METHODS FOR TREATING TINNITUS BY DRUG MICROINFUSION FROM A NEURAL PROSTHESIS INSERTED IN THE BRAIN

Inventors: Matthew A. Howard, III; Timothy M. McCulloch, both of Iowa City, Iowa; Carol A. Bauer, Houston, Tex.

Assignee: University of Iowa Research Foundation, Iowa City, Iowa

Appl. No.: 597,355
Filed: Feb. 6, 1996

Related U.S. Application Data
Division of Ser. No. 332,755, Nov. 1, 1994, which is a continuation-in-part of Ser. No. 194,017, Feb. 9, 1994, Pat. No. 5,496,369.

Int. Cl. A61M 25/01
U.S. Cl. 604/116; 604/151
Field of Search 604/116, 131, 604/151

References Cited
U.S. PATENT DOCUMENTS
4,357,497 11/1982 Hochmair et al. 179/107 E
4,360,019 11/1982 Forthoer et al. 604/131
4,400,137 12/1984 Mokhberi 604/116
4,735,968 4/1988 Guth 514/561
5,000,194 3/1991 Honert et al. 128/784
5,221,283 6/1993 Chang 604/116
5,271,397 12/1993 Seligman et al. 607/137
5,496,369 3/1996 Howard, III 623/10

FOREIGN PATENT DOCUMENTS

OTHER PUBLICATIONS

ABSTRACT
A method for implanting a neural prosthetic drug delivery apparatus into a target zone of a patient’s brain for reducing or eliminating the effects of tinnitus. The apparatus includes a catheter which is inserted into the patient’s auditory cortex or thalamus. The catheter microinfuses drugs which suppress or eliminate abnormal neural activity into geometrically separate locations of the patient’s cortex or thalamus, thereby reducing or eliminating the effects of tinnitus.

12 Claims, 13 Drawing Sheets
OTHER PUBLICATIONS

CENTRAL AUDITORY ELECTRICAL STIMULATION FOR TREATMENT OF TINNITUS

156
116
burr hole opening into skull

104
Multi-contact stimulating-recording electrode

Heschel's Gyrus

150
120

112
100

160

410
in thorax or abdomen
Stimulation Device

Figure 2A
The angle is important.

Stopping piece
Figure 7A
CENTRAL AUDITORY DRUG DELIVERY TREATMENT FOR TINNITUS TREATMENT

injectable (rechargable) drug reservoir-pump, secured to skull.

808

824

804

800 burr hole

Heschel's gyrus

814

801 Drug infusion catheter with multiple ports

803 connector

Figure 8
IMAGE TARGET ZONE OF BRAIN

INSERT CATHETER INTO TARGET ZONE

SUPPLY A DRUG FOR TINNITUS TREATMENT

OUTPUT THE DRUG INTO TARGET ZONE

MONITOR PATIENT’S RESPONSE TO OUTPUTTED DRUG

ADJUST AMOUNT OF DRUG OUTPUTTED

Figure 10
METHODS FOR TREATING TINNITUS BY DRUG MICROINFECTION FROM A NEURAL PROSTHESIS INSERTED IN THE BRAIN

This application is a division of application Ser. No. 08/332,755, filed Nov. 1, 1994, which is a continuation-in-part of U.S. patent application Ser. No. 08/194,017 filed Feb. 9, 1994, now U.S. Pat. No. 5,496,369, the contents of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to a method for treating tinnitus, and in particular, to a neural prosthetic drug delivery device for microinfusing drugs at geometrically separate locations of the patient's auditory cortex or the patient's thalamus.

2. Background of the Related Art

Tinnitus is a disorder where a patient experiences a sound sensation within the head ("a ringing in the ears") in the absence of an external stimulus. This uncontrollable ringing can be extremely uncomfortable and often results in severe disability. Tinnitus is a very common disorder affecting an estimated 15% of the U.S. population according to the National Institutes for Health, 1989 National Strategic Research Plan. Hence, approximately 9 million Americans have clinically significant tinnitus with 2 million of those being severely disabled by the disorder.

There are no treatments currently available that consistently eliminate tinnitus although many different types of treatments have been attempted. This wide variety of attempted treatments attests to the unsatisfactory state of current tinnitus therapy. Several more common attempts will be discussed below.

One approach involves suppression of abnormal neural activity within the auditory nervous system with various anticonvulsant or local anesthetic medications. Examples of such anticonvulsant medications include xylazine and lidocaine which are administered intravenously. In addition, since the clinical impact of tinnitus is significantly influenced by the patient's psychological state, antidepressants, sedatives, biofeedback and counseling methods are also used. None of these methods has been shown to be consistently effective.

Another widely used approach to treating tinnitus involves "masking" undesirable sound perception by presenting alternative sounds to the patient using an external sound generator. In particular, an external sound generator is attached to the patient's ear (similar to a hearing aid) and the generator outputs sounds into the patient's ear. Although this approach has met with moderate success, it has several significant drawbacks. First, such an approach requires that the patient not be deaf in the ear which uses the external sound generator. That is, the external sound generator cannot effectively mask sounds to a deaf ear which subsequently developed tinnitus. Second, the external sound generator can be inconvenient to use and can actually result in loss of hearing acuity in healthy ears.

Yet another approach involves surgical resection of the auditory nerve itself. This more dangerous approach is usually only attempted if the patient suffers form large acoustic neuromas and tinnitus. In this situation, the auditory nerve is not resected for the specific purpose of eliminating tinnitus but is removed as an almost inevitable complication of large tumor removal. In a wide series of patients with tinnitus who underwent this surgical procedure of acoustic nerve resection, only 40% were improved, 10% were improved and 50% were actually worse.

An alternative and somewhat more successful approach involves electrical stimulation of the cochlea. In patients who have tinnitus and have received a cochlear implant, as many as half reported some improvement in their tinnitus after implantation. Round window stimulation has also been useful in improving tinnitus in selected patients. However, the success rate of this approach has also remained relatively low.

Prior to the nineteenth century, physicians and scientists believed the brain was an organ with functional properties distributed equally through its mass. Localization of specific functions within subregions of the brain was first demonstrated in the 1800s, and provided the fundamental conceptual framework for all of modern neuroscience and neurosurgery. As it became clear that brain subregions served specific functions such as movement of the extremities, and touch sensation, it was also noted that direct electrical stimulation of the surface of these brain regions could cause partial reproduction of these functions.

SUMMARY OF THE INVENTION

It is therefore an object of the invention to provide a prosthetic apparatus which can be placed in one of a patient's cerebral cortex or in the patient's thalamus to reduce the effects of tinnitus.

Another object of the invention is to provide a prosthetic apparatus which can be positioned in the brain such that electric discharges can be accurately delivered to geometrically dispersed locations in either the cortex or thalamus.

Another object of the invention is to provide a prosthetic which allows a physician to physiologically test location and function of neural prosthetic electrodes to reduce or eliminate the patient's tinnitus.

Another object of the invention is to provide a method for implanting a prosthetic apparatus in the patient's brain such that microinfusions of a drug that reduces abnormal neural activity due to tinnitus can be administered in geometrically dispersed locations in the patient's cortex or thalamus.

Another object of the invention is to provide a prosthetic apparatus which can support a reservoir of the drug so that the microinfusions can be continuously administered.

One advantage of the invention is that it reduces or eliminates the effects of tinnitus.

Another advantage of the invention is that it can utilize a single electrode.

Another advantage of the invention is that it can utilize a single catheter.

Another advantage of the invention is that it penetrates the brain as opposed to resting on the brain surface, thus requiring significantly less current to stimulate localized areas of the cortex or the thalamus.

Another advantage of the invention is that it penetrates the brain thus requiring significantly lower doses of the drug and hence reduces unwanted side effects related to inadvertent treatment of surrounding tissue.

Another advantage of the invention is that the contacts are sufficiently closely arranged next to each other to provide high geometric resolution stimulation of the auditory cortex.

One feature of the invention is that it includes a penetrating longitudinal support or electrode.

Another feature of the invention is that it includes multiple contacts on the longitudinal support.
Another feature of the invention is that it includes a stimulation device.

Another feature of the invention is that each contact can separately introduce electrical discharges in the primary auditory cortex.

Another feature of the invention is that it utilizes a catheter to administer micro-infiltrations of the drugs to disperse locations in the patient’s cortex or thalamus.

Another feature of the invention is that the catheter includes an electrode for recording discharges in the patient’s cortex or thalamus.

Another feature of the invention is that it utilizes a drug reservoir for containing reserve portions of the drug.

Another feature of the invention is that it can include a flexible wire multicontact electrode.

Another feature of the invention is that the flexible wire multicontact electrode is inserted into the brain using a rigid introducer.

Another feature of the invention is that a flat plastic plate attached to the longitudinal support (electrode) at the site of skull attachment helps position the prosthesis in the auditory cortex. The flat plastic plate having a cup to receive a sphere coupled to leads which interconnect the contacts to a speech processor.

Another feature of the invention is that it provides a method for treating tinnitus by microinfiltration of a drug into a target zone of a patient’s brain via a catheter of a neural prosthetic apparatus, comprising the steps of: obtaining an image of a target zone of the patient’s brain; inserting the catheter of the neural prosthetic apparatus into the target zone of the patient’s brain using the image as a guide; providing a supply of the drug for outputting into the target zone of the patient’s brain; outputting the drug into the target zone of the patient’s brain; monitoring the patient’s response to the drug outputted into the target zone of the patient’s brain; and adjusting the amount of the drug outputted into the target zone according to the patient’s response to the drug outputted.

These and other objects, advantages and features of the present invention will become more apparent from the following description of embodiments thereof taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B show the orientation of a patient’s primary auditory cortex in relation to the patient’s cochlea and cochlear nucleus.

FIG. 2A shows a multi-contact recording/stimulating electrode system 100 for blocking and/or masking the abnormal electrical activity present in tinnitus patients according to one embodiment of the invention. FIG. 2B shows a human cerebral cortex neural prosthetic according to one embodiment of the invention.

FIG. 3A shows a side view of a plane A which intersects a coronal section with a Sylvian fissure exposed, and FIGS. 3B and 3C show the coronal section before and after tissue is digitally “peeled off” the Sylvian fissure.

FIG. 4 shows a neural prosthetic with a support having electrical contacts and its stimulation device.

FIG. 5 shows a prosthetic which includes two longitudinal supports according to another embodiment of the invention.

FIG. 6 shows a prosthetic according to yet another embodiment of the invention.

FIG. 7A shows the prosthetic of FIG. 6 as looking down on the patient’s brain surface, FIG. 7B shows a closer view of a stopping piece with a cup and a lid, and FIG. 7C corresponds to FIG. 7A with the support inserted.

FIG. 8 shows another embodiment of the invention involving drug-infusion into regionally targeted locations within the brain according to another embodiment of the invention.

FIG. 9 shows a closer view of a catheter with ports or openings.

FIG. 10 shows method steps for treating tinnitus by infusion of a drug into a patient’s brain via a catheter of a neural prosthetic apparatus according to one embodiment of the invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

It is presumed that patients perceive tinnitus because neurons within the central auditory system (Auditory Cortex and/or Medial Geniculate Nucleus (MGN) of the Thalamus) are firing abnormally. By using sophisticated medical imaging and neurosurgical techniques discussed in U.S. patent application Ser. No. 08/194,017, the contents of which are incorporated herein by reference, specific regions in the brain can be targeted and the abnormal electrical activity blocked or masked with stimulating electrodes or with drugs delivered through precisely placed brain catheters.

The primary auditory region of the human brain is buried deep within the Sylvian fissure. It is not visible from the brain surface and its exact location varies slightly from one person to the next. MRI and CT scanners were not invented at the time of Dr. Dobell’s experiments so the anatomy of the patient’s auditory cortex could not be studied prior to surgery, and this region could only be visualized with difficulty in the operating room after the Sylvian fissure was surgically dissected. Once the burried auditory cortex was exposed, surface stimulating electrodes were placed by hand over the area thought to be auditory cortex and the brain was stimulated in a fashion similar to that used to generate visual phosphones.

Reproducible sound sensations were generated in the experimental subjects. Though these preliminary findings were encouraging, a range of limitations precluded further work by this group. Among the more daunting problems the Utah group faced were recruiting suitable patients for the experimental study and obtaining good stimulation characteristics from the experimental surface electrodes. The minimal stimulation threshold for eliciting sound sensations was found to be 6 milliamperes, which is too high to be tolerated chronically and is thousands of times greater than currents found subsequently to be required to generate phosphones in visual cortex using penetrating electrodes.

Recent advances in MRI and computer technology now allow detailed preoperative imaging of human auditory cortex.

An important aspect of the cochlear implant technology which is now highly refined, involves transducing sound into complex electrical stimulation sequences. This large body of technical knowledge developed over the last twenty years will be directly applicable to the treatment of tinnitus via the auditory cortex prosthetic device.

Normal Hearing

Mechanisms of human hearing are reviewed briefly to provide a framework for discussion of the tinnitus masking system. The auditory system is composed of many structural components that are connected extensively by bundles of
nerve fibers. The system's overall function is to enable humans to extract usable information from sounds in the environment. By transducing acoustic signals into electrical signals that can then be processed in the brain, humans are able to discriminate amongst a wide range of sounds with great precision.

FIGS. 1A and 1B show a side and front view of areas involved in the hearing process. In particular, the normal transduction of sound waves into electrical signals occurs in the cochlea 110, a part of the inner ear located within temporal bone (not shown). The cochlea 110 is tonotopically organized, meaning different parts of the cochlea 110 respond optimally to different tones; one end of the cochlea 110 responds best to high frequency tones, while the other end responds best to low frequency tones. The cochlea 110 converts the tones to electrical signals which are then received by cochlear nucleus 116. This converted information is passed from the cochlea 110 into brain stem 114 by way of electrical signals carried along the acoustic nerve and in particular, cranial nerve VIII (not shown).

The next important auditory structure encountered is the cochlear nucleus 116 in brain stem 114. As the acoustic nerve leaves the temporal bone and enters skull cavity 122, it penetrates brain stem 114 and relays coded signals to cochlear nucleus 116, which is also tonotopically organized. Through many fiber-tract interconnections and relays (not shown), sound signals are analyzed at sites throughout brain stem 114 and thalamus 126. The final signal analysis site is auditory cortex 150 situated in temporal lobe 156.

The mechanisms of function of these various structures has also been extensively studied. The function of the cochlea 110 is the most well-understood and the function of auditory cortex 150 is the least understood. For example, removal of the cochlea 110 results in complete deafness in ear 160, whereas removal of auditory cortex 150 from one side produces minimal deficits. Despite extensive neural connections with other components of the auditory system, auditory cortex 150 does not appear to be necessary for many auditory functions.

Advanced imaging combined with an intraoperative stereotactic system now enable placement of penetrating electrodes into auditory cortex during routine epilepsy surgery without dissection of the Sylvian fissure.

Primary auditory cortex 150 in FIGS. 1A and 1B is tonotopically organized, meaning stimulation in different areas is likely to cause the patient to perceive different tones. These tones form the building blocks of complex sound phenomena such as speech. Tonotopic organization is a fundamental characteristic of the cochlea and cochlear nucleus as well, as discussed above. Auditory cortex 150, however, has its tonotopic map stretched across a larger volume of tissue (greater than twice the volume of cochlear nucleus 116). Greater tissue volume enables placement of a greater number of electrical contacts for a given tonotopic zone. This results in increased signal resolution and improved clarity of auditory sensation. Finally, because of anatomical differences, auditory cortex 150 can accommodate penetrating electrode arrays.

Stimulating Electrode

FIG. 2A shows a multi-contact recording/stimulating electrode system 100 for blocking and/or masking the abnormal electrical activity present in tinnitus patients according to one embodiment of the invention. In particular, system 100 includes a multi-contact stimulating/recording electrode 104 connected to cables 108 via connector 112. Cables 108 enter skull 116 at burr hole opening 120 of skull 115 and are connected to a stimulation device 410 positioned in subcutaneous tissue of axial skeleton (thorax or abdomen).

FIG. 2B shows a closer view of multi-contact stimulating/recording electrode 104 of electrode system 100. Electrode 104 has a first end 206a and a second end 206b which is blunt or smoothly curved. Electrode 104 has electrical contacts 220 along a longitudinal support 226. Support 226 can be anywhere from several millimeters long to several centimeters long. Electrical contacts 220 are small metal pads which can be separately electrically charged via respective wires 232 available at first end 206a. Wires 232 are coupled to stimulation device 410 (see FIGS. 2A and 4). Electrical contacts 220 are spaced approximately 10 micrometers to several millimeters apart and preferably approximately 50 to 150 micrometers apart. Application of a voltage to contacts 220 near first end 206a results in stimulating low (or high—to be determined by questioning the patient) tones in auditory cortex 150 (see FIGS. 1A and 1B), whereas application of a voltage to contacts 220 near second end 206b results in stimulation of high (or low) tones in auditory cortex 150.

Electrode 104 is stereotactically placed into the primary auditory cortex of the patient with tinnitus. This can be done using a standard stereotactic head frame under local anesthesia. That is, a three dimensional computerized MRI reconstruction method (FIGS. 3A–3C) is used to stereotactically place electrode 104 within the targeted region of auditory cortex 150, as discussed below. Correct placement is confirmed by presenting a series of tones to the patient and mapping the tonotopic responses of the neurons along electrode 104.

In deaf patients, this mapping procedure is not possible, but mapping can still be carried out using microstimulation currents delivered to various contacts along electrode 104. The deaf patient describes the relative pitch of the sounds he or she perceives following stimulation, whereby the electrically stimulated location and parameters which most closely match the patient's tinnitus are determined. This approach could be used in the thalamus (MGN) as well, but the preferred embodiment involves implantation in the cortex. Regardless of whether or not stimulating electrode 104 is placed into the correct region of the cortex or into the correct region of the MGN, electrode 104 is coupled to stimulation device 410 via cables 108 and in particular, wires 232a.

Longitudinal support 226 can be a rigid support or a flexible wire with a rigid introducer which enables the physician to introduce electrode 104 into a patient's brain and then subsequently remove the rigid introducer thereby exposing electrical contacts 220 to auditory cortex 150. Support 226 can be one of the probes shown in FIGS. 3–5 of "Possible Multichannel Recording and Stimulating Electrode Arrays: A Catalog of Available Designs" by the Center for Integrated Sensors and Circuits, University of Michigan Ann Arbor, Mich., the contents of which are incorporated herein by reference. Alternative electrodes such as Depthalon Depth Electrodes and interconnection cables from PMT Corporation 1500 Park Road, Chanhassen, Minn. 55317 could also be used as support 226 and electrical couplers between contacts 220 and a speech processor (410 in FIG. 4).

Electrical contacts 220 can operate as high impedance (megohms) contacts or low impedance (a few ohms to several thousand ohms) contacts. This enables the contacts to output a small (a few microamperes as apposed to a few milliamperes) current. High impedance contacts localize the
potentials applied to the patient's primary auditory cortex to approximately a few hundred micrometers. The localization of applied electric charges corresponds to the tonotopic spacing of nerve cell pairs.

Electrode 104 is arranged along a longitudinal direction of auditory cortex 150. However, auditory cortex 150 is located in the transverse temporal gyrus and is buried deep within the Sylvian fissure. Consequently, its location cannot be determined simply by looking at an exposed surface of the brain. Therefore, MRI imaging techniques must be employed to reveal the exact orientation of auditory cortex 150.

A single coronal image of an individual's brain cannot reveal the exact orientation of auditory cortex 150. However, for treatment of tinnitus, a standard coronal MRI provides a fairly good estimate as to the location of the target region, whether the target region is the auditory cortex or the thalamus. However, if more precise targeting is desired, a series of two-dimensional images must be obtained and a resulting 3-D MRI image constructed. Once such an image is constructed, the digital data making up that image can be transformed by digitally subtracting data from the digital data making up the 3-D MRI image, to provide a view of the Sylvian fissure. This in turn exposures auditory cortex 150 as a mole-like mound. That is, tissue corresponding to the top of the digital image can be "peeled off" to expose the Sylvian fissure and consequently auditory cortex 150 "pops out" of the image. This process is described in "Three-dimensional In Vivo Mapping of Brain Lesions in Humans", by Hanna Damasio, MD, Randall Frank, the contents of which are incorporated herein by reference.

FIG. 3A shows a side view of a plane A which intersects a coronal section 310 as well as a view of coronal section 310 with Sylvian fissure 316 exposed. FIGS. 3B and 3C show coronal section 310 before and after tissue is digitally "peeled off" to expose auditory cortex 150. One or more resulting mounds 320 are removed. FIG. 3C and this mound corresponds to auditory cortex 150 of FIG. 1B. Mound 320 does not appear until after tissue on the underside of Sylvian fissure 316 is reconstructed to provide the 3-D image. Once the exact location and orientation of mound 320 and consequently auditory cortex 150 have been determined using these 3-D MRI image processing techniques, electrode 104 can be accurately inserted into auditory cortex 150.

FIG. 4 shows electrode 104 just prior to insertion into auditory cortex 150. In addition, FIG. 4 shows stimulation device 410 coupled to wires 232 via cable 108. Stimulation device 410 is a chronic electrical stimulation device. This stimulator device is well tested and widely available. Examples include chronic epidural stimulators made by Medtronics used for chronic back and leg pain and deep brain stimulators, as well as nearly all types of cochlear implants.

The above electrical implantation technique for tinnitus is quick and safe, e.g., over 100 auditory cortex region electrode implantations have been performed in patients being evaluated for medically intractable seizures as reported by a French epilepsy surgery group. In addition, since electrode 104 is placed in the exact site of presumed abnormal neural electrical activity, it is much more effective in disrupting or altering abnormal neuronal electrical activity, thereby eliminating tinnitus. Moreover, preliminary testing has shown that placement of electrode 104 within the central auditory system causes patients to perceive sounds, and this will likely be the case even in patients who are deaf from causes refractory to cochlear implantation. Also, stimulation in the auditory cortex does not impair hearing in tinnitus patients who do have good hearing.

FIG. 5 shows an electrode 510 which includes two longitudinal supports 226a and 226b according to another embodiment of the invention. Although two supports are shown, three or more such supports could be used. Longitudinal support 226a is connected to cable 108a containing wires 232a via connector 112a and longitudinal support 226b is connected to cable 108b containing wires 232b via connector 112b. Cables 108a and 108b are again connected to stimulation device 410 as in FIG. 4.

FIG. 6 shows an electrode 610 according to yet another embodiment of the invention. In particular, FIG. 6 shows longitudinal support 226 with first end 606a and second end 606b. End 606a is arranged in the region of auditory cortex 150 with low tones (or high tones as previously discussed) and second end 606b is arranged in the region of auditory cortex 150 with high (or low) tones in a manner similar to first end 206a and second end 206b of FIG. 2B. Here, however, longitudinal support 226 has a sphere 616 which is stopped by a stopping piece 614. This enable the physician to insert longitudinal support 226 at a wide range of angles and yet secure electrode 610 once longitudinal support 226 has been inserted.

FIG. 7A shows electrode 610 of FIG. 6 as looking down on the patient's brain surface 704. FIG. 7B shows a closer view of stopping piece 614 with a cup 708 and a lid 714 with a notch 716 for passing leads 232. FIG. 7C corresponds to FIG. 7A with support 226 inserted into surface 704 and sphere 616 resting in cup 708. FIG. 7C also shows lid 716 covering sphere 616 with leads 232 extending out of notch 716.

FIG. 8 shows another embodiment of the invention involving drug-infusion into regionally targeted locations within the brain. The alternative drug-infusion treatment strategy relies on the same principal of regionally targeted treatment within the brain, but employs a different effector to eliminate the abnormal neural activity causing tinnitus. Namely, a small drug infusion catheter 801 is stereotaxically placed into either the auditory cortex or thalamus (MGN) and microinfusions of various drugs that block abnormal neural activity are infused into the targeted locations.

Referring in more detail to FIG. 8, a drug infusion catheter-recording device 800 is connected to an injectable (rechargeable) drug reservoir-pump 804 via connector 803 which is secured with sutures widely used in neurosurgery. Pump 804 is secured to the patient's skull 806 under the scalp and is not exposed to the external environment. Pump 804 has a valve 824 which can be accessed externally so that additional drugs can be injected via a syringe (not shown) without reopening the patient's scalp. Catheter 801 has multiple ports 814 from which the drugs are microinfused into the targeted brain regions.

FIG. 9 shows a closer view of catheter 801 with ports or openings 814. Catheter 801 can be made, for example, of silastic such as the catheters sold by Radionics, Codman, and Medtronics. Catheter 801 need not have a circular cross-section 817 and instead can be flat, crotched, or any other shape which facilitates broader diffusion of the drug. Catheter 801 can include a small embedded recording/stimulating electrode 819 which can be connected to stimulation device 410 so that catheter 801 can be properly positioned within the target zone of the patient's brain. Recording/stimulating electrode 819 both receives electrical discharges from the patient's brain for recording the electrical discharges, and outputs electrical discharges from a
plurality of electrical contacts to the patient’s brain for localized stimulation of the patient’s brain. Electrophysiological recording data from this special catheter electrode will provide physiologic confirmation of proper catheter position in auditory cortex. The diameters of ports (or openings) 814 can be approximately between 10 micrometers and several millimeters and preferably between approximately 40 micrometers and 1 millimeter. The centers of ports 814 can also be tens of micrometers apart to millimeters apart and the spacing need not be uniform.

Pumps manufactured by Medtronics and Alzet can serve as injectable drug reservoir—pump 804. Examples of drugs that could be infused include anticonvulsants such as dilantin and inhibitory neurotransmitters such as GABA and local anesthetics such as lidocaine. In high enough concentrations, these compounds should block abnormal neuronal discharges. By delivering the drugs to the specific central nervous system target, significantly higher concentrations of the drug reach their target without exposing non-targeted surrounding tissue, as compared to the concentrations which could be delivered by simply administering the same drug systematically, e.g. orally or intravenously. Consequently, this strategy should result in marked improvement in efficacy while avoiding toxic side effects.

FIG. 10 illustrates steps comprising a method for treating tinnitus by microinjection of a drug into a target zone of a patient’s brain via a catheter of a neural prosthetic apparatus according to one embodiment of the invention. Namely, in step 1001 an image of a target zone of the patient’s brain is obtained. In step 1003, the catheter is inserted into the target zone of the patient’s brain. Step 1005 involves supplying a drug for tinnitus treatment, the drug having the ability to block abnormal neural activity within the target zone of the patient’s brain. Step 1007 comprises outputting the drug into the target zone of the patient’s brain. In step 1009, the patient’s response to the drug outputted in step 1007 is monitored. And step 1101 comprises adjusting the amount of drug outputted according to the monitored patient’s response of step 1009.

The precise amount of drug infusion depends on the type of drug but can be determined at the outset of implantation. In particular, catheter 801 is initially inserted into the targeted location in the manner described above for insertion of electrode 104. The patient is then asked if there is any noticeable reduction in ringing due to the tinnitus as the amount of drug infusion is manually adjusted. The amount of infusion is that amount which is required to eliminate the ringing. Once the amount is determined, the appropriate chronic infusion pump 804 is connected to catheter 801 and all incisions are closed. Post-operative modifications of infusion rates can be carried out using percutaneous radio control techniques, e.g., Medtronics.

As mentioned above, the alternative drug-infusion treatment strategy relies on the same electrode placement principals as described above with respect to FIGS. 3A–3C. Namely, a series of images must again be obtained and a resulting 3-D MRI image constructed. Once the image is constructed, the digital data making up that image can be transformed to provide a view of the Sylvian fissure. This in turn exposes auditory cortex 150 as a mole-like mound. Again, tissue on top of the digital image can be “peeled off” to expose the Sylvian fissure and consequently auditory cortex 150 “pops out” of the image.

Numerous additional modifications and variations of the present invention are possible in light of the above teachings. It is therefore understood that the invention may be practiced otherwise than as specifically claimed.

What is claimed is:
1. A method of treating a tinnitus patient, comprising the steps of:
 obtaining an image of a target zone of the patient’s brain;
 inserting a catheter of a neural prosthetic apparatus into said target zone of the patient’s brain using the image as a guide, said neural prosthetic apparatus comprising a drug reservoir for containing a drug, said drug reservoir coupled to said catheter, said catheter having a plurality of drug delivery ports for outputting said drug, said drug suppressing abnormal neural activity;
 providing a supply of said drug for outputting into said target zone of the patient’s brain;
 outputting said drug into said target zone of the patient’s brain;
 monitoring the patient’s response to said drug outputted into said target zone of the patient’s brain;
 manually adjusting the amount of said drug outputted into said target zone of the patient’s brain according to the patient’s response to said drug outputted.
2. The method of claim 1, wherein said inserting step comprises the steps of:
 inserting a catheter of a neural prosthetic apparatus into said target zone of the patient’s brain, wherein said catheter includes a recording/stimulating electrode, said recording/stimulating electrode having a plurality of electrical contacts, said electrical contacts electrically coupled to a stimulation device, said stimulation device for outputting electrical signals;
 outputting electrical discharges from said plurality of electrical contacts, said electrical discharges outputted according to said electrical signals outputted from said stimulation device;
 receiving electrical discharges at said recording/stimulating electrode, said electrical discharges received from said target zone of the patient’s brain; and
 positioning said catheter within said target zone of the patient’s brain, said electrical discharges received providing physiologic confirmation of proper catheter position within said target zone of the patient’s brain.
3. The method of claim 1, wherein said step of outputting said drug comprises the steps of:
 connecting said catheter to a pump-reservoir, said pump-reservoir for supplying said drug to said plurality of drug delivery ports; and
 pumping said drug from said pump-reservoir through said catheter to said plurality of drug delivery ports and infusing said drug from said plurality of drug delivery ports into geometrically separate locations within said target zone of the patient’s brain, said geometrically separate locations corresponding to the respective external positions of said plurality of drug delivery ports on said catheter.
4. The method of claim 3, further comprising the steps of:
 locating said pump-reservoir beneath the patient’s scalp; and
 securing said pump-reservoir to the patient’s skull.
5. The method of claim 4, further comprising the step of recharging said pump-reservoir with said drug, said pump-reservoir including an externally accessible valve, said step of recharging comprising injecting said drug into said pump-reservoir through said valve.
6. The method of claim 3, wherein said pumping step comprises the step of adjusting the rate of said pumping said
drug, the rate of said pumping said drug adjusted according to the patient's response to said drug, said drug capable of suppressing abnormal neural activity and alleviating the symptoms of tinnitus.

7. The method of claim 6, wherein said adjusting the rate of said pumping said drug step comprises adjusting the rate of said pumping by percutaneous radio control.

8. The method of claim 1, wherein said obtaining step comprises obtaining an image of said target zone of the patient's brain, said target zone including one of an ordinary cortex and a medial geniculate nucleus of a thalamus, and said inserting step comprises inserting the catheter into said target zone of the patient's brain, said target zone including one of the auditory cortex and the medial geniculate nucleus of the thalamus.

9. The method of claim 1, wherein said step of outputting said drug comprises outputting a drug which blocks abnormal neural activity, said drug including one of an anticonvulsant, a neurotransmitter, and a local anesthetic.

10. The method of claim 1, wherein said step of obtaining an image of a target zone of the patient's brain comprises:
 a) acquiring digital data corresponding to a three dimensional digital image of the patient's brain;
 b) storing said digital data corresponding to said three dimensional digital image in a memory of a computer;
 c) transforming said digital data corresponding to said three dimensional digital image to yield transformed digital data, said transformed digital data corresponding to a modified three dimensional digital image, said modified three dimensional digital image showing the location and orientation of said target zone of the patient's brain.

11. The method of claim 1, wherein said inserting step comprises the steps of:
 a) inserting a catheter of a neural prosthetic apparatus into said target zone of the patient's brain, wherein said catheter includes a recording/stimulating electrode, said recording/stimulating electrode having a plurality of electrical contacts, said plurality of electrical contacts electrically coupled to a stimulation device, said stimulation device for outputting electrical signals;
 b) outputting electrical discharges from said plurality of electrical contacts, said electrical discharges outputted from said plurality of electrical contacts according to said electrical signals outputted from said stimulation device;
 c) monitoring the patient's response to said electrical discharges outputted from said plurality of electrical contacts;
 d) adjusting the position of said catheter within said target zone of the patient's brain according to the patient's response to said electrical discharges outputted from said plurality of electrical contacts; and
 e) repeating steps b), c) and d) until the proper position of said catheter within said target zone of the patient's brain is achieved.

12. The method of claim 1, wherein said inserting step comprises the steps of:
 a) inserting a catheter of a neural prosthetic apparatus into said target zone of the patient's brain, wherein said catheter includes a recording/stimulating electrode, said recording/stimulating electrode having a plurality of electrical contacts, each of said plurality of electrical contacts capable of receiving electrical discharges from said target zone of the patient's brain, and said neural prosthetic apparatus capable of recording said electrical discharges received from said target zone of the patient's brain;
 b) receiving electrical discharges at said plurality of electrical contacts, said electrical discharges received according to the position of said catheter within said target zone of the patient's brain;
 c) recording the position on said catheter of said electrical contacts receiving said electrical discharges received;
 d) adjusting the position of said catheter within said target zone of the patient's brain according to the position on said catheter of said electrical contacts receiving said electrical discharges received; and
 e) repeating steps b), c) and d) until the proper position of said catheter within said target zone of the patient's brain is achieved.