
The Preparation of 4,6-Dichloro-4,6-Dideoxy-α-Galactopyranosyl 6-Chloro-6-Deeoxy-β-Fructofuranoside And The Conversion Of Chlorinated Derivatives Into Anhydrides, Leslie Hough, Shashi P. Phadnis, and Edward Tarell, Carbohydrate Research, 44 (1975) 37-44.

(Continued on next page.)

Primary Examiner—John Kight
Attorney, Agent, or Firm—Brinks Hofer Gilson & Lyon

ABSTRACT

Chemoenzymatic methods of making sugar-based polymers are disclosed as well as novel sugar-based polymers. In one embodiment, acylated sugars are copolymerized with coreactants to yield novel sugar-based polymers. In another embodiment, non-reducing sugars acylated with a compound having a terminal double bond are polymerized to yield novel sugar-based polymers.

7 Claims, No Drawings
OTHER PUBLICATIONS

A Procedure to Create Polyetherester Alcohols, Bernd Gütes, Renate Marquardt, et al., PTO 91–4394.

Polymerisation of Unsaturated Derivatives of 1,2,5,6-Di-O-isopropylidene-β-D-glucofuranose, W.A.P. Black, E.T. Dewar, and D. Rutherford, Arthur D. Little Research Institute, Inveresk Gate, Musselburgh, Midlothian.

SUGAR-BASED POLYMERS

This application is a continuation of application Ser. No. 706,929, filed May 28, 1991, now abandoned, which is a continuation-in-part of application Ser. No. 521,076, filed May 8, 1990, now abandoned.

BACKGROUND OF THE INVENTION

The present invention is directed to novel sugar-based polymers and novel methods of making these sugar-based polymers. In copending application, Ser. No. 521,076, incorporated herein by reference, Applicants disclose a method of manufacturing sugar-based polymers using biological catalysts (enzymes). Enzymes are very regioselective, thereby allowing the synthesis of acylated sugars useful in the synthesis of sugar-based polymers of the present invention. Applicants' copending application discloses, inter alia, methods of regioselectively diacylating sugar molecules with an organic acid derivative having at least two carboxyl functionalities. These diacylated sugars are then polymerized to form a polymer having repeating sugar units in the polymer backbone.

Applicants have discovered that sugar-based polymers can be manufactured by first using enzymatic synthesis in the regioselective step of manufacturing the diacylated sugar intermediates useful in the manufacture of sugar-based polymers. Subsequently, chemical methods can be used to polymerize the diacylated sugar intermediates. The use of both enzymatic and chemical synthesis is known as chemoenzymatic synthesis. The use of chemoenzymatic methods of making sugar-based polymers permits one to take advantage of the regioselectively associated with enzymatic synthesis while simultaneously taking advantage of the speed associated with chemical synthesis.

SUMMARY OF THE INVENTION

The present invention is directed to novel methods of making sugar-based polymers, as well as novel sugar-based polymers.

In an embodiment of the present invention, there is provided a poly(sugar acrylate) with the structure:

$$\text{+CH=CH}_{2}^\text{R}$$
$$\text{C=O}$$
$$\text{O}$$
$$\text{S}$$

wherein S is a sugar selected from the group consisting of sucrose linked at the 1'-position, raffinose linked at the 1'-position, fructose linked at the 1'-position, trehalose linked at the 6-position, α- or β-alkyl glucosides linked at the 6-position, α- or β-halo-glucosides linked at the β-position, α- or β-alkyl-galactosides linked at the 6-position, α- or β-halo-galactosides linked at the 5-position, α- or β-alkyl-mannosides linked at the 6-position, maltose linked at the 6-position, and lactose linked at the 6-position; and n is a whole number greater than one.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is directed to novel polymers which incorporate an abundant, relatively inexpensive and recyclable resource, sugar. The present invention is also directed to novel methods of making these polymers. It is contemplated that the sugar-based polymers of the present invention will find significant use in diaper liners as well as in other absorbent materials, packaging materials, drug delivery polymers, and in a variety of other commercial applications.

The sugar-based polymers of the present invention are manufactured pursuant to a combination of enzymatic and chemical synthesis (i.e., chemoenzymatic synthesis). In particular, hydrolytic enzymes are used to regioselectively acylate sugar molecules with organic acid derivatives. The acylated sugar intermediates are then polymerized via chemical methods.

The present invention contemplates the utilization of mono-, di-, tri- and oligosaccharides. Preferred sugars are glucose, mannose, fructose (monosaccharides); sucrose, lactose, maltose, trehalose (disaccharides); and raffinose (a trisaccharide). More preferred sugars for use in the present invention include sucrose, fructose, raffinose, lactose, maltose and trehalose. Even more preferred sugars, however, are sucrose, fructose and raffinose. The most preferred sugar is sucrose.

Copolymerization of a coreactant with sugar diacylated with organic acid derivatives having two carboxyl functionalities

In a preferred embodiment of the present invention, diacylated sugar intermediates are made by mixing sugar and organic acid derivatives having at least two carboxyl functionalities. The sugar is regioselectively diacylated with the organic acid derivatives pursuant to the use of hydrolytic enzymes. Any organic acid derivative having at least two carboxyl functionalities is contemplated for use in the present invention. Preferably, the organic acid derivative will comprise a diacid of the general formula:

$$\text{R}_1=\text{OOC-}$$
$$\text{R}_2$$

wherein R1 and R2 are selected from the group consisting of leaving groups and R2 is any moiety which will not interfere with the acylation of the sugar and/or subsequent polymerization of the resulting acylated sugars. For example, R2 could be selected from the group consisting of alkynes, branched alkenes, alkenes, substituted alkenes, aromatic moieties, substituted aliphatic moieties, substituted aromatic moieties and mixtures thereof. Again, the only critical limitation with respect to R2 is that it not contain a reacting functionality (as, for example, a hydroxyl, an amine and/or a carboxyl group) which would substantially interfere with the acylation, and/or subsequent polymerization, of the sugar.

As previously stated, R1 and R2 are leaving groups. By leaving group, it is meant that R1 and R2 may be any group that is replaced by sugar in the presence of a hydrolytic enzyme. Preferably, R1 and R2 are leaving groups that are poorer nucleophiles than the sugar. This is preferred because, as presently understood, the sugar molecules replace R1 and R2 on the organic acid derivatives by an enzyme-organic acid derivative intermediate via a nucleophilic mechanism. Where R1 and R2 are poorer nucleophiles than the sugar, there will be little competition between these groups and the sugar molecules, thus resulting in a greater yield of diacylated sugar intermediates than if R1 and R2 were good nucleophiles relative to sugar. Preferably, R1 and R2 are activated leaving groups selected from the group consisting of mono-, di-, and trifluoroethanol; mono-, di-,
and trichloroethanols; halogens; and enol esters. Most preferred organic acid derivatives contemplated for use in the present invention are bis(2,2,2-trifluoroethoxy) adipate, vinyl adipate and isopropenyl adipate.

It should be noted that the properties desired of the final sugar-based polymer may be considered when selecting organic acid derivatives. For example, the R2 group of the afore-described organic acid derivative will ultimately be incorporated into the backbone of the sugar-based polymer. Thus, the properties of the sugar-based polymer will be effected by the nature of this R2 group. Longer R2 groups will result in a polymer having longer hydrocarbon links. Such a polymer will have increased flexibility and increased hydrophobicity. Accordingly, where hydrophobicity and/or flexibility is desired, R2 will be selected from the group consisting of alkanes, alkenes and substituted alkenes having about ten or more carbons. Conversely, shorter hydrocarbon links will likely increase the hydrophilicity and rigidity of the resulting sugar-based polymer. Thus, where hydrophilicity and/or rigidity is desired, R2 will be selected from the group consisting of alkanes, alkenes, substituted alkenes, aromatic moieties and substituted aromatic moieties having less than about 10 carbons.

Alternately, if an ionic sugar-based polymer is desired, R2 can be, for example, selected from the group consisting of free acids or salts (particularly sodium or potassium salts) containing SO3-, NO3- and PO4-2-. The incorporation of such charged R2 groups into the sugar-based polymers may render these polymers useful as flocculants for use in, for example, water treatment applications.

In some cases, a highly crystalline sugar-based polymer may be desired as, for example, where the polymer is contemplated for use as a thermoplastic material. Crystallinity can be enhanced by regularity in the polymer backbone and by increasing the polarity of the polymer. This can be achieved by using organic acids having identical polar R2 groups. However, for other uses (e.g., clear plastic packaging films) a non-crystalline polymer is preferred. To decrease the crystallinity of the sugar-based polymer two approaches can be used. First, to disrupt the regularity of the polymer (and, thus, decrease crystallinity) organic acid derivatives having two different linkage lengths (i.e., different R2 groups) may be employed in a single synthesis of the sugar-based polymer. This should result in a random copolymer (i.e., the two lengths should be randomly distributed in the polymer chain, thereby decreasing regularity). The second approach is to decrease the polarity of the sugar-based polymer by using longer, more hydrophobic R2 groups in the organic acid derivative. As the polarity decreases, the crystallinity may decrease.

As can be discerned from the preceding discussion, by varying the character of the R2 group in the organic acid derivatives, the properties of the resulting sugar-based polymer may be controlled. The only practical limitations on the nature of the R2 group are that it should be soluble in the substantially non-aqueous organic solvent and not substantially interfere with the acylation of the sugar and subsequent polymerization of the acylated sugars.

The sugar molecules must be acylated in at least two locations in order to synthesize the sugar-based polymers of the present invention. Most preferably, the sugar molecules will be acylated at only two locations (i.e., diacylated). If, however, certain properties were desired (i.e., greater cross-linking, hydrophobicity, less absorbency) the sugar molecules may be acylated at more than two hydroxyl positions. In any event, the amount of organic diacid derivative to sugar should be at least a 1:1 molar ratio. Where a tri-, tetra-, or higher acid derivative is used as the acyl donor, the ratio of the organic acid derivative to sucrose should be adjusted according to the aforesaid ratio (i.e. a tetra acid derivative should be present in a 2:1 molar ratio to sugar). Preferably, the organic acid derivative is present in excess when mixed with the sugar.

The sugar is diacylated with the organic acid derivative via the use of hydrolytic enzymes. Hydrolytic enzymes are highly selective biological catalysts that typically operate under mild reaction conditions (e.g., ambient temperatures and pressures, neutral solutions, etc.). Hydrolytic enzymes include lipases, esterases, proteases, and carboxydrases. In an aqueous environment, hydrolytic enzymes are capable of catalyzing both hydrolysis and ester formation according to the following reversible equation:

\[R_{2}COOR'+H_{2}O\rightleftharpoons R_{2}COOH+R'-OH \]

In aqueous systems, the large concentration of water (ca. 55%) results in a low equilibrium yield of ester. Thus, although lipases and esterases have been employed to synthesize sugar esters of fatty acids in aqueous solutions, low yields of the sugar esters are achieved due to the hydrolysis of the product in the aqueous solution. However, the use of enzymes in substantially non-aqueous organic solvents dramatically increases the yield of acylated sugar (i.e. the ester product in the above equation). Therefore, to increase the yield of acylated sugar, and ultimately the yield of final polymer product, it is preferred that the sugars are acylated in a substantially non-aqueous organic solvent. Unfortunately, however, sugars are soluble in only a few substantially non-aqueous organic solvents. Additionally, most hydrolytic enzymes lose their activity in the few substantially non-aqueous organic solvents capable of solubilizing sugars.

According to the present invention, substantially non-aqueous organic solvents are screened for their ability to solubilize sugar and organic acid derivatives, as well as for their effect on the catalytic activity of various hydrolytic enzymes. Once having determined the compatibility of various sugars, hydrolytic enzymes and substantially non-aqueous organic solvents, the diacylated sugar intermediates may be made.

Hydrolytic enzymes initiate the regioselective diacylation of the sugar molecules with organic acid derivatives having two carboxyl functionalities. Several hydrolytic enzymes have been found to retain their catalytic activity in either pyridine or dimethylformamide. Applicants have ascertained that the following hydrolytic enzymes are catalytically active in pyridine: Aminoacylase; Lipoyzime, available from NOVO CHEMICAL; Fungal Amylase, available under the trade name "HT" from MILES KALI-CHEMIE; Bacterial protease, available under the trade name "Bioenzyme" from GIST-BROCADES; Amylace from Bacillus subtilis available under the trade name "Rapidase" from GIST-BROCADES; Alkaline protease, available under the trade name "Proleather" from AMANO; Bacillus protease available under the trade name "Protease N" from AMANO; Lipase from Candida cylindracea, available from SIGMA; Lipase from porcine pancreas, available from SIGMA; and Lipase from Penicillium Sp., available under the trade name "Lipase G" from AMANO. Additionally, Applicants have determined that subtilisin is catalytically active in dimethylformamide. Both highly purified or crude subtilisin are catalytically active; however, the substantially less expensive crude subtilisin is preferred. Although specific to the substantially non-aqueous organic solvent, it should be noted that, as presently understood, the hydrolytic enzymes are non-specific to the organic acid derivative.
The diacylation of the sugar molecules is conducted in a substantially non-aqueous organic solvent capable of solubilizing both the sugar and the organic acid derivative (at least about 10 mmol of sugar/liter of solvent, and preferably greater than about 100 mmol sugar/liter of solvent). If the solubility of the sugar and organic acid derivative is substantially less than about 10 mmol/liter solvent, the manufacture of the polymers of the present invention may not be economically desirable. Sugars are reasonably soluble in only a few, very hydrophobic, substantially non-aqueous organic solvents such as pyridine, dimethylformamide, morpholine, N-methylpyrrolidine and dimethylsulfoxide. Care should be taken, however, in selecting an appropriate organic solvent in that the organic solvent should be screened to assure that it does not significantly detract from the catalytic activity of the hydrolytic enzyme.

Additionally, the substantially non-aqueous organic solvent should not hydrolyze the diacylated sugar intermediates (i.e. the products of the diacylation of the sugar molecules with the organic acid derivative). Of the previously mentioned organic solvents, pyridine and dimethylformamide are the preferred substantially non-aqueous organic solvents for use in the acylation of sugar molecules. The most preferred organic solvent, however, is pyridine. Pyridine is most preferred because it solubilizes a broader range of sugars than other solvents tested to date, without substantially detracting from the activity of various hydrolytic enzymes.

Where pyridine is used, the presently preferred enzymes for the diacylation of the sugar molecules are alkaline protease, Bacillus protease, and aminocyclose. At present, the most preferred hydrolytic enzyme in pyridine is activated alkaline protease. The alkaline protease is activated by dissolving the enzyme in about 20 mmol per liter sodium borate buffer at a pH of about 9.5, and dialyzing the resulting mixture against added buffer. Thereafter, the dialyzed protein is freeze-dried. However, where dimethylformamide is the organic solvent selected, the presently preferred enzyme is subtilisin.

The amount of hydrolytic enzyme provided to catalyze the regioselective diacylation of the sugar molecules is not critical, provided there is sufficient enzyme to initiate the diacylation of the sugars (about 10 mg/ml). By varying the amount of enzyme employed, however, the speed of the acylation can be affected. In general, increasing the amount of hydrolytic enzyme increases the speed at which the sugar is acylated.

The sugar is diacylated by mixing the sugar, organic acid derivative and hydrolytic enzyme in the substantially non-aqueous organic solvent. The amount of hydrolytic enzyme should be sufficient to catalyze the regioselective acylation of the sugar molecules with the organic acid derivative. The amount of the organic acid derivative and sugar in the aforesaid mixture should be at least about 1:1 molar ratio. Preferably, however, the organic acid derivative will be mixed in excess. The aforesaid ingredients may be mixed in a substantially non-aqueous solvent as previously described according to any method known by those skilled in the art.

Preferably, however, the aforesaid mixture is agitated at about 100-300 rpm's in an orbital shaker at a temperature of from about 10° C. to about 60° C. for a period of time sufficient to permit the diacylation of the sugar molecules. A suitable time period, for example, is about 12-48 hours. The longer the mixture is agitated, however, the higher the yield of diacylated sugar. The temperatures should not substantially exceed 60° C. because the hydrolytic enzyme may lose its activity. Any method of agitation known by those skilled in the art is contemplated by the present invention, as for example, magnetic stirring or overhead mechanical stirring.

Once the sugar molecules have been diacylated, they are separated from the mixture. Any method of separation known by those skilled in the art is suitable, as, for example, silica gel chromatography.

Where the sugar is diacylated with an organic diacid derivative, the resulting sugar intermediate will have the general formula:

\[
\begin{align*}
&\text{O} \quad \text{O} \\
R-O-C-R' \quad \text{O} \\
&\text{O} \\
\end{align*}
\]

For purposes of clarity, the organic acid derivative's contribution to the above structure is bracketed. With reference to the above formula, S comprises sugar, and R and R' are R₁ or R₄ from the organic acid derivatives. In particular, R and R' are R₁ or R₄ on the end opposite the portion of the organic acid derivative that is replaced by the sugar molecule. Finally, R₂ and R₃ are, of course, from the R₂ portion of the organic acid derivatives. Clearly, R, R', R₂ and R₃ are as previously discussed with respect to the organic acid derivative. Thus, R' and R are leaving groups that are preferably poorer nucleophiles than sugar. Preferably, R₊ and R' are selected from the group consisting of mono-, di- and trifluoroethanol; mono-, di- and trichloroethanol; halogen; enol esters and mixtures thereof. R₂ and R₃ are selected from the group consisting of alkanes, branched alkane, alkenes, substituted alkenes, aromatic moieties, substituted aliphatic moieties, substituted aromatic moieties and mixtures thereof.

With regard to the aforesaid structure, the sugars are diacylated at primary hydroxyl positions. For example, sucrose is acylated at the 6- and 1'-positions, fructose at the 1- and 6-positions, raffinose at the 6- and 1'-positions, lactose at the 6- and 6'-positions, maltose at the 6- and 6'-positions, and trehalose at the 6- and 6'-positions.

The diacylated sugars are useful intermediates in the manufacture of sugar-based polymers. Particularly, these diacylated sugar intermediates may be copolymerized with various comonomers thereby yielding a sugar-based polymer. The copolymerization should be conducted in a solvent in which the diacylated sugars and comonomers are soluble. Furthermore, the solvent should not substantially impair the comonomer's ability to take part in the copolymerization nor should it deacylate the diacylated sugar intermediates to a substantial extent. Suitable solvents include any polar solvent with a dielectric constant greater than about 10, as for example, dimethylformamide, N-methylpyrrolidine, dimethylsulfoxide and dimethyl acetamide.

As used herein, a comonomer is any compound that will take part in a copolymerization with the diacylated sugar intermediates. With reference to the aforementioned structure of the diacylated sugar intermediate, the comonomer will react with the R and R' groups of the diacylated sugar intermediate. Thus, by utilizing a comonomer with two functionalities per molecule that are capable of reacting with the R and R' groups of the diacylated sugars, the diacylated sugars can be copolymerized having comonomer linkages.

Suitable comonomers include but are not necessarily limited to diamines, diethers, diacids and mixtures thereof. Preferably, the comonomer will be a compound having the general formula

\[X-R-X\]

wherein X is selected from the group consisting of \(-\text{NH}_₂\), \(-\text{SH}\), \(-\text{COOH}\) and mixtures thereof; and R is selected from the group consisting of alkanes, branched alkanes,
alkenes, substituted alkenes, aromatic moieties, substituted aliphatic moieties, substituted aromatic moieties and mixtures thereof.

As with the R₂ and R₃ groups of the organic acid derivatives, the R group of the coreactant will be incorpo-
rated into the final polymer product (it will link the dia-
lyated sugars). Accordingly, the selection of the R group of
the coreactant may be based on the properties desired of the
final sugar-based polymer product. The factors previously
discussed with respect to the nature of the R₂ group of
the organic acid derivative apply as well to the R group of
the coreactant.

More preferably, the coreactant is selected from the group
consisting of aliphatic diamines and aromatic diamines.
Most preferably, the coreactant will be selected from the
group consisting of aliphatic diamines having 2-6 carbon
atoms. The preference for these diamines is based on their
commercial availability and relatively low cost.

The copolymerization of the diacylated sugars and core-
actant is carried out by mixing the diacylated sugars, core-
actant and a solvent as previously discussed and agitating
this mixture for a period of time sufficient to permit the
copolymerization of the diacylated sugars with the coreac-
tant (about 24 hours). The diacylated sugar intermediate
and coreactant are mixed in at least a 1:1 molar ratio. Preferably, the aforesaid mixture will be mixed at 250 rpm at 25° C. in
an orbital shaker. Of course, any method of mixing and
agitation known in the art are contemplated for use in the
present embodiment. The resulting sugar based polymer
is recovered by evaporating off the solvent by any suitable
method known by those skilled in the art. The final sugar-
based polymer product may then be washed with, for
example, acetone and dried under vacuum.

The aforesaid method yields a sugar-based polymer hav-
ing the general formula:

wherein S comprises sugar, R₁ and R₂ are selected from the
group consisting of alkanes, branched alkane, alkenes,
substituted alkenes, aromatic moieties, substituted aliphatic
moieties, substituted aromatic moieties and mixtures thereof; A is the coreactant; and n is a greater number than
1. With reference to the above formula, the sugars are linked
at two primary hydroxyl positions. For example, sucrose
is linked at the 6- and 1- positions, fructose at the 1- and
6-positions, raffinose at the 6- and 1- positions, lactose at
the 6- and 6'- positions, maltose at the 6- and 6'- positions,
and trehalose at the 6- and 6'- positions.

COPOLYMERIZATION OF A COREACTANT WITH
SUGAR DIACYLATED WITH ORGANIC MONO-ACID
DERIVATIVES

In another preferred embodiment of the present invention,
the sugar may be diacylated as previously discussed with
organic mono-acid derivatives that have been specifically
tailored to react with the coreactant. The organic acid
derivatives will have at least one reactive functionality. By
reactive functionality it is meant that the organic acid
derivative has a functionality capable of reacting with a
functionality on the coreactant. Thus, the acylated sugars
will be capable of reacting with the coreactant. The coreac-
tant will have at least two functionalities capable of reacting
with the acylated sugars. The acylated sugars and coreactant
are then copolymerized by mixing the acylated sugar and
coreactant whereby a functionality on the coreactant reacts
with an acylated sugar and at least one other functionality on

the coreactant reacts with another acylated sugar. The result-
ing polymer will comprise of acylated sugars linked via the
coreactant.

The resulting sugar based polymer will have the general
formula

wherein S comprises sugar; A is selected from the group
consisting of coreactants having at least two functionalities
wherein a functionality on the coreactant has reacted with an
acylated sugar and at least one other functionality on the
coreactant has reacted with another acylated sugar; and n is
a number greater than 1.

According to this embodiment, a sugar is diacylated as previously discussed with an organic acid derivative having the
general formula:

wherein S comprises sugar, and R₁ and R₂ are selected such
that they contain a functionality that will react with func-
tionalities on the coreactant to yield a copolymer of acylated
sugar moieties linked via the coreactants.

With reference to the above structure, sucrose is acylated
at the 6- and 1- positions, fructose at the 1- and 6- positions,
raffinose at the 6- and 1- positions, lactose at the 6- and 6'- positions, maltose at the 6- and 6'- positions, and trehalose
at the 6- and 6'- positions.

For example, R₁ and R₂ can be selected from the group
consisting of terminal double bonded compounds having the
general formula: —RC=CH₂ wherein R is selected from
the group consisting of hydrogen, alkane, alkenes, branched
alkanes, substituted alkenes, aromatic moieties, substituted
alkenes, aromatic moieties and mixtures thereof.

Where R₁ and R₂ are compounds having terminal double
bonds, the diacylated sugar may be copolymerized with a
coreactant selected from the group consisting of diols,
diamines, diolides, diacids and mixtures thereof.

The resulting sugar-based polymer will have the general
formula:

wherein S comprises sugar; R is selected from the group
consisting of hydrogen, alkane, branched alkane, substituted
alkenes, aromatic moieties, substituted aliphatic
moieties, substituted aromatic moieties and mixtures
thereof; A is a coreactant selected from the group consisting
of diols, diamines, diolides, diacids and mixtures thereof;
and n is a number greater than 1.

With reference to the above structure, sucrose is acylated
at the 6- and 1- positions, fructose at the 1- and 6- positions,
raffinose at the 6- and 1- positions, lactose at the 6- and
6'-positions, maltose at the 6- and 6' positions, trehalose at the 6- and 6'-positions and mixtures thereof.

Alternatively, a diacylated sugar is provided having the previously indicated formula wherein R and R' are selected from the group consisting of alkyl halides having the general formula \(-RCHX \), wherein X is a halide and preferably selected from the group consisting of chlorine and bromide, and R is selected from the group consisting of hydrogen, alkanes, alkenes, branched alkanes, substituted alkenes, aromatic moieties, substituted aliphatic moieties, substituted aromatic moieties and mixtures thereof; Preferably R is a methyl. These diacylated sugars may be copolymerized with a cocarboxylate selected from the group consisting of diols. The resulting sugar-based polymer will have the general formula:

\[
\begin{align*}
&\text{O} \\
&\text{C} \iff \text{O} \\
&\text{C} \iff \text{O} \\
&\text{RCH} \iff \text{A}
\end{align*}
\]

wherein S comprises sugar, R is selected from the group consisting of hydrogen, alkanes, alkenes, branched alkanes, substituted aliphatic moieties, substituted alkenes, aromatic moieties, substituted aromatic moieties and mixtures thereof; A comprises a diol; and n is a number greater than 1.

POLYMERIZING ALKYLATED SUGARS WITH ORGANIC ACID DERIVATIVES

In another preferred embodiment of the present invention, a method of polymerizing alkylated sugars is provided. Two primary hydroxyl positions are first blocked by diacylating the sugar with any compound having an ester group (hereinafter referred to as a blocking compound) capable of undergoing a transesterification reaction with a primary hydroxyl group on the sugar molecule. The blocking compounds are identified as such because the blocking compounds acylate the sugar at two primary hydroxyl sites thereby blocking these two sites from the subsequent acylation of the other (unblocked) hydroxyl groups. Suitable blocking compounds have the general formula:

\[
\begin{align*}
&\text{O} \\
&\text{R} \iff \text{O} \iff \text{R'}
\end{align*}
\]

wherein R is selected from the group consisting of alkanes, alkenes, branched alkanes, substituted alkenes, aromatic moieties, substituted aromatic moieties, substituted aliphatic moieties and mixtures thereof; and R' is selected from the group consisting of leaving groups.

It is presently believed that the sugar molecules are acylated with the blocking compound at two primary hydroxyl positions pursuant to the nucleophilic mechanism previously discussed with respect to the diacylation of sugar with the organic acid derivatives. Accordingly, R' is preferably a poorer nucleophile than sugar. Most preferably, R' is selected from the group consisting of mono-, di-, and trifluoro ethanol; mono-, di- and trifluoroethanol; halogens and enol esters.

A most preferred blocking compound is vinyl acetate.

The sugar is diacylated with the blocking compounds in a manner similar to the previously discussed diacylation of sugar with the organic acid derivatives. In particular, the sugar is acylated at two primary hydroxyl positions in a substantially non-aqueous organic solvent capable of solubilizing both the sugar and blocking compounds as, for example, pyridine, dimethylformamide, morpholine, N-methylpyrrolidone and dimethylsulfoxide. A hydrolytic enzyme is used to catalyze the diacylation of the sugar molecules with the blocking agent. Preferably, the diacylation will be carried out in pyridine in the presence of a hydrolytic enzyme selected from the group consisting of activated alkaline protease, bacterial protease, amorpholase and lipase P-30 from Amano. More preferably, the diacylation of sugar with the blocking compounds will be performed in pyridine in the presence of activated alkaline protease. Alternately, the diacylation of the sugar with blocking compounds can be performed in dimethylformamide in the presence of subtilisin.

The sugar is diacylated by mixing at least a 2:1 molar ratio of blocking compounds to sugar. Preferably, an excess of blocking compound will be mixed with the sugar. The resulting mixture is preferably agitated at about 250 rpm at 40° C. in pyridine for a time sufficient to permit the diacylation of the sugar (preferably about 24 hours).

Once the sugar has been diacylated (i.e., acetylated at two primary hydroxyl positions) with the blocking compounds, it is mixed with an excess of an alkylation agent in the presence of a catalyst. Any and all alkylation agents and catalysts known by those skilled in the art for alkylation the open hydroxyl positions are contemplated for use in the present invention. The alkylation agent must be capable of alkylating the free hydroxyl position, without decaying the blocking compounds.

Suitable alkylation agents include, but are not necessarily limited to the alkyl halides and dialkylalkanes. Preferred alkylation agents are the alkyl halides having less than about 5 carbons. The most preferred alkylation agent is methyl iodide.

Catalyst contemplated for use in alkylation the diacylated sugars include, but are not necessarily limited to non-nucleophilic bases such as trialkylamines, dialkyl amino pyridines, dimethylaminopyridine and silver oxide. The preferred catalyst is dimethylaminopyridine.

The diacylated sugar is preferably alkylated by mixing the sugar, alkylation agent and catalyst in pyridine.

After alkylation the hydroxyl sites on the sugar, the diacylated sugar is deacylated by mixing the sugar with an excess of base (preferably aqueous sodium hydroxide having 20-30% water) at about 250 rpm and room temperature (25° C.) for about 24 hours to deblock the two primary hydroxyl positions. Alternately, the alkylated sugar may be deacylated by mixing (about 250 rpm) the sugar with an excess of sodium methoxide in methanol for about one hour at ambient temperature (about 25° C.).

After deacylation, the resulting sugar has two open primary hydroxyl positions, the remaining hydroxyl positions having been alkylated. This alkylated sugar is then mixed with an organic acid derivative in the presence of a chemical catalyst in a substantially non-aqueous organic solvent. The solvent is selected such that the organic acid derivative and alkylated sugar are soluble and catalyst active.

The organic acid derivative can be selected as previously discussed. In general, the organic acid derivative will have the general formula:

\[
\begin{align*}
&\text{O} \\
&\text{R} \iff \text{O} \iff \text{R'}
\end{align*}
\]

wherein R₁ and R₂ are leaving groups as previously discussed, and R₂ is any moiety which, as previously discussed, will not interfere with the acylation and subsequent polymerization of the sugar. As it will ultimately be incorporated in the sugar-based polymer, R₂ may be selected as previously discussed depending on the properties desired of the
final sugar-based polymer. Similarly, R₂ and R₃ are selected as previously discussed. In this particular embodiment, however, the preferred organic acid derivatives are the adipoyl halides. More preferred are the succinyl halides, the malonyl halides, sebacoyl halides and the adipoyl halides. Even more preferred are adipoyl chloride, succinyl chloride, malonyl chloride and sebacoyl chloride. Adipoyl chloride is the most preferred organic acid derivative.

The alkylated sugar and organic acid derivative must be mixed in a 1:1 molar ratio. The alkylated sugar, organic acid derivative, catalyst and solvent are mixed (250 rpm) at ambient temperature (25°C) for a time sufficient to permit the sugar and organic acid derivative to polymerize (about 1 hour). Thereafter, the sugar-based polymer may optionally be dealkylated according to any method known by those skilled in the art.

The resulting sugar-based polymer has the general formula:

\[
\begin{align*}
\left[\begin{array}{c}
O \quad S \quad O \quad C \quad R_2 \quad C \quad R_3 \\
\end{array} \right]_n
\end{align*}
\]

wherein S comprises sugar; R₂ is selected from the group consisting of alkanes, branched alkanes, alkenes, substituted alkene, aromatic moieties, substituted aliphatic moieties, substituted aromatic moieties and mixtures thereof; and n is a number greater than 1. With reference to the above structure, the sugars are linked at two primary hydroxyl positions. For example, sucrose is linked at the 6- and 1'-positions, fructose at the 1- and 6-positions, raffinose at the 6- and 1'-positions, lactose at the 6- and 6'-positions, maltose at the 6- and 6'-positions, and trehalose at the 6- and 6'-positions.

POLYMERIZING ALKYLATED SUGARS AND A DIISOCYANATE

In yet another preferred embodiment of the present invention, a diisocyanate can be used in place of the acyl halide. Specifically, an alkylated sugar having two open primary hydroxyl groups is provided as previously discussed. The alkylated sugar is mixed with a diisocyanate of the general formula:

\[
\begin{align*}
O &= C = N - R - N = C = O
\end{align*}
\]

wherein R is selected from the group consisting of alkanes, alkenes, branched alkanes, substituted alkene, aromatic moieties, substituted aliphatic moieties, substituted aromatic moieties and mixtures thereof. Because R will be incorporated into the final polymer product, it can be selected with the desired properties of the polymer in mind. Accordingly, R may be selected in the manner previously discussed with regard to the R₂ group of the organic acid derivative. A preferred diisocyanate is 1,6-hexamethylene diisocyanate.

The alkylated sugar and diisocyanate are mixed in a 1:1 molar ratio in dimethylformamide in the presence of a trialkyl amine catalyst (preferably triethylamine) for a time sufficient to permit the polymerization of the alkylated sugar and the diisocyanate (about 24 hours).

The resulting sugar-based polymer will have the general formula:

\[
\begin{align*}
\left[\begin{array}{c}
O \quad S \quad O \quad C \quad N \quad H \quad R \quad N \quad H \quad C \quad O
\end{array} \right]_n
\end{align*}
\]

wherein S comprises sugar; R is selected from the group consisting of alkanes, alkenes, branched alkane, substituted alkene, aromatic moieties, substituted aliphatic moieties, substituted aromatic moieties and mixtures thereof, and n is a number greater than one.

With reference to the above structure, sucrose is linked at the 6- and 1'-positions, fructose at the 1- and 6-positions, raffinose at the 6- and 1'-positions, lactose at the 6- and 6'-positions, maltose at the 6- and 6'-positions and trehalose at the 6- and 6'-positions.

PREPARATION OF POLY(SUGAR ACRYLATES)

In yet another preferred embodiment of the present invention, a method of manufacturing a sugar-based polymer is provided. Mono-, di-, tri-, and oligosaccharides that are non-reducing sugars are contemplated for use in the present embodiment. Any reducing monosaccharide, however, can be converted to a non-reducing sugar by either alkylating or halogenating the 1-position. Preferably, the sugar is selected from the group consisting of α- and β- alkylglycosides, α- and β- haloglycosides, α- and β- alkylgalactosides, α- and β- halogalactosides, α- and β- alkylmannosides, α- and β- halomannosides, sucrose, fructose, mannose, trehalose and raffinose. Preferred sugars are α- and β- methylglycoside, α- and β- methylgalactoside, α- and β- methylmannoside, sucrose, fructose, mannose, trehalose and raffinose. More preferred sugars are sucrose, fructose and raffinose. The most preferred sugar is sucrose.

Specifically, a sugar is first acylated with an acylating compound having the general formula:

\[
\begin{align*}
\text{CH}_2 &= R - C = O - R'
\end{align*}
\]

wherein R is selected from the group consisting of alkanes, alkenes, branched alkanes, substituted alkene, aromatic moieties, substituted aromatic moieties and mixtures thereof, and R' is a leaving group. Again, it is presently believed that the sugar is acylated with the acylating compound pursuant to a nucleophilic mechanism as previously discussed. Accordingly, R' is preferably a good leaving group as previously discussed with regard to R₂ and R₃ of the organic acid derivative.

A preferred acylating compound is vinyl acrylate.

The sugar is acylated by mixing the sugar and acylating compound in a substantially non-aqueous, organic solvent. The solvent is selected such that the sugar and acylating compound are soluble (i.e., at least about 10 mmol/liter and preferably about 100 mmol/liter) and the hydrolytic enzyme is active. Suitable solvents include pyridine and dimethylformamide. Pyridine is the preferred solvent.

The hydrolytic enzymes useful for the acylation of the sugar are the same as those disclosed previously. Additionally, lipase P-30 from Pseudomonas sp. available from AMANO has been found suitable. Preferably, activated alkane protease will be used.

Preferably, the sugar is acylated in the presence of a compound selected to inhibit the premature polymerization of the acylating compound. Suitable inhibitors include ascorbate and hydroquinone. Hydroquinone is preferred. Of course, other inhibitors known by those skilled in the art may be used.

The sugar and acylating compound are mixed in the presence of hydrolytic enzyme and inhibitor in the solvent at a temperature of about 10°C to about 60°C for a time sufficient to permit the acylation of the sugars (preferably about 24 hours). The sugar and acylating compound are mixed in at least a 1:1 molar ratio, with an excess of acylating compound being preferred. Once formed, the acylated sugars may be separated pursuant to silica gel
chromatography or any other method of separation known by those skilled in the art.

The resulting acylated sugars have the general formula:

\[
\text{S-O-C-R=CH}_2
\]

wherein S comprises sugar, and R is selected from the group consisting of alkanes, alkenes, branched alkenes, substituted alkene, aromatic moieties, substituted aliphatic moieties, substituted aromatic moieties and mixtures thereof. With reference to the above formula, the sugars are acylated at primary hydroxyl positions. For example, sucrose is acylated at the 1'-position, raffinose at the 1'-position, fructose at the 1-position, trehalose at the 6'-position, \(\alpha \)- and \(\beta \)-alkylglucosides at the 6-position, \(\alpha \)- and \(\beta \)-alkylhaloglucoisdes at the 6-position, \(\alpha \)- and \(\beta \)-alkylglucosides at the 6-position, \(\alpha \)- and \(\beta \)-alkylmannotides at the 6-position, and \(\alpha \)- and \(\beta \)-halomannosides at the 6-position.

The acylated sugars are then polymerized by dissolving the sugars in either water or a non-aqueous organic solvent such as dimethylformamide, N-methylpyrrolidone, dimethylsulfoxide or dimethyl acetamide (dimethylformamide being preferred) and thereafter sparging the resulting mixture with nitrogen for about ten minutes at about 40°C. Other methods of agitation may, of course, be used in place of sparging with nitrogen. Thereafter, a free radical initiator is added to the solution in an amount from about 0.05% to about 0.5% by weight initiator per weight acylated sugar monomers. The molecular weight of the final product is inversely proportional to the amount of initiator added.

Where water is the solvent, an equal amount of potassium persulfate and hydrogen peroxide initiators are preferably added. Where a substantially non-aqueous organic solvent is used, preferred initiators include azobisisobutyro nitrite, benzoyl peroxide and tert-butyl peroxide. In either case, the resulting mixture is mixed (250 rpm) at about 40°C for about 24 hours. The resulting sugar-based polymer can then be recovered by precipitation with acetone, filtered and dried.

The resulting sugar-based polymer will have the general formula:

\[
\left(\text{CHR-CH}_2\right)_n
\]

wherein S comprises non-reducing sugar, R is selected from the group consisting of hydroxyalkanes, alkenes, branched alkenes, substituted alkene, aromatic moieties, substituted aliphatic moieties, substituted aromatic moieties and mixtures thereof, and n is a number greater than 1. With reference to the above formula, the sugars are attached at primary hydroxyl positions. For example, sucrose is attached at the 1'-position, raffinose at the 1'-position, fructose at the 1'-position, trehalose at the 6-position, alkyl- and haloglucoisdes at the 6-position, alkyl- and haloglucoisdes at the 6-position and alkyl- and halomannosides at the 6-position. CROSS-LINKING OF THE SUGAR-BASED POLYMERS

In some applications it may be desirable to cross-link the sugar-based polymers of the present invention. For example, where shorter linking groups (i.e. for example the R group in the previously discussed organic acid derivative) are employed (i.e. less than about 10 carbons), the polymer will be hydrophilic and potentially water soluble. Light cross-linking would result in an insoluble hydrophilic polymer that could swell and absorb water. This will be particularly important with lower molecular weight polymers. One approach of providing cross-linking capability to the sugar-based polymer is via the incorporation of an unsaturated fatty acid into the sugar-based polymer. This could be accomplished, for example, by the use of an unsaturated fatty acid in the organic diacid derivative or in the coreactant. This would result in the incorporation of unsaturated fatty acid chains in the sugar-based polymer. Heating or irradiating the polymer would cause cross-linking to occur at the unsaturated bonds resulting in a thermosetting or phossetting sugar-based polymer.

Another approach is to cross-link open hydroxyl positions on the sugars using a cross-linking species such as a diisocyanate or dinitride. Preferred cross-linking species include 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate and 1,6-hexamethylene dinitride in the presence of a trialkylamine catalyst (with respect to the use of a dinitride cross-linking agent, the cross-linking is acid catalyzed rather than trialkyl amine catalyzed). For all practical purposes, however, only a limited amount of cross-linking is suggested pursuant to this method. Generally, no more than one hydroxyl per sugar moiety should be cross-linked. Excessive cross-linking may result in the removal of too many free hydroxyl groups, thereby reducing the water-absorbency of the sugar-based polymer. The polymers could also be cross-linked during the acylation process by using organic acid derivatives having three or four carboxyl groups, the free carboxyl groups acting as cross-linking points. Of course, any method of cross-linking known by those skilled in the art is contemplated for use in the present invention.

It is to be understood that an equivalent of changes and modifications of the above described embodiments are also contemplated for use in the present invention. The following examples are not to be construed as limitations upon the present invention, the scope of which is defined by the claims appended hereto, but are included merely as an illustration of various embodiments.

EXAMPLES

Example 1

In order to identify enzymes capable of catalyzing the regioselective diacylation of sucrose and, ultimately, the synthesis of sucrose-based polymers, a variety of hydrolytic enzymes were screened for their ability to synthesize sucrose butyrate in pyridine. In this manner, simple esters of sucrose were obtained and structurally analyzed without the added complication of polymer formation. Trifluoroethylbutyrate was chosen as the butyrate donor. In all, 15 enzymes were studied for sucrose-butyrate synthesis (Table 1). A typical reaction mixture contained 0.1M sucrose dissolved in 2 mL anhydrous pyridine containing 0.6 M trifluoroethylbutyrate. The 6:1 molar ratio of trifluoroethylbutyrate to sucrose was chosen to expedite the reaction. The reactions were initiated by the addition of 0.25 g/mL enzyme (0.015 g/mL in the case of "proleather", an alkaline protease obtained from Amano) and mixing at 250 rpm and 45°C. Sucrose disappearance was monitored by HPLC. As can be discerned from Table 1, the five most active enzymes were Alkaline Protease; Bacterial Protease; Bacillus protease; Aminocase; and subtilisin.
Example 2

The five most catalytically active enzymes from Example 1 were subjected to a 25 mL reaction scale (same concentrations of reactants and enzyme as in Example 1). After the time scale indicated in Table 2 the reactions were terminated and the solvent evaporated. The residual solids were chromatographed on silica gel (17:2:1; ethyl acetate:methanol:water) and the sucrose ester products separated. Clearly, as can be discerned from Table 2, the alkaline protease ("proleather") produced the highest ratio of sucrose dibutyrate to monobutyrate. The production of the sucrose dibutyrate is important for the subsequent synthesis of the sucrose-based polymer of the present invention. 13C-NMR analysis of the proleather mono- and diester products indicated that the sucrose is first acylated in the 1' position followed by acylation at the 6 position.

Example 3

As can be discerned from TABLES 1 and 2, of the fifteen enzymes considered, proleather was the ideal choice to carry out the synthesis of a sucrose-based polymer. In this example, bis(2,2,2-trifluoroethyl) adipate was selected as the organic acid derivative. Sucrose (0.1M) was dissolved in 25 mL anhydrous pyridine containing 0.1M bis(2,2,2-trifluoroethyl) adipate. The reaction was initiated by the addition of 0.015 g/mL activated alkaline protease (proleather) and the reaction magnetically stirred at 100 rpm and 45°C under a slight nitrogen stream. The ratio of sucrose to the diacid derivative was purposely chosen to be equimolar as it was expected that two hydroxyls on sucrose would readily react with the two acid functionalities of the organic acid derivative. (Proleather did not catalyze the synthesis of sucrose tributyrates in the aforementioned experiment.)

The progress of the reaction was followed by gel permeation chromatography (GPC) HPLC. The reaction was terminated after 28 days (80% conversion of the sucroses), the enzyme removed by filtration, and the pyridine and bis(2,2,2-trifluoroethyl) adipate removed by rotary evaporation. The products of the reaction were completely water-soluble as well as having high solubilities in polar organic solvents including methanol, ethanol, pyridine, dimethylformamide, and dimethylsulfoxide. While the reaction was slow, GPC data showed the formation of higher molecular weight species as reaction time increased. Molecules with molecular weights in excess of 10,000 were produced. The average molecular weight was determined following dialysis of the product (through a 1000 dalton dialysis bag to remove unreacted sucrose and low molecular weight mono- and diester products). The dialyzed product was shown to have a weight average molecular weight (Mw) of 2110 and a number average molecular weight (Mn) of 1555, therefore giving a polydispersity (Mw/Mn) of 1.36. The polyester showed selective linkages between the adipic acid functionalities and the 6 and 1' positions of the sucrose as determined by 13C-NMR. From the NMR data, it is clear that a shift in the positions of the 6 and 1' carbons has occurred, indicative of acylation at those positions. The resulting sucrose-based polymer had a decomposition temperature of about 150°C.

Example 4

A sugar-based polymer comprising poly(raffinose adipate) was prepared according to the following steps. An equimolar amount of raffinose and bis(2,2,2-trifluoroethyl) adipate were mixed in the presence of 375 mg proleather in 25 mL pyridine. The resulting mixture was mixed at 250 rpm for ten days resulting in the formation of a poly(raffinose adipate) having a Mn = 13,000, a Mw = 11,000 thereby yielding a polydispersity (Mw/Mn) of 1.18.

Example 5

A sugar-based polymer was prepared as in Example 4 except vinyl adipate was used instead of bis(2,2,2-trifluoroethyl) adipate.

Example 6

The chemoenzymatic synthesis of a poly(sucrose adipamide) was carried out using the following procedure. A reaction mixture was prepared by dissolving 0.86 g (0.1M) sucrose in 25 mL pyridine containing 3.1 g (0.4M) bis(2,2,2-trifluoroethyl adipate). Excess bis (2,2,2-trifluoroethyl adipate) was used to improve the yield of sucrose diester relative to the monoester. The diacylation of sucrose was initiated by the addition of 15 ml of an activated alkaline protease from a Bacillus sp. to the reaction mixture and subsequent magnetic stirring of the mixture under nitrogen at 150 rpm for 5 days at 45°C. The diacylation of the sucrose was terminated by filtering off the enzyme and evaporating the pyridine and unreacted bis(2,2,2-trifluoroethyl adipate). The resulting sucrose, 6,1'-di(trifluoroethyl) adipate was then purified using silica gel chromatography with an eluent of ethyl acetate: methanol: water (18:1.25:1). The sucrose 6,1'-di(trifluoroethyl) adipate was obtained in 20% yield. No triester was formed.

Polymerization of the 6,1'-di(trifluoroethyl) adipate was then carried out by mixing 15 mg (0.125M) ethylenediamine and 0.19 g (0.125M) 6,1'-di(trifluoroethyl) adipate in 2 ml of N-methylpyrrolidone. This solution was stirred at 35°C for 24 hours. Results of gel permeation (GPC) and thin layer (TLC) chromatographies indicated that the conversion of the 6,1'-di(trifluoroethyl) adipate was quantitative. A substantial byproduct (ca. 50%) was found to be sucrose monoadipamide, presumably formed by the reaction of ethylenediamine with the internal ester linkage between the sucrose and the adipate derivative. The resulting poly(sucrose adipamide) was recovered by evaporating the N-methylpyrrolidone under vacuum at 50°C. The product was washed with acetone and dried under vacuum at 45°C. The poly(sucrose adipamide) was obtained in 48% recovered yield (75 mg) and was a semicrystalline solid, having a melting point of 225°C. X-ray analysis indicated a size of 8 (el. dimethylformamide), Mn=4800, Mw=8100; Anal. calc'd for C26H36O3N2 (per repeat unit): C, 50.2; H, 6.8; O, 38.6; H, 4.5; found C, 58.9; H, 6.8; O, 33.1; N, 6.6. The slight decrease in ratio of ON may have been due to the formation of trace amounts of poly(ethylene adipamide).

The poly(sucrose adipamide) was insoluble in water, but soluble in a variety of organic solvents including pyridine, dimethylformamide, N-methylpyrrolidone, dimethylsulfoxide, dimethylacetamide, methanol and ethanol. Structural analysis of the poly(sucrose adipamide) by infrared spectroscopy was consistent with incorporation of sucrose into the polymer backbone. NMR analysis indicated that the sucrose is linked at the 6 and 1' positions.

Example 7

A sugar-based polymer comprising poly(sucrose adipate) was chemically prepared according to the following steps. 885 mg of sucrose was acylated in the 6 and 1' position with a blocking compound by mixing the sucrose and 1.3 g of the blocking compound consisting of vinyl acetate in the presence of 375 mg proleather in pyridine. The resulting diacy-
lated sucrose was then mixed with an excess of methyl iodide (0.7 g) in the presence of 2 g dimethylaminopyridine. The resulting methylated sucrose was then mixed with an excess sodium hydroxide to deacetylate (deblock) the primary hydroxyl groups at the 6 and 1' sites. Thereafter, the methylated sucrose having free primary hydroxyl groups at the 6 and 1' positions was polymerized by mixing it with 455 mg adipoyl chloride in the presence of 25 ml dimethylformamide. The mixture was treated with excess of acid to deblock the hydroxyl groups and the resulting poly(sucrose adipate) was separated. The resulting polymer had a M_w of about 4,000.

Example 8

A water absorbent sugar-based polymer comprising poly(sucrose adipate) was made by cross-linking OH (secondary hydroxyl) groups on the sucrose monosaccharides. In particular, 50 mg poly(sucrose adipate), 37.5 mg 1,6-hexamethylene diisocyanate and 10 mg of triethylenetetramine (catalyst) were mixed in 1 ml of dimethylformamide. This composition was mixed at 250 rpm (orbital mixer) for about 48 hours at ambient temperature (about 25°C) or until gel formation signifying cross-linking. The cross-linked poly(sucrose adipate) made by this method was found to absorb 11% of its weight in H₂O. The absorbency of the polymer product was measured by adding 25 mg of the polysucrose adipate to water with gentle stirring for about 5 hours. The water was then removed by filtering and the poly(sucrose adipate) was again weighed. The polymers’ final weight/original weight (25 mg) provides the measure of its water absorbency.

Example 9

A water absorbent sugar-based polymer comprising poly(raffinose adipate) was made by cross-linking —OH groups on the raffinose moieties. In particular, 55 mg of poly (raffinose adipate), 37.5 mg 1,6-hexamethylene diisocyanate and 10 mg triethylenetetramine were mixed in 1 ml of dimethylformamide. This composition was mixed at 250 rpm for about 48 hours at ambient temperature or until a white solid formed. The cross-linked poly(raffinose adipate) made by this method was found to absorb 42% of its weight in water. Absorbency was measured as in Example 8.

Example 10

A poly(sucrose adipate) is made by dissolving alkylated sucrose in dimethyl formamide. To this solution, a catalytic amount of dimethylaminopyridine and equimolar ratio of adipoyl chloride to sugar is added. The resulting mixture is kept at 250 rpm for about 1 hour at 25°C. The resulting poly (sucrose adipate) has the structure

$$\text{O} - \text{S} - \text{O} - (\text{CH}_2)_{n} - \text{C} = \text{O}$$

wherein S is sucrose linked at the 6 and 1' positions and n is greater than 100.

Example 11

A poly (sucrose acrylate) was made by dissolving 3.42 g (0.1M) sucrose in 100 ml pyridine containing 5.88 g (0.6M) vinyl acrylate. Hydroquinone (0.5% w/v) was added in order to polymerize the vinyl acrylate during the sucrose acrylate synthesis. The sucrose acrylate synthesis was initiated by addition of 15 mg/ml Proleneather and the mixture was magnetically stirred under nitrogen at 150 rpm for 5 days at 45°C. The reaction was terminated by filtering of the enzyme, evaporating the pyridine and unreacted vinyl acrylate, and the product was purified and separated by silica gel chromatography with an eluent consisting of ethyl acetate: methanol:water (18:1:25:1). The sucrose monoster was obtained in 28% yield, 1.10 g. The ester was an amorphous solid, mp=78°C; [α]_D^25=50.4 (c1, H₂O).

Subsequent poly (sucrose acrylate) synthesis was carried out by dissolving 0.1 g (0.25M) of the sucrose monoster in 1 ml H₂O and the solution was sparged with N₂ for ten minutes. Potassium persulfate (0.15%) and 0.2% hydrogen peroxide were added and the solution was stirred at 25°C for 24 hours. The resulting poly (sucrose 1-acrylate) was recovered by precipitation with acetone, filtered and dried under vacuum at 45°C. The poly (sucrose 1-acrylate) was obtained in 80% yield (80 mg), and was characterized as an amorphous solid, [α]_D^25=38.3 (0.67, H₂O), M_w=57,000, M_m=91,000. Anal. calcd. for C₁₇H₂₅O₃ (per repeat unit); C,45.5; H,6.1; O, 48.5; found C,43.2; H,5.9; O,47.0. The poly (sucrose 1-acrylate) was soluble in a variety of polar organic solvents including water, dimethylformamide, and N-methylpyrrolidone. As confirmed by IR analysis, the poly (sucrose 1-acrylate) had the following structure:

$$[-\text{CHR} - \text{CH}_2 - \text{O} - \text{C} = \text{O}]_n$$

It is to be understood that a variety of sugars, organic acid derivatives, organic solvents, and hydrolytic enzymes can be substituted for those specified above and mixed in similar proportions to make various sugar-based polymers. The preceding examples should in no way be construed as limiting the extent of the present invention, the scope of which is defined by the following claims.

TABLE 1

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Sucrose Conversion (120 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (no enzyme)</td>
<td>0%</td>
</tr>
<tr>
<td>Lipase from Aspergillus Sp.</td>
<td>0%</td>
</tr>
<tr>
<td>Aminoacylase</td>
<td>70%</td>
</tr>
<tr>
<td>Lipzyme (Novo)</td>
<td>8%</td>
</tr>
<tr>
<td>Pungal Amylase (HT from Rohm)</td>
<td>34%</td>
</tr>
<tr>
<td>Bacterial protease (Biozyme)</td>
<td>100%</td>
</tr>
<tr>
<td>Amylase from B. subtilis</td>
<td>24%</td>
</tr>
<tr>
<td>(Rapionate from Gist-Brochades)</td>
<td></td>
</tr>
<tr>
<td>Bacteriop Sp. Lipase</td>
<td>96%</td>
</tr>
<tr>
<td>Alkaline protease (Amano-Proleather)</td>
<td></td>
</tr>
<tr>
<td>Bacillus protease</td>
<td>65%</td>
</tr>
<tr>
<td>Lipase from Pseudomonas Sp. (Amato P)</td>
<td>0%</td>
</tr>
<tr>
<td>Lipase from C. cylindracea (Sigma)</td>
<td>7%</td>
</tr>
<tr>
<td>Lipase from pancreas (Sigma)</td>
<td>13%</td>
</tr>
<tr>
<td>Yeast Esterase (Sturgis, Ltd.)</td>
<td>6%</td>
</tr>
<tr>
<td>Crude subtilisin (Amano)</td>
<td>83%</td>
</tr>
<tr>
<td>(Aspergillus)</td>
<td></td>
</tr>
<tr>
<td>Lipase from Penicillium Sp. (Amano G)</td>
<td>24%</td>
</tr>
</tbody>
</table>

Conditions; Sucrose (0.1 M) dissolved in 2 M pyridine containing 0.6 M trifluoroacetic acid. Reaction initiated by addition of 0.25 g/ml enzyme and shaken at 250 rpm at 45°C.
TABLE 2

<table>
<thead>
<tr>
<th>Enzyme 6.1'-Diester</th>
<th>Conversion</th>
<th>Total Isolated Yield</th>
<th>1'-Ester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline Protease</td>
<td>99% (8 days)</td>
<td>0.5 g (43%)</td>
<td>0.12 g</td>
</tr>
<tr>
<td>(Protease)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacterial Protease</td>
<td>100% (8 days)</td>
<td>0.57 g (52%)</td>
<td>0.30 g</td>
</tr>
<tr>
<td>(Bleomerase)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus Protease</td>
<td>62% (21 days)</td>
<td>0.39 g (37%)</td>
<td>0.31 g</td>
</tr>
<tr>
<td>Aminocylase</td>
<td>67% (23 days)</td>
<td>0.54 g (49%)</td>
<td>0.28 g</td>
</tr>
<tr>
<td>Crude</td>
<td>62% (25 days)</td>
<td>0.91 g (84%)</td>
<td>0.66 g</td>
</tr>
<tr>
<td>Subtilisin in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethylformamide</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conditions: Sucrose (0.1 M) dissolved in 25 Ml pyridine (except with subtilisin) containing 0.25 g/ml enzyme and 0.6 M trifluoroethylbutyrate, magnetically stirred at 150 rpm at -5°C.

We claim:

1. A poly(sugar acrylate) with the structure:

```
\begin{align*}
+\text{CH} & \text{CH}_2 \text{CH} \\
C &= O \\
\text{S} \\
\end{align*}
```

wherein S is a sugar selected from the group consisting of sucrose linked at the 1'-position, raffinose linked at the 1'-position, trehalose linked at the 6-position, α- or β-alkyl- or α- or β- halo-glucosides linked at the 6-position, or α- or β-alkyl or α- or β-halo-galactosides linked at the 6-position, α- or β-alkyl- or α- or β- halo-mannosides linked at the 6-position; and n is a whole number greater than 1.

2. The poly(sugar acrylate) of claim 1 having a molecular weight of greater than 91,000, and wherein S is sucrose linked at the 1'-position.

3. The poly(sugar acrylate) of claim 1 having a molecular weight of greater than 91,000.

4. The poly(sugar acrylate) of claim 3 wherein the sugar is selected from the group consisting of α- or β-alkylgalactosides linked at the 6-position and α- or β-alkylglucosides linked at the 6-position.

5. A poly(sugar acrylate) having a hydrocarbon backbone with pendant sugar moieties attached to the hydrocarbon backbone by ester linkages wherein the sugar is selected from the group consisting of sucrose linked at the 1'-position, raffinose linked at the 1'-position, trehalose linked at the 6-position, α- or β-alkyl- or α- or β- halo-glucosides linked at the 6-position, α- or β-alkyl or α- or β- halo-galactosides linked at the 6-position, α- or β-alkyl or α- or β- halo-mannosides linked at the 6-position.

6. The poly(sugar acrylate) of claim 5 having a molecular weight of greater than 91,000.

7. The poly(sugar acrylate) of claim 6 wherein the sugar is sucrose linked at the 1'-position.

* * * * *