradiating a portion of the test subject with near-infrared radiation such that the radiation is transmitted through or reflected from the test subject;
(b) collecting data concerning the transmitted or reflected infrared radiation using a detector;
(c) digitally filtering the collected data to isolate a portion of the data indicative of the physiological chemical; and
(d) determining the amount of physiological chemical in the test subject by applying a defined mathematical model to the digitally filtered data. The data collected may be in the form of an absorbance spectrum, i.e., a representation of the variation in absorbance as a function of wavelength; or in the form of an interferogram, i.e., a representation of infrared light intensity as a function of the retardation of the moving mirror in the interferometer, and thus of time.

In a further aspect of the invention, there is provided a device for measurement of a chemical in a sample comprising:

(a) means for collecting data concerning near-infrared radiation transmitted through or reflected from the sample;
(b) means for digitally filtering the collected data to isolate a portion of data indicative of the chemical;
(c) means for applying a defined mathematical model to the digitally filtered data, whereby the amount of chemical in the test subject is determined; and
(d) means for reporting the amount of chemical in the sample. This device can be incorporated into a complete apparatus for the non-invasive measurement of blood glucose. Such an apparatus would also include a source of infrared radiation and a mechanism for directing the infrared radiation from the source to the test subject and from the test subject to the means for collecting the spectrum.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow chart depicting the method of the invention;
FIG. 2 is a flow chart depicting a process for digitally filtering an absorbance spectrum;
FIG. 3 is a schematic representation of an interferometer;
FIG. 4 shows a sample interferogram;
FIG. 5 shows a device in accordance with the present invention for measurement of glucose in a sample;
FIG. 6a and 6b show an apparatus in accordance with the present invention for non-invasive monitoring of physiological chemicals in a test subject;
FIG. 7 shows unfiltered interferogram segments taken of phosphate buffer and three concentrations of glucose;
FIG. 8 shows digitally filtered interferogram segments taken from phosphate buffer and three concentrations of glucose;
FIG. 9 shows the relationship between filtered interferogram segment magnitude and actual glucose concentration;
FIG. 10 shows the relationship between glucose concentration determined from digitally filtered absorbance spectra of human test subjects and actual glucose levels as determined by blood testing; and
FIG. 11 shows the relationship between glucose concentration determined from unfiltered absorbance spectra of human test subjects and actual glucose levels as determined by blood testing.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 is a flow chart depicting the method of the invention, as applied to the non-invasive determination of blood glucose in a human patient. As shown, the first step of the method is the irradiation of the test subject, in this case the patient, with near-infrared radiation.

Suitable NIR radiation for use in the present invention coincides with the absorbance bands of glucose or other physiological chemical being measured. For glucose, these bands are located in the regions of 5000-4000 cm\(^{-1}\) and 6500-5800 cm\(^{-1}\). The intensity of the light at the selected wavelength should be on the order of 700 lux or greater. Such radiation can be produced by a 300 W tungsten-halogen lamp.

Since the spectrum obtained and used in the method of the present invention may be either a transmittance spectrum or a reflectance spectrum, considerable latitude is available in the manner and location in which the NIR radiation impinges on the test subject. For example, if transmitted NIR radiation is being measured, the NIR radiation should impinge on a relatively thin, fleshy area of the patient such as the fleshy webs between the fingers or toes or the ear lobe. If reflectance spectra are to be used, the sampling site should be characterized by high blood flow close to the surface, such as the ventral surface of the wrist.

The source of NIR radiation used in the present invention may be such that it is disposed directly against the surface of the test subject. For example, a small halogen lamp could be used. Alternatively, the source may be physically remote from the test subject. In the latter case, it is advantageous, although not necessary, to guide the NIR radiation to the desired irradiation site on the surface of the test subject, for example by means of optical fibers.

In the second step of the method, the data concerning the transmitted or reflected NIR radiation is collected using a detector. The specific nature of the detector is not critical; provided it is capable of detecting the pertinent wavelengths of light and responding rapidly enough to be compatible with the other components of the device. An example of a suitable detector for collection of an absorbance spectrum is a combination of a dispersive element, e.g., a grating or prism, and an optical multi-channel analyzer sensitive to NIR radiation. In the case where the data is to be collected as an interferogram, a suitable detector is a combination of a NIR interferometers and a photon counting detector such as a solid state indium antimonide detector.

The positioning of the detector relative to the test subject will depend both on the nature and size of the detector and the environment in which the measurement is being taken. For most purposes, it will be desirable to have the detector physically separated from the test subject, both because of detector size and to maximize detector performance by providing the detector with a stable environment. It will therefore generally be advantageous to guide the transmitted or reflected NIR radiation to the detector, for example using optical fibers.

Depending on the instrumentation selected, the data concerning the transmitted or reflected radiation is collected as either an absorbance spectrum or an interferogram. In either case, the next step as shown in FIG. 1 is to digitally filter the data to isolate the portion of the data which is indicative of the chemical of interest. The specific manner in which this step is performed depends on the form of the collected data.

Digital Filtering of an Absorbance Spectrum

When the data collected is in the form of an absorbance spectrum, the process for filtering the data is shown in FIG. 2. As shown, the absorbance spectrum, or a portion thereof containing information about the chemical being tested for, is transformed using a Fourier transform into a Fourier domain spectrum. The transformed spectrum is then filtered by multiplying it by a Gaussian function that weights spectral information associated with the chemical being analyzed. In the case of glucose, a suitable Gaussian function is defined by a mean position of 0.037 f (digital frequency units) and a standard deviation width of 0.011 f. This function emphasizes a glucose-associated absorbance band appearing in the spectral region between 6500 and 5800 cm\(^{-1}\). Other peaks, and other Gaussian functions for the same peak may also be employed. For example, the glucose-associated absorbance band at 4400 cm\(^{-1}\) can be emphasized. For physiological chemicals other than glucose, appropriate Gaussian functions may be identified. For absorbance spectra processing, the proper Gaussian function can be obtained by analyzing the shapes of the absorbance bands for the compound of interest.

After multiplication of the spectrum with the Gaussian function, the resulting filtered spectrum is converted back to an absorbance spectrum using an inverse Fourier transform. While the use of a Fourier filtering process such as that described above is a preferred method of performing the method of the invention, other digital filtering methods may also be used. Such methods include finite impulse response and infinite impulse response digital filters.

Digital Filtering of an Interferogram

When the data concerning the transmitted or reflected infrared radiation is collected in the form of an interferogram, it may be processed in either of two general ways. First, the interferogram may be converted to a conventional single beam spectrum using a Fourier transform and then filtered by multiplication with an appropriate Gaussian function. For example, in the case of a non-invasive determination of glucose, a Gaussian function having half-power points of 4454.5 and 4354.6 cm\(^{-1}\) can be used to emphasize the glucose absorbance band at 4400 cm\(^{-1}\). This corresponds to a Gaussian function having a mean position of 0.139 f and a standard deviation of 0.00122 f. Other Gaussian functions for digital filtering to obtain information from other glucose absorbances or for absorption bands associated with other chemicals of interest can be obtained by matching functions to the width and location of the absorption bands.

This filtering differs from the process described above, in that it requires to eliminate the background signal is not performed. Because of this, after multiplication of the transformed spectrum, the resulting filtered spectrum can be subjected to an inverse Fourier transformation to yield a filtered interferogram. Such an interferogram is much simpler in appearance than the original interferogram, because much of the noise and absorbances not associated with the chemical of interest have been removed. Further, there is a clear correlation between the magnitude of the interferogram signal and the amount of the chemical being measured in the test subject.

The magnitude of the interferogram peaks is advantageously measured by the simple procedure of integrating the interferogram to determine the total power of the signal. This yields a single value related to the glucose concentra-
tion. Alternatively, the individual points in the filtered interferogram could be submitted to a multivariate calibration method such as a partial least squares regression. This would yield a multivariate model relating the individual interferogram point intensities to glucose concentration.

Alternatively to transforming the interferogram into a single beam spectrum, the interferogram itself may be subjected to a digital filtering process, and the magnitude of the filtered interferogram peaks analyzed using a predefined mathematical model.

Application of digital filtering directly to the interferogram depends on the fact that each wavelength of light is represented in the interferogram by a modulated sine wave whose frequency (in hertz) depends on the wavelength of the light and the interferometer mirror velocity in accordance with the equation

$$\text{frequency of signal} = 2 \times \text{wavenumber of } X \times \text{mirror velocity radiation}$$

where the wavenumber has units of cm\(^{-1}\), the mirror velocity is expressed in units of cm/sec. By selecting an electronic filter that selects out only the portion of the interferogram having the frequency defined by this equation for the selected absorbance of the chemical being measured, a simplified interferogram is obtained.

The construction of electronic filters to select for specified wavelengths is commonplace in the electronic arts. Briefly, the filter would be implemented as a digital filter. The software controlling the device would implement the filter as part of the data processing. The digital filter used implements an approximation of the convolution sum

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

where \(y[n]\) is the filtered interferogram at point \(n\), \(x[k]\) is the original unfiltered interferogram at point \(k\), and \(h[n-k]\) are the points on the impulse response of the digital filter, i.e., the interferogram-domain representation of the frequency response filter.

While the digital filtering procedure for interferograms has been described above in terms of a Fourier filtering process, other digital filtering methods may also be used. In particular, methods such as finite impulse response and infinite impulse response filters can be used. These filter design methods approximate the infinite summation in the convolution sum above. These methods offer the advantage of reducing the size of the interferogram required, which can lower the performance requirements of the interferometer.

While the method of the invention can be practiced on complete interferograms, it has been found that short segments of an interferogram can be used as well. This has great significance to the application of this technology in relatively rigorous environments, because it facilitates the construction of a smaller interferometer with less stringent mechanical tolerances.

An interferometer such as that shown in FIG. 3 includes a 50:50 beam splitter 30, two mirrors 31 and 32, and optical track 33 and a detector 34. Infrared radiation is passed through the beam splitter 30 and directed toward the two mirrors 31 and 32, oriented at 90 degrees to one another, which reflect it back towards the detector 34. At the same time, the mirror 31 is moved back and forth on the optical track 33. The movement of the mirror 31 results in successive occurrences of constructive and destructive interference. Thus, the signal received at the detector is a harmonic signal whose frequency is determined by the frequency of incident light and the mirror velocity. A sample of the detected signal, called an interferogram, is shown in FIG. 4.

Interferograms can be converted by a mathematical transformation into conventional spectra of very high quality. However, the mechanical complexity of the interferometer, and particularly the need for precise control of the movement of the mirror over a substantial length of travel and for precise optical alignment, limits the applicability of interferometers in rigorous environments. The mechanical complexity of the instrument could be substantially reduced if the length of the interferogram were shortened, because the length of mirror travel could be shorter. It is generally recognized, however, that the use of short interferograms significantly reduces the quality of the spectrum which can be obtained upon transformation of the interferogram to a conventional absorbance spectrum.

The reason for this loss of quality has to do with the mathematical approximation normally used to perform the transformation, the fast Fourier transform or FFT. The FFT is an approximation of the infinite Fourier integral in which it is assumed that the time signal is zero outside the region actually sampled. Supplying a very short interferogram to the FFT has the effect of convolving a boxcar function with the true (i.e. infinitely sample) interferogram. The Fourier transform of the boxcar function is a \((\sin x)/x\) function. When this function is superimposed on the true spectrum, a lowering of resolution results.

In conventional interferometers in use today, the total travel of the mirror is around 2 cm, with spectral collection actually occurring over approximately 1 cm of this length. It has surprisingly been found, however, that short interferogram segments, i.e., interferograms collected over distance of mirror travel of about 0.003 to 0.10 cm can be used effectively in the method of the present invention. This opens the door to the construction of interferometers that are smaller and inherently more rugged than their laboratory predecessors, and which thus are suited for use, e.g., by an individual diabetic in the home.

A further advantage of the method as of the present invention is ability to dispense with separate background spectral measurements through the use of interferograms. Such measurements are necessary in most systems to correct for instrumental variations and the absorbance of compounds other than the compound of interest. In the case of non-invasive monitoring of physiological chemicals, however, this background is highly complex. Furthermore, it is not readily apparent how one would obtain a spectrum of the test subject, minus the chemical being analyzed. When using interferograms, however, no background is necessary. This is the case, because in an interferogram, the portion of the signal which can be attributed to the overall instrument function is a wide feature which is represented in the interferogram as a rapidly damped sinusoidal signal. In contrast, absorption bands of compounds are narrower and thus their interferogram representation does not damp as rapidly. Thus, by taking the analyzed data from an interferogram segment removed from the centerburst, the instrumentation dependent signal has essentially died out, leaving only the signals associated with actual infrared absorbances.

Regardless of the form of the collected data, the final step in the method as shown in FIG. 1 is the determination of glucose or other physiological chemical concentration by application of a previously determined mathematical (calibration) model. In either case, the input into the model is the filtered data, and the output is the estimated concentration of glucose or other physiological chemical of interest. The model is developed based upon a multivariate regression.
analysis, such as partial least squares (PLS) regression. In
PLS, the independent variables are the filtered data and
the dependent variable is the glucose concentration. Other mul-
tivariate regression methods such as principal components
regression can also be used.

The mathematical model resulting from application of any
of these techniques to a set of data in which the actual
concentration is known can be expressed as a
series of terms of the value which correspond to measured
properties of the data for a sample, and factors or regression
coefficients. For example, a model found to be useful in
determining glucose concentrations in vivo using data in
absorbance spectrum form has the form

\[y_i = \sum_{j=1}^{k} a_j x_i^j + \epsilon_i \]

where \(a_i \) is the predicted glucose concentration correspond-
ing to spectrum \(i \), the \(x_i \) values are the partial least-
squares factor scores computed from the absorbance data, and the \(b \) terms are the coefficients determined from a multiple linear
regression analysis of the measured glucose concentrations
corresponding to the calibration absorbance data and the \(h \) sets of partial least-squares scores computed from the cali-
bration absorbance data.

To analyze an unknown sample, values measured for the
sample are substituted into this equation to produce an
estimate of the glucose concentration in the sample. As a
general rule, device limitations will probably require that
this model be established for each chemical being measured
using instrumentation separate from the device actually
being used by a test subject to perform day-to-day monitor-
ing. Nevertheless, some calibration function may be
incorporated in an individual device to adapt it to a specific test
subject.

While the method of the invention has been described
principally with respect to the monitoring of glucose in a
human subject, the scope of the invention is not so limited.
Physiological chemicals other than glucose, such as urea,
lactate, triglycerides, total protein and cholesterol may also
be quantitatively detected using the method of the invention
through the selection of appropriate digital filtering param-
eters. Furthermore, because the filtering is all post-collection
processing performed on stored data, a single spectrum can be
analyzed numerous times to provide analytical results on more
than one physiological chemical.

Test subjects to which the method of the invention may be
applied include not only human subjects, but also animal
subjects, e.g., during veterinary procedures, and even living
plants. For example, non-invasive determination of sugar
levels within fruits could be made to assess the ripeness of
the fruit and its readiness for harvesting. Thus, as used in
the specification and claims hereof, the term test subject refers
to any living organism containing physiological chemicals.

A further aspect of the present invention is a device for
measurement of glucose in a sample as shown in FIG. 5.
This device, which can be used on any type of sample, not
just a living organism, includes means for collecting a
transmitted or reflected infrared radiation such as interfer-
ometry 50 or a combination of a dispersive element and an
optical multichannel analyzer. The collected spectral data is
delivered to a computer readable storage medium 51 from
whence it is read by computer processor 52 and processed in
accordance with a programmed instruction to digitally filter
the collected spectrum to isolate a portion of the spectrum
indicative of glucose. Suitable computer processors for use
in this application include Intel 486 and Pentium 59 micro-
processors or MIPS R3000 and R4000 processors of the type
used in Silicon Graphics workstations.

The computer program used to perform the digital filter-
ing steps can be written in any programming language
able to perform a Fourier transform and multiplying a
data set by a Gaussian function. For example, a program
written in Fortran 77 was employed to perform the data
analysis described in the example herein.

Once the stored data have been digitally filtered, the
computer processor 52 is operated under a second set of
programmed instructions in order to apply a predetermined
mathematical model to the data. The result of this applica-
tion is a numeric estimate for the concentration of glucose or
other chemical of interest in the test subject.

The device of the invention also includes one or more
means for reporting the amount of glucose in the sample.
Examples of means for reporting the amount of glucose
include digital display panels 53, transportable read/write
magnetic media such as computer disks and tapes which can be
transported to and read on another machine, and printers
such as thermal, laser or ink-jet printers for the production
of a printed report.

A further aspect of the present invention is an apparatus
for the non-invasive, quantitative detection of physiological
chemicals in living organisms. Such an apparatus may be a
combination of a device for glucose measurement as
described above, or a comparable device having the digital
filter parameters and standard values targeted for a different
physiological chemical with a means for irradiating the
surface of the living organism with near-infrared radiation in
such a way that the spectral data can be collected in a
transmission, diffuse reflectance or transfectance configura-
tion.

FIG. 6A shows an apparatus of this type for collecting
spectral information. The apparatus has a housing 60 which
encloses a light source 61, a detector 62, and a micropro-
cessor 63. Infrared radiation from light source 61 is trans-
mitted through optical fiber 64 to the test subject 65. Transmitted radiation is collected through optical fiber 66 and
transmitted to detector 62. The signal from the detector
is then transmitted to microprocessor 63. Microprocessor 63
digitally filters the signal from the detector, and applies the
defined mathematical model to the filtered data to deter-
mine a value for glucose concentration which is displayed
on display 67. Display 67 may be an LED or LCD display.

Other configurations of the apparatus can be utilized in
addition to the specific configuration shown in FIG. 6A. For
example, the apparatus can be configured to collect infrared
radiation in a diffuse reflectance mode, rather than in a
transmission mode. In the diffuse reflectance mode, a por-
tion of the incident radiation penetrates a short distance into
the sample before being scattered out of the sample. A
fraction of this back-scattered radiation is collected and
measured by the detector.

The apparatus may also be operated in a transfectance
mode. In a transfectance configuration, optical fibers 64 and
66 are positioned apart by a distance D as shown in FIG. 6B.
The second fiber collects light that has entered the sample
and traversed a short distance within the sample medium.

EXAMPLE 1

In vitro measurements of glucose concentration were
made on a series of thirteen glucose samples having con-
centrations varying from 1.5 to 19.7 mM glucose in pH 7.4
phosphate buffer (0.1M). The samples were placed in 1 mm
pathlength cuvettes constructed from infrared quartz and
transmitting interferograms of each were obtained using a
Nicolet 740 spectrometer in conjunction with a tungsten-
halogen light source and a cryogenically cooled InSb near-infrared detector. Double sided interferograms were collected by averaging across 256 co-added scans. Either two or three replicate interferograms were made for each sample, producing a total of 38 interferograms across the 13 samples.

To evaluate glucose concentration, the glucose absorption located at 4400 cm⁻¹ was used and isolated by digital filtering. The filtering process involved application of a fast Fourier transform to the interferogram to produce a single beam spectrum; multiplication of the transformed interferogram with a Gaussian function having half-power points at 4445.6 and 4354.6 cm⁻¹; and application of the inverse fast Fourier transform to obtain the filtered interferogram.

FIG. 7 shows four interferograms segments (points 600–800 relative to the interferogram peak maximum or centerburst) obtained for phosphate buffer, 3.22 mM glucose, 7.95 mM glucose and 19.7 mM glucose. No obvious information relating to glucose concentration can be observed. FIG. 8 shows these same interferograms after the digital filtering procedure described above. The waveforms have been greatly simplified due to the removal of all frequencies outside the bandwidth of the Gaussian function.

The interferogram segment for the buffer decreases in intensity to a minimum point or node, followed by a slowly damping signal due to the water absorption feature. The interferograms of samples containing glucose exhibit a less obvious node, but increased magnitudes are observed with increasing glucose concentrations.

FIG. 9 shows the results obtained when the magnitudes of the filtered interferograms are plotted as a function of actual glucose concentration. An excellent correlation between the magnitude and the concentration is observed (Univariate linear regression: R squared=99.0%; standard error of calibration=0.62 mM).

EXAMPLE 2

In vivo experiments on the non-invasive detection of glucose were performed using a Nicolet 740 research grade spectrometer configured with a 250 W tungsten halogen lamp, Cds beam splitter and InSb detector. Non-invasive measurements in accordance with the invention were taken at the same time as conventional invasive measurements on three individuals of varied physique during the course of glucose tolerance tests. The beam of light from the spectrometer having a spectral range from 7000 to 5000 cm⁻¹ was passed through a portion of the webbing between the thumb and forefinger. This particular wavenumber region was isolated using a standard astronomical H-band optical filter.

The spectra were collected in interferogram form using the interferometer and InSb detector of the spectrometer, and then converted to single beam spectrum (intensity versus wavenumber) using the accompanying Nicolet computer. All single beam spectra were subsequently transferred to a Silicon Graphics Indigo computer for data processing.

Blood samples taken during the test were analyzed for glucose using a Yellow Springs Instruments (YSI) model 2300 glucose analyzer.

To process the spectra, the single beam spectra were first converted to absorbance units by dividing each spectrum by a water reference spectrum and then computing the negative logarithm. Only the portion of the spectrum between 6500 and 5800 cm⁻¹ was used in all subsequent calculations.

Spectra were then normalized using the signal between 5955 and 5951 cm⁻¹, a wavenumber region that contains no glucose information. The normalized spectra were then digitally Fourier filtered to eliminate noise and other spectral features that distract from glucose information.

The first step in the Fourier filtering process was to perform a Fourier transform on the absorbance spectrum. This resulted in a Fourier domain spectrum, which was then multiplied by a Gaussian function defined by a mean position of 0.037 f and a standard deviation width of 0.011 f. These parameters were selected to isolate the glucose absorption. The filtered transformed spectrum was then converted back to an absorbance spectrum by applying an inverse Fourier transform.

The spectra obtained in this way were analyzed using the standard PLS regression procedure. This procedure essentially goes into the data set and weights the different spectral frequencies by correlating spectral variation with analytic concentration. The result is a series of factors and regression coefficients which can be applied to individual spectra to obtain a predicted value of glucose concentration.

FIG. 10 shows the correlation between glucose concentration as determined from the spectra and the glucose level as determined from the blood samples taken. The open symbols in the graph represent the data that were used to generate the calibration model. The solid symbols represent results from an independent set of spectra used only for prediction purposes.

All of the results cluster around the unity line, and the prediction points are within the general spread and scatter of the calibration points. Thus, the ability of the method of the invention to predict blood glucose levels is confirmed. Moreover, since there is no clustering of data according to individual, a global calibration rather than individual calibrations may be possible.

EXAMPLE 3

To evaluate the importance of the digital filtering step in Example 2, the data taken in that experiment were reevaluated with the digital filtering step omitted and a separate set of PLS factors were developed. The resulting plot of spectral glucose versus blood glucose measurements is shown in FIG. 11. As is apparent, the data in this case has a much poorer correlation. Thus, the importance of an appropriate digital filtering technique is clear.

We claim:

1. A method for non-invasive quantitative detection of a physiological chemical in a test subject comprising the steps of:
 (a) irradiating a portion of the test subject with near-infrared radiation such that the radiation is transmitted through or reflected from the test subject;
 (b) collecting data concerning the transmitted or reflected infrared radiation using a detector;
 (c) digitally filtering the collected data to isolate a portion of the data indicative of the physiological chemical; and
 (d) determining the amount of physiological chemical in the test subject by applying a defined mathematical model to the digitally filtered data.

2. A method according to claim 1, wherein the digital filtering is performed by a Fourier filtering process.

3. A method according to claim 1, wherein the collected data is in the form of an absorbance spectrum.

4. A method according to claim 3, wherein the spectrum is digitally filtered by performing a Fourier transform on the
absorbance spectrum; multiplying the transformed spectrum by a Gaussian function; and applying an inverse Fourier transformation to the multiplied transformed spectrum.

5. A method according to claim 4, wherein the mathematical model applied to the digitally filtered spectrum applies coefficients developed using a partial least squares regression multivariate calibration procedure.

6. A method according to claim 5, wherein the spectrum is digitally filtered by performing a Fourier transform on the absorbance spectrum; multiplying the transformed spectrum by a Gaussian function; and applying an inverse Fourier transformation to the multiplied transformed spectrum.

7. A method according to claim 1, wherein the chemical is glucose.

8. A method according to claim 7, wherein the spectrum is digitally filtered by performing a Fourier transform on the absorbance spectrum; multiplying the transformed spectrum by a Gaussian function; and applying an inverse Fourier transformation to the multiplied transformed spectrum.

9. A method according to claim 8, wherein the spectrum that is digitally filtered spans the region from 6500 to 5800 cm\(^{-1}\).

10. A method according to claim 8, wherein the magnitude of the digitally filtered spectrum is compared to a standard value using a series of regression coefficients developed using a partial least squares regression multivariate calibration procedure.

11. A method according to claim 1, wherein the collected data is in the form of an interferogram.

12. A method according to claim 11, wherein only a short segment of an entire interferogram is analyzed.

13. A method according to claim 11, wherein the digital filtering step comprises the steps of performing a fast Fourier transform on the interferogram to obtain a transformed spectrum; multiplying the transformed spectrum with a Gaussian function to select for a peak diagnostic for the physiological chemical; and applying an inverse Fourier transform to the multiplied, transformed spectrum.

14. A method according to claim 11, wherein the physiological chemical is glucose.

15. A method according to claim 14, wherein the digital filtering step comprises the steps of performing a fast Fourier transform on the interferogram to obtain a transformed spectrum; multiplying the transformed spectrum with a Gaussian function to select for a peak diagnostic for the physiological chemical; and applying an inverse Fourier transform to the multiplied, transformed spectrum.

16. A method according to claim 15, wherein the Gaussian function is selected to isolate the glucose-associated absorbance at 4400 cm\(^{-1}\).

17. A method according to claim 14, wherein the interferogram is a short segment interferogram.

18. A method according to claim 1, wherein the collected spectrum is an interferogram and the digital filtering is performed directly on the interferogram to select out waveforms within the interferogram having a frequency equal to 2X wavenumber of X mirror velocity radiation where the wavenumber has units of cm\(^{-1}\); mirror velocity is the velocity of mirror travel in the interferometer used to generate the interferogram expressed in units of cm/sec.

19. A device for measurement of glucose concentration in a sample being irradiated with near infrared radiation comprising:

(a) means for collecting data concerning near-infrared radiation transmitted through or reflected from the sample;

(b) means for digitally filtering the collected data to isolate a portion of data indicative of glucose;

(c) means for applying a defined mathematical model to the digitally filtered data, whereby the amount of glucose in the test subject is determined; and

(d) means for reporting the amount of glucose in the sample.

20. An apparatus for the non-invasive measurement of one or more physiological chemicals in a test subject, comprising:

(a) means for irradiating a portion of the surface of the test subject with near-infrared radiation such that transmitted or reflected near-infrared radiation is available for collection;

(b) means for collecting data concerning the transmitted or reflected near-infrared radiation;

(c) means for digitally filtering the collected data to isolate a portion of data indicative of the physiological chemical;

(d) means for applying a defined mathematical model to the digitally filtered data, whereby the amount of chemical in the test subject is determined; and

(e) means for reporting the amount of chemical in the sample.

* * * * *