ANTAGONISM OF IMMUNOSTIMULATORY CPG-OLIGONUCLEOTIDES BY 4-AMINOQUINOLINES AND OTHER WEAK BASES

Inventors: Donald E. Macfarlane, Iowa City, IA (US); Lucjan Strekowski, Stone Mountain, GA (US); Lori Manzel, Cedar Rapids, IA (US); Faz M. D. Ismail, Stockton on Tees (GB); Gordon B. Barlin, Turner (AU)

Assignee: The University of Iowa Research Foundation, Iowa City, IA (US); Georgia State University Research Foundation, Inc., Atlanta, GA (US); The United States of America as represented by the Department of Veterans Affairs, Washington, DC (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: 09/595,875
Filed: Jun. 16, 2000

Related U.S. Application Data
Provisional application No. 60/139,544, filed on Jun. 16, 1999.

References Cited
U.S. PATENT DOCUMENTS
4,016,100 A 4/1977 Suzuki et al. 252/316
4,089,801 A 5/1978 Schneider 252/316
4,485,054 A 11/1984 Mezei et al. 264/46
5,304,554 A * 4/1994 Strekowski
5,886,185 A * 3/1999 Chou
6,127,116 A 10/2000 Rice et al. 435/6
6,174,897 B1 * 1/2001 Schoebe-loop

FOREIGN PATENT DOCUMENTS
WO 93/07126 4/1993
WO 95/35287 12/1995

OTHER PUBLICATIONS
Zhao, C.A., 120:152979, 1994.*

Abstract:
The present invention relates generally to the field of immunology. More particularly it concerns compositions and methods for inhibiting stimulation of the immune system. The compounds and methods comprise compounds that are analogs and derivatives of chloroquine, such as 4-aminoquinolines, and other weak bases. They can be used in preventative and therapeutic treatments of autoimmune diseases and phenomena, transplant rejection such as host-versus-graft disease, and sepsis.
OTHER PUBLICATIONS

* cited by examiner
FIG. 1A-2
FIG. 1B-1

341 OZ-115

171 LJ-271

177 LJ-286

178 SP-103

349 MHQ-5

350 OZ-123

8.40 Strekowski

8.30 Strekowski

8.27 Strekowski

8.23 Strekowski

8.19 Strekowski

8.19 Strekowski
FIG. 1C-1
FIG. 1D
FIG. 1E
FIG. 1F-1
FIG. 1F-2
FIG. 1G-1
FIG. 1H-1
FIG. 1H-2
FIG. II-2
FIG. 1L
FIG. 1N-2
FIG. 1P
FIG. 3

FIG. 4
FIG. 5
FIG. 6

Graph showing the effect of different concentrations of Chloroquine (15 μM) on Fluorescence over time.

- **Fluorescence, Units**
- **Time (min)**

Lines represent different concentrations:
- 0 μM
- 1 μM
- 30 μM
- 0.5 μM
- 5 μM
FIG. 7

FIG. 8
Scheme 2

33 + 34,35 → 36,37

38,39 → 40,41, R = OH

34,36,38,40,42 = R₁ = H, R₂ = F
35,37,39,41,43 = R₁ = F, R₂ = H

42 → 44

43 → 45

FIG. 10A
Scheme 3

46 → 47

46 → 48

48 → 49

FIG. 10B
FIG. 12B
FIG. 12C
FIG. 12D
FIG. 12E
ANTAGONISM OF IMMUNOSTIMULATORY CPG-OLIGONUCLEOTIDES BY 4-AMINOQUINOLINES AND OTHER WEAK BASES

The present application claims the benefit of U.S. Provisional Application Serial No. 60/139,544 filed on Jun. 16, 1999. The entire text of the above-referenced disclosure is herein incorporated by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates generally to the field of immunology. More particularly, it concerns preventative and therapeutic compositions and methods that inhibit stimulation of the immune system.

2. Description of Related Art
While stimulation of the immune systems prevents and controls infection, it can have an adverse physiological effect, as is the case with autoimmune diseases and phenomena, with rejection of cells and tissues during adoptive immunotherapy and transplants, and with invasions by pathogens. Inhibition of this stimulation can have beneficial therapeutic results. However, new and more effective treatments to effect inhibition of immunostimulation are still needed.

Autoimmunity is generally caused by aberrations in lymphocyte activities. While the precise cause of autoimmunity is not known, it most likely involves a mechanistic failure in at least one of the steps of maintaining self-tolerance to the body's own antigens. Several factors are thought to play a part in the development of autoimmunity, including the host's genetic makeup. Autoimmune diseases afflict approximately 1% to 2% of the human population. Autoimmune phenomena, are the result of a disease, for example myocardial infarction, that may cause damage to tissue, which consequently effects the release of immunogenic tissue antigens; this condition, unlike autoimmune disease, is unrelated to the pathogenesis of the disease that caused it.

There are a wide variety of autoimmune diseases. They are classified as either organ-specific based on the primary site of injury or systemic (see Table 1). There are three ways in which damage or injury to tissue is caused by autoimmune disease: cell-mediated immunity, cell lysis and autoantibody-induced release of inflammatory mediators, and immune complex disease.

Cell-mediated immunity occurs when sensitized T cells directly damage cells or release lymphokines that augment the inflammatory reaction. An association of an autoantibody with its antigen in intercellular fluid causes cell lysis and autoantibody-induced release of inflammatory mediators. This interaction results in release of inflammatory mediators, induction of the complement pathway, or activation of cytotoxic cells, which can trigger cell lysis. The third mechanism, immune complex disease, involves a reaction between circulating autoantibodies and antigens on the cell surface. This complex becomes deposited in tissue such as the joints, blood vessels, and glomeruli, causing complement to be fixed and subsequent inflammation and tissue damage.

Rejection of cells and tissue can involve rejection of the graft by the host. The body's own cells are identified as self because of a complex series of cell surface molecules known as major histocompatibility molecules (MHC). Rejection of cells and tissues can occur following transplantation of cells or organs or after adoptive immunotherapy has been implemented. In graft-versus-host disease (GVHD), the grafted immune system attacks the host cells. One example in which GVHD becomes particularly significant is bone marrow transplantation (BMT), which is frequently used for the treatment of a variety of bone marrow-related disorders and in cancer therapy to replace bone marrow cells lost to chemotherapy and radiation treatment. In severe cases of GVHD, a patient's compromised immune system gives rise to many complications including those in the liver, causing jaundice, in the skin causing rash, and in the gastrointestinal tract, including diarrhea, anorexia, nausea and vomiting, malabsorption, abdominal pain, ileus, and ascites formation.

Sepsis is the primary cause of death in the intensive care unit with more than 400,000 cases in the United States annually. It can be caused by infection by a pathogen, such as viruses, bacteria, fungi, and parasites, which triggers host defenses. This may result in activation of innate immunity, particularly, an inflammatory response, which consequently promotes deleterious effects (collectively termed "sepsis") including shock, respiratory distress, capillary leaks, renal failure, jaundice, bleeding, coma and death.

Despite this information, preventative and therapeutic treatment to inhibit stimulation of the immune system is still needed. Oligodeoxyribonucleotides (ODN), bacterial DNA, and phosphorothiate oligodeoxynucleotides with unmethylated CpG-motifs are immunostimulatory and may contribute to autoimmunity. Thus, they can serve as a model system to identify compounds and methods that effect inhibition of immunostimulation. Using CpG-ODN, a number of compounds have been identified as possessing this property. For example, a number of quinoline derivatives that are active against stimulation by CpG-ODN have been shown to induce remission of rheumatoid arthritis and lupus erythematosus (Fox, 1993; Wallace, 1994). Chloroquine and a number of structural analogs specifically and powerfully inhibit this effect at nanomolar concentration. Therefore, inhibition of CpG-ODN immunostimulation can be effected generally in the treatment of autoimmune diseases and phenomena, sepsis, and transplantation rejection, including graft-versus-host disease.

SUMMARY OF THE INVENTION
The inhibition of immune stimulation in cases such as autoimmune diseases, tissue transplantation and the like would be therapeutically beneficial. Currently, methods to inhibit stimulation of the immune system are limited. Therefore, it is a goal of the present invention to provide methods and compositions for inhibiting immunostimulation in a subject.

In one embodiment of the invention, a method of inhibiting immunostimulation in a subject by administering an effective amount of a substituted 4-quinolamine composition to the subject comprising a compound having the structural formula A is provided.
A substituted 4-quinolinamine composition of formula A, comprises groups R₄, R₅, R₆, R₇, R₈, R₉, R₁₀, R₁₁, R₁₂, and R₁₃, wherein R₄ is a hydrogen atom or a lower alkyl group, R₅ is a substituted or unsubstituted alkyl, alkenyl or alkynyl secondary or tertiary amine, R₆ is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, an unsubstituted or substituted anilic group, a substituted or unsubstituted phenylamino group or a substituted or unsubstituted styryl group, R₇ is a hydrogen atom, R₈ is a hydrogen atom or a halogen atom, R₉ is a hydrogen atom or a halogen atom, R₁₀ is a hydroxyl group, R₁₁ is a substituted or unsubstituted alkyl or aryl group, R₁₂ is a substituted or unsubstituted amino group, or a halogen atom, and R₁₃ is a halogen atom or an alkyl halogen atom, R₈ is a hydrogen atom and pharmaceutically acceptable salts thereof. In a preferred embodiment, when the R₅ phenyl, naphthyl, anthracenyl, styril or phenanthryl group comprises substitutions, these are defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an alkoxyalkyl group, an ester group, an alkylamino group, an dialkylamino group, a cyclic amino group, a halogen atom or any combination thereof. In a particularly preferred embodiment, a cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolino group or a morpholino group.

The phenyl group additionally may be substituted at positions R₆, R₁₀, R₁₁, R₁₂ and R₁₃, wherein the substituted phenyl group comprises one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an alkoxyalkyl group, an ester group, an alkylamino group, an dialkylamino group, a cyclic amino group, a furan group, a thiophene group, a halogen atom or any combination thereof. In a preferred embodiment, a cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolino group or a morpholino group.

In another embodiment, the present invention provides a method of inhibiting immunostimulation in a subject comprising an effective amount of a substituted 4-quinolinamine composition to said subject comprising a compound having the structural formula C.

A substituted 4-quinolinamine composition of formula C, comprises a phenyl group spatially distanced form the quinolinamine by an alkyl group of 0 to 4 CH₂ molecules, R₁₂, R₁₃, R₁₄, R₁₅, R₁₆, wherein R₁₂ is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anilic group, an unsubstituted or substituted styryl group or a substituted or unsubstituted phenanthryl group, R₁₃ is a hydrogen atom, R₁₄ is a hydrogen atom, R₁₅ is a hydrogen atom or a halogen atom, R₁₆ is a hydrogen atom, or a halogen atom, R₁₃ is a hydrogen atom and pharmaceutically acceptable salts thereof. In a preferred embodiment, when the substituted phenyl group comprises substitutions, these are defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an alkoxyalkyl group, an ester group, an alkylamino group, an dialkylamino group, a cyclic amino group, a halogen atom or any combination thereof. In a particularly preferred embodiment, a cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolino group or a morpholino group.

In another embodiment, the present invention provides a method of inhibiting immunostimulation in a subject comprising an effective amount of a substituted 4-quinolinamine composition to said subject comprising a compound having the structural formula D.

A substituted 4-quinolinamine composition of formula D, comprises a phenyl group spatially distanced form the quinolinamine by an alkyl group of 0 to 4 CH₂ molecules, R₁₂, R₁₃, R₁₄, R₁₅, R₁₆, wherein R₁₂ is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anilic group, an unsubstituted or substituted styryl group or a substituted or unsubstituted phenanthryl group, R₁₃ is a hydrogen atom, R₁₄ is a hydrogen atom, R₁₅ is a hydrogen atom or a halogen atom, R₁₆ is a hydrogen atom, or a halogen atom, R₁₃ is a hydrogen atom and pharmaceutically acceptable salts thereof. In a preferred embodiment, when the substituted phenyl group comprises substitutions, these are defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an alkoxyalkyl group, an ester group, an alkylamino group, an dialkylamino group, a cyclic amino group, a halogen atom or any combination thereof. In a particularly preferred embodiment, a cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolino group or a morpholino group.

In another embodiment, the present invention provides a method of inhibiting immunostimulation in a subject comprising an effective amount of a substituted 4-quinolinamine composition to said subject comprising a compound having the structural formula E.
prizes one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an alkoxy-alkyl group, an ester group, an alkylamino group, an dialkylamino group, a cyclic amino group, a furan group, a thiophene group, a halogen atom, or any combination thereof.

In another embodiment, a method of inhibiting immunostimulation in a subject comprises administering an effective amount of a substituted bis-4-quino-linolamine composition to the subject comprising a compound having the structural formula D.

As substituted bis-4-quino-linolamine composition having the structural formula D, comprises R₆ on the first 4-quino- linolamine covalently attached to R₅ on the second 4-quino- linolamine by linker group Y, R₆ is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted styril group or a substituted or unsubstituted phenanthryl group, R₅ is a hydrogen atom, R₆ is a hydrogen atom, R₅ is a hydrogen atom or a halogen atom, R₉ is a hydrogen atom, R₆ is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, an substituted or unsubstituted styril group, a substituted or unsubstituted phenanthryl group, an substituted or unsubstituted phenanthryl group, is a hydrogen atom, R₈ is a hydrogen atom or a halogen atom, R₆ is a hydrogen atom or a halogen atom, R₉ is a hydrogen atom or a halogen atom, in a pharmaceutical acceptably salts thereof. In other embodiments, the R₅ phenyl, naphthyl, anthracenyl, styril or phenanthryl group substitution is further defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxacycl group, an alkoxycycloalkyl group, ester group, an alkylamino group, a dialkylamino group, a cyclic amino group, a halogen atom or any combination thereof.

In preferred embodiments, a cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolino group or a morpholino group. In particular embodiments, the linker group Y is an alkyl group, an ester group, an alkoxycycloalkyl group, an alkylamino group, a dialkylamino group, an amido group, a cyclohexane, an piperazino group or any combination thereof.

In other embodiments of the present invention, a method of inhibiting immunostimulation in a subject comprising administering an effective amount of a substituted bis-9-aminoacridine composition to the subject, comprising a compound having the structural formula E, is provided.

A substituted bis-9-aminoacridine of formula E, comprises R₉ on the first 9-aminoacridine covalently attached to R₈ on the second 9-aminoacridine by linker group Y. A substituted bis-9-aminoacridine of formula E further comprises OR₁₀, OR₁₁, R₁₂, R₁₃, X and X', wherein OR₁₀ is a lower alkyl group, OR₁₁ is a lower alkyl group, R₁₂ is a hydrogen atom or a lower alkoxycycloalkyl group, R₁₃ is a hydrogen atom or a lower alkoxycycloalkyl group, X is a halogen atom, X' is a halogen atom and pharmaceutically acceptable salts thereof. In other embodiments, the linker group Y is an alkyl group, an ester group, an alkoxycycloalkyl group, an alkylamino group, a dialkylamino group, an amido group, a cyclohexane, an piperazino group or any combination thereof.

In yet another embodiment, a method of inhibiting immunostimulation in a subject comprising administering an effective amount of a composition to a subject comprising a compound having the structural formula F, wherein a 4-quino- linolamine at position R₉ is covalently linked to a 9-aminoacridine at position R₉ by linker group Y.

The 4-quino- linolamine, 9-aminoacridine composition of formula F comprises R₉, R₈, X, wherein R₈ is atom or a lower alkyl group, R₉ is a substituted or unsubstituted phenyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted styril group or a substituted or unsubstituted phenanthryl group, R₈ is a hydrogen atom, R₉ is a hydrogen atom, R₈, is a hydrogen atom if a halogen atom, R₉ is a hydrogen atom or a halogen atom, R₈ is a hydrogen atom or a halogen atom, R₉ is a halogen atom and pharmaceutically acceptable salts thereof. In certain embodiments, the R₈ phenyl, naphthyl, anthracenyl, styril or phenanthryl group substitution is further defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxycycloalkyl group, an alkylamino group, a dialkylamino group, a cyclic amino group, a halogen atom or any combination thereof.

In preferred embodiments, a cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolino group or a morpholino group. In particular embodiments, the linker group Y is an alkyl group, an ester group, an alkoxycycloalkyl group, an alkylamino group, a dialkylamino group, an amido group, a cyclohexane, an piperazino group or any combination thereof.

In other embodiments of the present invention, 4-quino- linolamine and 9-aminoacridine compositions are pro-
vided. Thus, in one embodiment, a substituted 4-quinolinamine composition having the structural formula \(A \) is provided.

\[
\text{(A)}
\]

\(R_4 \) is a hydrogen atom or a lower alkyl group, \(R_5 \) is a substituted or unsubstituted alkyl, alkenyl or alkynyl secondary or tertiary amine, \(R_6 \) is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, an substituted or unsubstituted aspirinacyl group, a substituted or unsubstituted phenthanthryl group or a substituted or unsubstituted styrly group, \(R_7 \) is a hydrogen atom, \(R_8 \) is a hydrogen atom, or a halogen atom, \(R_9 \) is a hydrogen atom or a halogen atom, \(R_{10} \) is a hydrogen atom and pharmaceutically acceptable salts thereof. In particular embodiments, the \(R_n \) phenyl, naphthyl, anthracyl, styrly or phenthanthryl group substitution is further defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an alkenoxalkyl group, an ester group, an alkylamino group, a dialkylamino group, a cyclic amino group, a halogen atom and any combination thereof. In preferred embodiments the cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolino group or a morpholino group. In yet other embodiments, the \(R_{11} \) alkyl substitution is selected from the group consisting of a cyclic amino group, furan and thiophene, wherein the cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolino group or a morpholino group.

In other embodiments of the present invention a substituted 4-quinolinamine composition is provided having the structural formula \(B \).

\[
\text{(B)}
\]

The phenyl group can be substituted at \(R_n \), \(R_{10}, R_{11}, R_{12} \) and \(R_{13} \), wherein a substituted phenyl group comprises one or more substitutions selected from the group consisting of an alkyl group, an alkylaminokyl group, an alkoxy group, an alkoxalkyl group, an ester group, an alkenoxalkyl group, a cyclic amino group, a dialkylamino group, a thiophene group, a halogen atom or any combination thereof. \(R_n \) is a substituted or unsubstituted phenyl group, a substituted or unsubstituted anthracyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted 4-quinolinamine composition having the structural formula \(B \).

The phenyl group can be substituted at \(R_n \), \(R_{10}, R_{11}, R_{12} \) and \(R_{13} \), wherein a substituted phenyl group comprises one or more substitutions selected from the group consisting of an alkyl group, an alkoxalkyl group, an ester group, an alkylamino group, a dialkylamino group, a cyclic amino group, a halogen atom or any combination thereof. In yet other embodiments, a cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolino group or a morpholino group.

In other embodiments, the \(R_n \) phenyl, naphthyl, anthracyl, styrly or phenthanthryl group substitution is further defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an alkenoxalkyl group, a cyclic amino group, a halogen atom or any combination thereof. In yet other embodiments, a cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolino group or a morpholino group.

In another embodiment of the invention, a substituted bis-4-quinolinamine composition having the structural formula \(D \) is provided.
The \(R_p \) position on the first 4quinolinoamine is covalently attached to \(R_p \) on the second 4quinolinoamine by linker group \(Y \), wherein linker \(Y \) is an alkyl group, an ester group, an alkoxyalkyl group, an alkylaminooalkyl group, an alkylamino group, a dialkylamino group, amido group, a cyclohexane, an piperazino group or any combination thereof. \(R_p \) is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted styril group or a substituted or unsubstituted phenanthryl group, \(R_p \) is a hydrogen atom, \(R_p \) is a hydrogen atom or halogen atom, \(R_p \) is a hydrogen atom or a halogen atom, \(R_p \) is a hydrogen atom or a halogen atom, \(R_p \) is a hydrogen atom or a halogen atom, \(R_p \) is a hydrogen atom or a halogen atom, \(R_p \) is a hydrogen atom or a halogen atom, \(R_p \) is a hydrogen atom. In certain embodiments, the \(R_p \) phenyl, naphthyl, anthracenyl, styril or phenanthryl group substitution is further defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an alkoxyalkyl group, a hydroxy group, an ester group, an alkylamino group, a cyclic amino group, a halogen atom or any combination thereof. In preferred embodiments, a cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolyl group or a morpholinyl group. In other embodiments, the \(R_p \) phenyl, naphthyl, anthracenyl, styril or phenanthryl group substitution is further defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, a hydroxy group, an alkoxyalkyl group, an ester group, an alkylamino group, a dialkylamino group, a cyclic amino group, a halogen atom or any combination thereof. In particular embodiments, a cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolyl group or a morpholinyl group.

In certain embodiments, a substituted bis-9-aminoacridine composition having the structural formula \(E \) is provided.

The \(R_p \) on the first 9-aminoacridine is covalently attached to \(R_p \) on the second 9-aminoacridine by linker group \(Y \), wherein linker \(Y \) is an alkyl group, an ester group, an ether group, an amido group, a dialkylamino group, amido group, a cyclohexane, an piperazino group or any combination thereof. \(R_p \) is a lower alkyl group, \(R_p \) is a lower alkyl group, \(R_p \) is a hydrogen atom or lower alkyl group, \(R_p \) is a hydrogen atom or a lower alkyl group, \(X \) is a halogen atom, \(X' \) is a halogen atom or pharmaceutically acceptable salts thereof.

In another embodiment, 4quinolinoamine, 9-aminoacridine composition having the structural formula \(F \) is provided.

The \(R_p \) position on the 4quinolinoamine is covalently attached to the \(R_p \) position of the 9-aminoacridine by linker \(Y \), wherein linker \(Y \) is an alkyl group, an ester group, an alkoxyalkyl group, an alkylaminooalkyl group, amido group, a cyclohexanediy1, an piperazino group or any combination thereof. \(R_p \) is a hydrogen atom or lower alkyl group, \(R_p \) is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted styril group or a substituted or unsubstituted phenanthryl group, \(R_p \) is a hydrogen atom, \(R_p \) is a hydrogen atom or halogen atom, \(R_p \) is a hydrogen atom or a halogen atom, \(R_p \) is a hydrogen atom or a halogen atom, \(R_p \) is a hydrogen atom or a halogen atom, \(R_p \) is a hydrogen atom or a halogen atom, \(R_p \) is a hydrogen atom or a halogen atom, \(R_p \) is a hydrogen atom or a halogen atom, \(R_p \) is a hydrogen atom or a halogen atom.

In particular embodiments, the \(R_p \) phenyl, naphthyl, anthracenyl, styril or phenanthryl group substitution is further defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an alkoxyalkyl group, an ester group, an alkylamino group, a dialkylamino group, a cyclic amino group, a halogen atom or any combination thereof. In certain embodiments, a cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolyl group or a morpholinyl group.

It is also contemplated in the present invention that various other substitutions, such as hydroxy groups and various substituted alkyl groups can be made at the \(R_p \) and \(R_p \) positions of the substituted 4quinolinoamine.

The term “lower alkyl” in the context of the present invention represents straight and branched alkyl groups up to 7 carbon atoms. As used herein the specification, “a” or “an” may mean one or more. As used herein in the claim(s), when used in conjunction with the word “comprising,” the words “a” or “an” may mean one or more than one. As used herein “another” may mean at least a second or more.

Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings form part of the present specification and are included to further demonstrate certain
aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.

FIGS. 1A–1P. Various analogs with some inhibitory activity against CpG ODN immunostimulation.

FIG. 2. Structures of analogs used. The numbers are those in the first column of Table 9.

FIG. 3. Uptake of analogs by cells. WEHI 231 cells were incubated with fluorescent analogs (0.1–20 μM) for 30 min. The concentration of the analogs in the supernatant medium (free) and cellular pellet (bound) was then determined as described in Methods.

FIG. 4. Efflux of analog. WEHI 231 cells were incubated with 20 μM analog for 30 min. The cells were pelleted, resuspended in 15 ml medium, and incubated at 37° C. At the time indicated, the cellular concentration of the analog was determined by fluorescence. Note that the efflux of analog is rapid.

FIG. 5. Monensin: Cells were incubated with 1 μM quinacrine 17 or compound 227 for 30 min. Monensin at the indicated concentration was added either at the same time as the analog or at the end of the 30 min incubation, and the cellular concentration of the analog was determined by fluorescence.

FIG. 6. Influence of chloroquine on CpG-ODN uptake: Cells were incubated with 5 μg/ml Texas Red CpG-ODN 1760 and indicated concentration of chloroquine 15 for the time indicated. The cells were then washed three times, and fixed. The cellular uptake of fluorescent CpG-ODN was estimated by flow cytometry. Note that chloroquine has no significant influence on CpG-ODN uptake.

FIG. 7. pH of the ODN containing compartment: WEHI 231 cells were incubated with fluorescein-labeled CpG-ODN 1760. After washing the cells were resuspended, and either 10 μM monensin or analogs at the indicated concentration were added. 5–10 min later fluorescence was measured by flow cytometry. The change in fluorescence was converted to pH units by reference to a standard curve of fluorescence of fluorescein-labeled ODN 1760 as pH, shown on the right hand scale.

FIG. 8. Dimeristoylphosphatidylethanolamine, with number assignments used in Table 11 and FIG. 10.

FIG. 9A. NOESY spectra of compound 91 bound to phosphatidylethanolamine vesicles.

FIG. 9B. Aliphatic region of the same spectra. See Table 11 for assignments, and text for details and interpretation.

FIG. 10A. Scheme 2 as described in Example 9.

FIG. 10B. Scheme 3 as described in Example 9.

FIG. 11. Scheme 4 as described in Example 10.

FIGS. 12A–E. Additional analogs with some inhibitory activity against CpG ODN immunostimulation. The level of activity is presented for each compound, and the compounds are generally presented in order of decreasing activity.

DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The present invention is directed to therapeutic compositions and methods for inhibiting stimulation of the immune system using chloroquine, its structural analogs and derivatives, or other weak bases. These compounds and methods have application in the treatment of the following: autoimmune diseases and phenomena, transplantation rejection responses, sepsis, and other disorders affecting the immune system.

I. Treatment Uses

A. Autoimmune Diseases and Phenomena

There are numerous conditions that qualify as an autoimmune disease. They occur either when the immune system malfunctions and the lymphocytes become sensitized against self tissue cells or when self tissue cells exhibit non-self characteristics such as expression of different antigens. Some of the most common disorders are listed in Table 1, such as rheumatoid arthritis and lupus erythematosus. Other autoimmune diseases include: Alopepecia Areata, Acquired Hemophilia, Ankylosing Spondylitis, Antiphospholipid Syndrome, Autoimmune Hepatitis, Autoimmune Hemolytic Anemia, Behcet’s Disease, Cardiomyopathy, Celiac Sprue Dermatitis, Chronic Fatigue Immune Dysfunction Syndrome (CFIDS), Chronic Inflammatory Demyelinating Polynyoneuropathy, Churg-Strauss Syndrome, Cerebral Pemphigoid, CREST Syndrome, Cold Agglutinin Disease, Discoid Lupus, Essential Mixed Cryoglobulinemia, Fibromyalgia, Fibrositis, Guillain-Barre, Idiopathic Pulmonary Fibrosis, Idiopathic Thrombocytopenic Purpura, IgA Nephropathy, Juvenile Arthritis, Lichen Planus, Multiple Sclerosis, Myasthenia Gravis, Polyrteritis Nodosa, Polymyositis, Polyarteritis Nodosa, Polyglandular Syndromes, Dermatomyositis, Primary Agranulobuliminemia, Primary Biliary Cirrhosis, Psoriasis, Raynaud’s Phenomena, Reiter’s Syndrome, Sarcoidosis, Still’s Syndrome, Takayasu Arthritis, Temporal Arteritis/Giant Cell Arteritis, Ulcerative Colitis, Uveitis, Vasculitis, and Vitiligo.

<table>
<thead>
<tr>
<th>TABLE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selected Autoimmune Diseases and the Targets of Their Antibodies</td>
</tr>
<tr>
<td>Target of Antibody</td>
</tr>
<tr>
<td>Systemic (Non-Organ-Specific) Diseases</td>
</tr>
<tr>
<td>Goodpasture’s Syndrome</td>
</tr>
<tr>
<td>Mixed Connective Tissue Disease</td>
</tr>
<tr>
<td>Polymyositis</td>
</tr>
<tr>
<td>Rheumatic Fever</td>
</tr>
<tr>
<td>Rheumatoid Arthritis</td>
</tr>
<tr>
<td>Scleroderma</td>
</tr>
<tr>
<td>Selected Autoimmune Diseases and the Targets of Their Antibodies</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Target of Antibody</td>
</tr>
<tr>
<td>Sjögren’s Syndrome</td>
</tr>
<tr>
<td>γ-Globulins, SS-A (Ro), SS-B (La)</td>
</tr>
<tr>
<td>Systemic Lupus Erythematosus</td>
</tr>
<tr>
<td>DNA, ribonucleoproteins, histones, nuclear antigens</td>
</tr>
<tr>
<td>** Wegener’s granulomatosis**</td>
</tr>
<tr>
<td>Neutrophils</td>
</tr>
<tr>
<td>Organ-Specific Diseases</td>
</tr>
<tr>
<td>Adrenal cells</td>
</tr>
<tr>
<td>Allergic Rhinitis, Asthma, and autoimmune abnormalities</td>
</tr>
<tr>
<td>β₂-adrenergic receptors</td>
</tr>
<tr>
<td>Autoimmune hemolytic anemia</td>
</tr>
<tr>
<td>Erythrocytes</td>
</tr>
<tr>
<td>Acquired Hemophelia</td>
</tr>
<tr>
<td>Clotting Factor VIII</td>
</tr>
<tr>
<td>Bullous Pemphigoid</td>
</tr>
<tr>
<td>Basement membrane zone of skin and mucosa</td>
</tr>
<tr>
<td>Chronic Active Hepatitis</td>
</tr>
<tr>
<td>Nuclei of hepatocytes</td>
</tr>
<tr>
<td>Crohn’s Disease</td>
</tr>
<tr>
<td>Lymphocytes, plasma cells, eosinophils</td>
</tr>
<tr>
<td>Glomerulonephritis</td>
</tr>
<tr>
<td>Glomeruli</td>
</tr>
<tr>
<td>Graves’ Disease</td>
</tr>
<tr>
<td>Thyroid-stimulating hormone (TSH) receptor</td>
</tr>
<tr>
<td>Hashimoto’s Thyroiditis</td>
</tr>
<tr>
<td>Thyroglobulin, TSH receptor</td>
</tr>
<tr>
<td>Idiopathic Hypoparathyroidism</td>
</tr>
<tr>
<td>Panethyroid cells</td>
</tr>
<tr>
<td>Idiopathic Neutropenia</td>
</tr>
<tr>
<td>Neutrophils</td>
</tr>
<tr>
<td>Idiopathic Thrombocytopenic Purpura</td>
</tr>
<tr>
<td>Platelets</td>
</tr>
<tr>
<td>Insulin-resistant Diabetes with acanthosis nigricans</td>
</tr>
<tr>
<td>Insulin receptor</td>
</tr>
<tr>
<td>Insulin-resistant Diabetes with ataxia-telangiectasia</td>
</tr>
<tr>
<td>Insulin receptor</td>
</tr>
<tr>
<td>Juvenile Insulin-dependent Diabetes</td>
</tr>
<tr>
<td>Pancreatic islet cells</td>
</tr>
<tr>
<td>Ménétrie’s Disease</td>
</tr>
<tr>
<td>Type II collagen</td>
</tr>
<tr>
<td>Myasthenia Gravis</td>
</tr>
<tr>
<td>Acetylcholine receptors</td>
</tr>
<tr>
<td>Osteosclerosis</td>
</tr>
<tr>
<td>Type II collagen</td>
</tr>
<tr>
<td>Pemphigus</td>
</tr>
<tr>
<td>Intercellular substance of skin and mucosa</td>
</tr>
<tr>
<td>Pernicious Anemia</td>
</tr>
<tr>
<td>Gastric parietal cells, vitamin B₁₂, binding</td>
</tr>
<tr>
<td>site of intrinsic factor</td>
</tr>
<tr>
<td>Premature Ovarian Failure</td>
</tr>
<tr>
<td>Interstitial cells, corpus luteum cells</td>
</tr>
<tr>
<td>Primary Biliary Cirrhosis</td>
</tr>
<tr>
<td>Mitochondria</td>
</tr>
<tr>
<td>Spontaneous infertility</td>
</tr>
<tr>
<td>Sperm cells</td>
</tr>
</tbody>
</table>

The present invention is understood to include compounds that act to inhibit an immune response, and thus serve to allay the progression of autoimmune diseases and phenomena. These compounds comprise chloroquine and various analogs, such as substituted versions of 4-quinolamine, bis-4-quinolamine, bis-9-aminoacridine, derivatives thereof, and other weak bases. Furthermore, methods of treating autoimmune diseases using these compounds are also contemplated.

In addition to treating autoimmune diseases, the compounds and methods of the present invention are useful generally to inhibit stimulation of the immune system. Treatment and prevention of autoimmune phenomena (caused for example by myocardial infarction, sepsis, and transplantation rejections and graft-versus-host disease are also within the scope of the present invention.

B. Transplantation Rejections and Graft-Versus-Host Disease

Transplant rejections occur as a consequence of an immune response against the transplanted organ, tissue, or cells. Antigens on the surface of the transplanted material act to signal that it is foreign, and a response ensues. Conversely, GVHD occurs when the graft mounts an immune response against the host, which can happen following a bone marrow transplant. Lymphocytes in the donor marrow produce antibodies against the host and attempts to destroy cells of the host. It occurs in approximately 40% of patients receiving an allogeneic transplant.

Because immunostimulation occurs in both of these situations, the compounds and methods of the present invention can be used as treatments to inhibit an immune response and thus alleviate or eliminate their destructive outcomes.

C. Sepsis

Sepsis can be caused by many different infectious agents and microbial organisms that may or may not be involved directly with bloodstream infection. It is a condition characterized by an inflammatory response. The term “sepsis” as used herein broadly refers to conditions known as sepsis, septic shock, systemic inflammatory response syndrome (SIRS), and multiple organ dysfunction syndrome (MODS). Because these conditions are caused by an inflammatory response of the immune system, the compounds and methods of the present invention can be employed as preventative and therapeutic treatments to inhibit an immune response and reduce the incidence of sepsis.

D. Chloroquine, Chloroquine Analogs, and Other Weak Bases

Chloroquine and a number of its structural analogs specifically and powerfully inhibit the immunostimulatory effect of unmethylated CpG motifs at nanomolar concentration. A large variety of analogs have been constructed, many of which possess some inhibitory effect on the immunostimulatory capacity of CpG-motifs (see FIG. 1). Both chloroquine and quinacrine as well as analogs bind to duplex DNA by intercalation in a relatively sequence-nonspecific fashion (Wilson, 1998). Compounds with this property also have the ability to bind to DNA less avidly than quinacrine and other related tricyclic systems. The two charged groups on chloroquine and quinacrine significantly enhance their binding to
DNA, and both compounds bind to duplex DNA much more tightly at low salt concentrations that at higher salt.

Chloroquine, hydroxychloroquine and quinacrine also are known to induce remissions of systemic lupus erythematosus and rheumatoid arthritis by an unknown mechanism. These drugs bind to DNA by intercalation. They are weak bases and partition into acidic vesicles. At high concentrations, chloroquine can collapse the pH gradient and disrupt the action of endosomal lytic enzymes and the trafficking of receptors.

The compounds of the present invention include substituted 4-quinolinamines (Structures A, B and C), substituted bis-4-quinolinamines (Structure D), substituted bis-9-aminoacridines (Structure E) and substituted 4-quinolinamines, substituted 9-aminoacridines combinations (Structure F).

In certain embodiments of the present invention, substituted 4-quinolinamines comprise substituted or unsubstituted alkyl, alkenyl or alkynyl secondary or tertiary amine groups at the 4 position (Structure A). Substituted 4-quinolinamines also may comprise a substituted or unsubstituted phenyl group (Structure B) directly attached at the 4-amine position of the quinolinamine, or can be spatially distanced from the quinolinamine 4-amine position by a lower alkyl group (Structure C). In one preferred embodiment, a hydroxy group is attached to a substituted phenyl group. Contemplated also are one or more substitutions at phenyl group positions \(R_{9}, R_{10}, R_{11}, R_{12} \) and \(R_{13} \) of Structures B and C. In preferred embodiments, the \(R_{4} \) group of the 4-quinolinamine is a hydrogen atom, as opposed to larger alkyl groups. The \(R_{4} \) position of the substituted 4-quinolinamine compounds of the invention can be a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, an substituted or unsubstituted anthracyl group, a substituted or unsubstituted phenanthryl group or a substituted or unsubstituted styril group. Preferably, larger aromatic groups are substituted at the \(R_{2} \) position, which has been demonstrated to increase 4-quinolinamine activity.

As will be understood by those of skill in the art, small modification and changes may be made in the structure of the described substituted 4-quinolinamines, bis-4-quinolinamines, bis-9-aminoacridines and 4-quinolinamines, 9-aminoacridines combinations that inhibits immunostimulation. Furthermore, certain functional groups may be substituted for other functional groups without appreciable loss of immunosuppression. Since it is the inhibitory capacity and nature of an analog that defines its activity, certain chemical substitutions can be made in the structure and nevertheless obtain an analog with like properties. It is thus contemplated by the inventor that various changes may be made in an analog without appreciable loss of its immunosuppressive utility or activity.

II. Inhibitors of Immunostimulation

The invention involves compositions and methods that effect inhibition of immunostimulation. As used herein, the terms “inhibition of immunostimulation” or “to inhibit immunostimulation” refer to an ability to suppress or reduce, even slightly, an immune response. An immune response can be evidenced by a number of characteristics including, but not limited to, production of lymphokines or cytokines, release of lymphokines or cytokines, proliferation of lymphocytes, activation of lymphocytes, complement fixing, induction of the complement cascade, production of antibodies, release of antibodies, release of inflammatory mediators, and binding of T cells to a T-cell receptor.
Confocal microscopy revealed analogs concentrating in large peripheral organelles. CpG-ODN is taken up into acidified, small, perinuclear vesicles by cells, which uptake is believed to be necessary for immunostimulatory activity. This cellular uptake of fluorescent CpG-ODN is not inhibited by the analogs. The pH of intracellular CpG-ODN (6.4) was not affected by analogs at the concentration required for inhibition, but pH was increased by higher concentrations. UV-spectroscopy revealed no binding of analogs to CpG-ODN. Nuclear Overhauser effect spectroscopy revealed that an analog bound to phosphatidylinositol vesicles, with the ring structure of the analog buried within the lipid and the side-chain facing the aqueous environment. The conclusion is that the analogs do not inhibit the action of CpG-ODN by preventing the uptake or acidification of CpG-ODN.

B. Linkers/Coupling Agents

If desired, dimers or multimers of the chloroquine analogs may be joined via a biologically-releasable bond, such as a selectively-cleavable linker or amino acid sequence. For example, peptide linkers that include a cleavage site for an enzyme preferentially located or active within a tumor environment are contemplated. Exemplary forms of such peptide linkers are those that are cleaved by urokinase, plasmin, thrombin, Factor IXa, Factor Xa, or a metalloproteinase, such as collagenase, gelatinase, or stromelysin.

Additionally, while numerous types of disulfide-bond containing linkers are known which can successfully be employed to conjugate the toxin moiety with the targeting agent, certain linkers will generally be preferred over other linkers, based on differing pharmacologic characteristics and capabilities. For example, linkers that contain a disulfide bond that is sterically "hindered" are to be preferred, due to their greater stability in vivo, thus preventing release of the toxin moiety prior to binding at the site of action.

Cross-linking reagents are used to form molecular bridges that tie together functional groups of two different molecules, e.g., a stabilizing and coagulating agent. However, it is contemplated that dimers or multimers of the same analog can be made or that heteromeric complexes comprised of different analogs can be created. To link two different compounds in a step-wise manner, heterobifunctional cross-linkers can be used that eliminate unwanted homopolymer formation.

<table>
<thead>
<tr>
<th>Linker</th>
<th>Reactive Toward</th>
<th>Advantages and Applications</th>
<th>Spacer Arm Length/after cross-linking</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMPT</td>
<td>Primary amines</td>
<td>Greater stability</td>
<td>11.2 A</td>
</tr>
<tr>
<td></td>
<td>Sulphydryls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPDIP</td>
<td>Primary amines</td>
<td>Thiolation</td>
<td>6.8 A</td>
</tr>
<tr>
<td></td>
<td>Sulphydryls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC-SPDP</td>
<td>Primary amines</td>
<td>Cleavable cross-linking</td>
<td>15.6 A</td>
</tr>
<tr>
<td></td>
<td>Sulphydryls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulf-1C-LC-SPDP</td>
<td>Primary amines</td>
<td>Extended spacer arm</td>
<td>15.6 A</td>
</tr>
<tr>
<td></td>
<td>Sulphydryls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMCC</td>
<td>Primary amines</td>
<td>Water-soluble</td>
<td>11.6 A</td>
</tr>
<tr>
<td></td>
<td>Sulphydryls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulf-1C-SMCC</td>
<td>Primary amines</td>
<td>Enzyme-antibody conjugation</td>
<td>11.6 A</td>
</tr>
<tr>
<td></td>
<td>Sulphydryls</td>
<td>Stable maleimide reactive group</td>
<td></td>
</tr>
<tr>
<td>MBS</td>
<td>Primary amines</td>
<td>Enzyme-antibody conjugation</td>
<td>9.9 A</td>
</tr>
<tr>
<td></td>
<td>Sulphydryls</td>
<td>Hapten-carrier protein conjugation</td>
<td></td>
</tr>
<tr>
<td>Sulf-MBS</td>
<td>Primary amines</td>
<td>Water-soluble</td>
<td>9.9 A</td>
</tr>
<tr>
<td></td>
<td>Sulphydryls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>linker</td>
<td>Reactive Toward</td>
<td>Advantages and Applications</td>
<td>Spacer/Arm Length after cross-linking</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>SIAB</td>
<td>Primary amines</td>
<td>Enzyme-antibody conjugation</td>
<td>10.6 A</td>
</tr>
<tr>
<td>Solfo-SIAB</td>
<td>Sulphydryls</td>
<td>Water-soluble</td>
<td>10.6 A</td>
</tr>
<tr>
<td>SMPB</td>
<td>Primary amines</td>
<td>Extended spacer arm</td>
<td>14.5 A</td>
</tr>
<tr>
<td>Solfo-SMPB</td>
<td>Sulphydryls</td>
<td>Enzyme-antibody conjugation</td>
<td>14.5 A</td>
</tr>
<tr>
<td>EDC/Sulfo-NHS</td>
<td>Primary amines</td>
<td>Hapten-Carrier conjugation</td>
<td>0</td>
</tr>
<tr>
<td>ABH</td>
<td>Carboxyl groups</td>
<td>Reacts with sugar groups</td>
<td>11.9 A</td>
</tr>
<tr>
<td></td>
<td>Nonselective</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An exemplary hetero-bifunctional cross-linker contains two reactive groups: one reacting with primary amine group (e.g., N-hydroxy succinimide) and the other reacting with a thiol group (e.g., pyridyl disulfide, maleimides, halogens, etc.). Through the primary amine reactive group, the cross-linker may react with the lysine residue(s) of one protein (e.g., the selected antibody or fragment) and through the thiol reactive group, the cross-linker, already tied up to the first protein, reacts with the cysteine residue (free sulphydryl group) of the other protein (e.g., the selective agent).

It is preferred that a cross-linker having reasonable stability in blood will be employed. Numerous types of sulphydryl bonding containing linkers are known that can be successfully employed to conjugate targeting and therapeutic/preventative agents. Linkers that contain a disulfide bond that is sterically hindered may prove to give greater stability in vivo, preventing release of the targeting peptide prior to reaching the site of action. These linkers are thus one group of linking agents.

Another cross-linking reagent for use in immunotoxins is SMPT, which is a bifunctional cross-linker containing a disulfide bond that is “sterically hindered” by an adjacent benzene ring and methyl groups. It is believed that steric hindrance of the disulfide bond serves a function of protecting the bond from attack by thiolate anions such as glutathione which can be present in tissues and blood, and thereby help in preventing decoupling of the conjugate prior to the delivery of the attached agent to the target site.

The SMPT cross-linking reagent, as with many other known cross-linking reagents, lends the ability to cross-link functional groups such as the SH of cysteine or primary amines (e.g., the epsilon amino group of lysine). Another possible type of cross-linking linker includes the heterobifunctional photoreactive phenylazides containing a cleavable disulfide bond such as sulfosuccinimimidyl-2-(p-azido salicylamido) ethyl-1,3-dithiopropionate. The N-hydroxy succinimidyld group reacts with primary amino groups and the phenylazide (upon photolysis) reacts non-selectively with any amino acid residue.

In addition to hindered cross-linkers, non-hindered linkers also can be employed in accordance herewith. Other useful cross-linkers, not considered to contain or generate a protected disulfide, include SADA, SPDP and 2-iminothiolane (Wawrzynczak & Thorpe, 1987). The use of such cross-linkers is well understood in the art.

In preferred embodiments utilizing linkers, flexible linkers are employed to create conjugates.

Once conjugated, the analog generally will be purified to separate the conjugate from unconjugated analog or coagulants and from other contaminants. A large number of purification techniques are available for use in providing conjugates of a sufficient degree of purity to render them clinically useful. Purification methods based upon size separation, such as gel filtration, gel permeation or high performance liquid chromatography, will generally be of most use.

C. Combined Therapy with Analogs and Traditional Treatment In many therapies, it will be advantageous to provide more than one functional therapeutic. Such “combined” therapies may have particular import in treating aspects of autoimmune diseases/phenomena and tissue/organ reactions. Thus, one aspect of the present invention utilizes at least one chloroquine analog compound for treatment of immunostimulation, while a second therapy also is provided.

The non-targeted treatment may precede or follow the targeted agent treatment by intervals ranging from minutes to weeks. In embodiments where the other agent and analogs are applied separately to the cell, one would generally ensure that a significant period of time did not expire between the time of each delivery, such that the agent and analog would still be able to exert an advantageously combined effect on the cell. In such instances, it is contemplated that one would contact the cell with both modalities within about 12–24 hours of each other and, more preferably, within about 6–12 hours of each other, with a delay time of only about 12 hours being most preferred. In some situations, it may be desirable to extend the time period for treatment significantly, however, where several days (2, 3, 4, 5, 6 or 7) to several weeks (1, 2, 3, 4, 5, 6, 7 or 8) lapse between the respective administrations.

It also is conceivable that more than one administration of either agent will be desired. Various combinations may be employed, where the analog is “A” and the non-analog is “B”, as exemplified below:

- A/B/A B/A B/B/A A/AB B/A A/B B/B A/B/ A/B
- A/B/B A/B/B A/B/B A/B/B A/B/B A/B/B B/B/B A
- A/A/AB B/AA/AB A/AB/A A/AB/B B/B/B/AB
- Other combinations are contemplated. For example, in the context of the present invention, it is contemplated that the present invention’s compounds and methods of inhibiting immunostimulation could be used in conjunction with non-analog agents, including steroidal treatment. To inhibit
immunostimulation using the methods and compositions of the present invention, one would generally contact a “target” cell with at least one analog and at least one other agent; these compositions would be provided in a combined amount effective to achieve these goals. This process may involve contacting the cells with an analog and the agent(s) or factor(s) at the same time. This may be achieved by contacting the cell with a single composition or pharmacological formulation that includes both agents, or by contacting the cell with two distinct compositions or formulations, at the same time, wherein one composition includes an analog and the other includes the agent.

Agents or factors suitable for use in a combined therapy are any chemical compound or treatment method with immunosuppressive activity; therefore, the term “immunosuppressive agent” that is used throughout this application refers to an agent with immunosuppressive activity. Immunosuppressive agents such as azathioprine and cyclosporin are employed in transplant procedures to treat and prevent rejections. Compounds or methods used to treat GVHD include corticosteroids such as prednisone, antithymocyte globulins, cyclosporine A, cyclophosphamide, and methotrexate. Thalidomide is occasionally employed in combination with one of the previously mentioned corticosteroids to treat GVHD, and it is contemplated that thalidomide could also be used in combination with the compounds of the present invention. Similarly, patients with autoimmune diseases are administered immunosuppressant medications such as corticosteroids, cyclophosphamide, and azathioprine.

In the treatment of sepsis, other agents or compounds that would be useful for use in a combination therapy with the compounds and methods of the claimed invention include antibiotics such as cephalosporin, fluoroquinolones, penicillins, carbenpenems, ß-lactams-ß-lactamase inhibitors, ampicillin, vancomycin, metronidazole, clindamycin, and trovafloxacin, as well as with corticosteroids, vasopressor agents, vasocostrictors, and beta agonists.

The skilled artisan is directed to “Remington’s Pharmaceutical Sciences” 15th Edition, chapter 33, in particular pages 624–652. Some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject. Moreover, for human administration, preparations should meet sterility, pyrogenicity, and general safety and purity standards as required by FDA Office of Biologics standards.

The inventors propose that local, regional delivery of at least one analog will be a very efficient method for delivering a therapeutically effective compound to counteract the clinical disease. Similarly, the immunosuppressive agent may be directed to a particular, affected region of the subject’s body. Alternatively, systemic delivery of compounds and/or the agents may be appropriate in certain circumstances, for example, where extensive tissue damage has occurred.

III. Therapeutic Formulations and Routes of Administration

The present invention discloses the compositions and methods involving a CpG analog that inhibits stimulation of the immune system. Where clinical applications are contemplated, it will be necessary to prepare the compositions of the present invention as pharmaceutical compositions, i.e., in a form appropriate for in vivo applications. Generally, this will entail preparing compositions that are essentially free of pyrogens, as well as other impurities that could be harmful to humans.

A. Formulations

The compounds of the present invention may be operationally linked or attached to a selective agent or compound. Different and varied therapeutic compounds are illustrated, which include chloroquinines and its analogs and derivatives. Liposomes and carrier molecules containing any of the foregoing are also contemplated.

One will generally desire to employ appropriate salts and buffers to render compositions stable and allow for uptake by target cells. Buffers also will be employed when recombinant cells are introduced into a patient. Aqueous compositions of the present invention comprise an effective amount of the vector to cells, dissolved or dispersed in a pharmaceutically acceptable carrier or aqueous medium. Such compositions also are referred to as inocula. The phrase “pharmaceutically or pharmacologically acceptable” refer to molecular entities and compositions that do not produce adverse, allergic, or other untoward reactions when administered to an animal or a human. As used herein, “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except as specifically illustrated as incompatible with the vectors or cells of the present invention, its use in therapeutic compositions is contemplated. Supplementary active ingredients also can be incorporated into the compositions.

The active compositions of the present invention include classic pharmaceutical preparations. Administration of these compositions according to the present invention will be via any common route so long as the target tissue is available via that route. This includes oral, nasal, buccal, rectal, vaginal or topical. Alternatively, administration may be by enteral, intradermal, subcutaneous, intramuscular, intraperitoneal or intravenous injection. Such compositions would normally be administered as pharmaceutically acceptable compositions, described supra.

The active compounds may be administered via any suitable route, including parenterally or by injection or inhalation. Solutions of the active compounds as free base or pharmaceutically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions also can be prepared in glycerol, liquid polylethylene glycols, and mixtures thereof. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polylethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial agents, such as parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example,
sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

As used herein, “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents and of surfactant active is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutically acceptable compositions is contemplated. Supplementary active ingredients also can be incorporated into the compositions.

The compositions of the present invention may be formulated in a neutral or salt form. Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups also can be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isoproplamine, trimethylamine, histidine, proline and the like.

Compositions may be conventionally administered parenterally, by injection, for example, either subcutaneously or intramuscularly. Additional formulations which are suitable for other modes of administration include suppositories and, in some cases, oral formulations. For suppositories, traditional binders and carriers may include, for example, polaxylene glycols or triglycerides: such suppositories may be formed from mixtures containing the active ingredient in the range of about 0.5% to about 10%, preferably about 1 to about 2%. Oral formulations include such normally employed excipients as, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate and the like. These compositions take the form of solutions, suspensions, tablets, pills, capsules, sustained release formulations or powders and contain about 10 to about 95% of active ingredient, preferably about 25 to about 70%.

1. Liposomes as Carriers of Selected Compounds

In one embodiment of the invention, the selected compound of the present invention may be entrapped in a liposome. Liposomes are vesicular structures characterized by a phospholipid bilayer membrane and an inner aqueous medium. Multilamellar liposomes have multiple lipid layers separable by aqueous medium. They form spontaneously when phospholipids are suspended in an excess of aqueous solution. The lipid components undergo self-rearrangement before the formation of closed structures and entrap water and dissolved solutes between the lipid bilayers (Ghosh and Bachhawat, 1991). Also contemplated are catonic lipid-nucleic acid complexes, such as lipofectamine-nucleic acid complexes.

“Liposome” is a generic term encompassing a variety of single and multilamellar lipid vehicles formed by the generation of enclosed lipid bilayers. Phospholipids are used for preparing the liposomes according to the present invention and can carry a net positive charge, a net negative charge or are neutral. Dicetyl phosphate can be employed to confer a negative charge on the liposomes, and stearylamine can be used to confer a positive charge size of the liposomes.

Lipids suitable for use according to the present invention can be obtained from commercial sources. For example, dimyristyl phosphatidylcholine (“DMPC”) can be obtained from Sigma Chemical Co., diethyl phosphate (“DCP”) is obtained from K & K Laboratories (Plainview, N.Y.); cholesterol (“Chol”) is obtained from Calbiochem-Behring; dimyristyl phosphatidylglycerol (“DMPG”) and other lipids may be obtained from Avanti Polar Lipids, Inc. (Birmingham, Ala.). Stock solutions of lipids in chloroform, chloroform/methanol or t-butanol can be stored at about –20°C. Prefers is well known in the art since it is more readily evaporated than methanol.

Phospholipids from natural sources, such as egg or soybean phosphatidylcholine, brain phosphatidic acid, brain or plant phosphatidylinositol, heart cardiolipin and plant or bacterial phosphatidylethanolamine are preferably not used as the primary phospholipid, i.e., constituting 50% or more of the total phospholipid composition, because of the instability and leakiness of the resulting liposomes.

Liposomes used according to the present invention can be made by different methods. The size of liposomes varies depending on the method of synthesis. A liposome suspended in an aqueous solution is generally in the shape of a spherical vesicle, having one or more concentric layers of lipid bilayer molecules. Each layer consists of a parallel array of molecules represented by the formula XY, wherein X is a hydrophilic moiety and Y is a hydrophobic moiety. In aqueous suspension, the concentric layers are arranged such that the hydrophilic moieties tend to remain in contact with an aqueous phase and the hydrophobic regions tend to self-associate. For example, when aqueous phases are present both within and without the liposome, the lipid molecules will form a bilayer, known as a lamella, of the arrangement XY-YY.

Liposomes within the scope of the present invention can be prepared in accordance with known laboratory techniques. In one preferred embodiment, liposomes are prepared by mixing liposomal lipids, in a solvent in a container, e.g., a glass, pear-shaped flask. The container should have a volume ten-times greater than the volume of the expected suspension of liposomes. Using a rotary evaporator, the solvent is removed at approximately 40°C under negative pressure. The solvent normally is removed within about 5 min to 2 hours, depending on the desired volume of the liposomes. The composition can be dried further in a desiccator under vacuum. The dried lipids generally are discarded after about 1 week because of a tendency to deteriorate with time.

Dried lipids can be hydrated at approximately 25–50 mM phospholipid in sterile, pyrogen-free water by shaking until all the lipid film is resuspended. The aqueous liposomes can be then separated into aliquots and placed in a vial, lyophilized and sealed under vacuum.

In the alternative, liposomes can be prepared in accordance with other known laboratory procedures: the method
of Bangham et al. (1965), the contents of which are incorporated herein by reference; the method of Gregoriadis, as described in Drug Carriers in Biology and Medicine, G. Gregoriadis ed. (1979) pp. 287-341, the contents of which are incorporated herein by reference; the method of Deamer and Uster (1983), the contents of which are incorporated by reference; and the reverse-phase evaporation method as described by Szoka and Papahadjopoulos (1978). The aforementioned methods differ in their respective abilities to entrap aqueous material and their respective aqueous space-to-lipid ratios.

The lipidic or lyophilized liposomes prepared as described above may be reconstituted in a solution of nucleic acid and diluted to an appropriate concentration with an suitable solvent, e.g., DPBS. The mixture is then vigorously shaken in a vortex mixer. Unencapsulated nucleic acid is removed by centrifugation at 29,000g and the liposomal pellets washed. The washed liposomes are resuspended at an appropriate total phospholipid concentration, e.g., about 50-200 mM. The amount of nucleic acid encapsulated can be determined in accordance with standard methods. After determination of the amount of nucleic acid encapsulated in the liposome preparation, the liposomes may be diluted to appropriate concentration and stored at 4°C until use.

In another embodiment, the lipid dioleoylphosphatidylethanolamine is employed. Nuclease-resistant oligonucleotides were mixed with lipids in the presence of excess t-butanol. The mixture was vortexed before being frozen in an acetone/dry ice bath. The frozen mixture was lyophilized and hydrated with Heps-buffered saline (1 mM Hepes, 10 mM NaCl, pH 7.5) overnight, and then the liposomes were sonicated in a bath type sonicator for 10 to 15 min. The size of the liposomal oligonucleotides typically ranged between 200-300 nm in diameter as determined by the submicron particle sizer autodilute model 370 (Nicomp, Santa Barbara, Calif.).

Liposomes are formed from phospholipids that are dispersed in an aqueous medium and spontaneously form multilamellar concentric bilayer vesicles. Liposomes bear many resemblances to cellular membranes and are contemplated for use in connection with the present invention as drug delivery agents.

The formation and use of liposomes is generally known to those of skill in the art. For example, several U.S. Patents concern the preparation and use of liposomes that encapsulate biologically active materials, e.g., U.S. Pat. Nos. 4,485,054; 4,089,801: 4,234,871; and 4,016,100; each incorporated herein by reference. Mostly, it is contemplated that intravenous injection of liposomal preparations would be used, but pessaries are also possible.

B. Routes of Administration

Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms such as injectable solutions, drug release capsules and the like. For parenteral administration in an aqueous solution, for example, the solution should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration.

1. Nasal Administration

One may also use nasal solutions or sprays, aerosols or inhalants in the present invention. Nasal solutions are usually aqueous solutions designed to be administered to the nasal passages in drops or sprays. Nasal solutions are prepared so that they are similar in many respects to nasal secretions, so that normal ciliary action is maintained. Thus, the aqueous nasal solutions usually are isotonic and slightly buffered to maintain a pH of 5.5 to 6.5.

In addition, antimicrobial preservatives, similar to those used in ophthalmic preparations, and appropriate drug stabilizers, if required, may be included in the formulation. Various commercial nasal preparations are known and include, for example, antibiotics and antihistamines and are used for asthma prophylaxis.

2. Oral Administration

In certain embodiments, active compounds may be administered orally. This is contemplated to be useful as many substances contained in tablets designed for oral use are absorbed by mucosal epithelia along the gastrointestinal tract.

Also, if desired, the peptides, antibodies and other agents may be rendered resistant, or partially resistant, to proteolysis by digestive enzymes. Such compounds are contemplated to include chemically designed or modified agents; deuterorotary peptides; and peptide and liposomal formulations in time release capsules to avoid peptidase and lipase degradation.

For oral administration, the active compounds may be administered, for example, with an inert diluent or with an assimilable edible carrier, or they may be enclosed in hard or soft shell gelatin capsule, or compressed into tablets, or incorporated directly with the food of the diet. For oral therapeutic administration, the active compounds may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like.

The oral compositions and preparations should contain at least 0.1% of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2 to about 60% of the weight of the unit. The amount of active compounds in such therapeutically useful compositions is such that a suitable dosage will be obtained.

The tablets, troches, pills, capsules and the like may also contain the following: a binder, as gum tragacanth, acacia, cornstarch, or gelatin; excipients, such as dicalcium phosphate; a disintegrating agent, such as corn starch, potato starch, algic acid and the like; a lubricant, such as magnesium stearate; and a sweetening agent, such as sucrose, lactose or saccharin may be added or a flavoring agent, such as peppermint, oil of wintergreen, or cherry flavoring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier.

Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills, or capsules may be coated with shellac, sugar or both. A syrup of elixir may contain the active compounds sucrose as a sweetening agent methyl and propylyparabens as preservatives, a dye and flavoring, such as cherry or orange flavor. Of course, any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts employed. In addition, the active compounds may be incorporated into sustained-release preparations and formulations.

Upon formulation, the compounds will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms, as described herein.

3. Pessaries

Additional formulations which are suitable for other modes of administration include vaginal suppositories and pessaries. A rectal pessary or suppository may also be used.
Suppositories are solid dosage forms of various weights and shapes, usually medicated, for insertion into the rectum, vagina or the urethra. After insertion, suppositories soften, melt or dissolve in the cavity fluids.

In general, for suppositories, traditional binders and carriers may include, for example, polyalkylene glycols or triglycerides; such suppositories may be formed from mixtures containing the active ingredient in the range of 0.5% to 10%, preferably 1%–2%.

Vaginal suppositories or pessaries are usually globular or oviform and weighing about 5 g each. Vaginal medications are available in a variety of physical forms, e.g., creams, gels or liquids, which depart from the classical concept of suppositories. Vaginal tablets, however, do meet the definition, and represent convenience both of administration and manufacture.

“Unit dose” is defined as a discrete amount of a therapeutic composition dispersed in a suitable carrier. In this connection, sterile aqueous media which can be employed will be known to those of skill in the art in light of the present disclosure. For example, a unit dose could be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the point of administration. (see Biological-Pharmaceutical Sciences” 15th Edition, pages 1035–1038 and 1570–1580). Some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject. Moreover, for human administration, preparations should meet sterility, pyrogenicity, general safety and purity standards as required by FDA Office of Biologics standards.

B. Kits
All the essential materials and reagents required for delivering analogs and agents to effect inhibition of immunostimulation may be assembled together in a kit. This generally will comprise selected analogs prepared in an administerable formulation or prepared for use as an administerable formulation. Such kits will comprise distinct containers for each individual reagent.

When the components of the kit are provided in one or more liquid solutions, the liquid solution preferably is an aqueous solution, with a sterile aqueous solution being particularly preferred. For in vivo use, the expression component may be formulated into a pharmaceutically acceptable syringeable composition. In this case, the container means may itself be an inhalant, syringe, pipette, eye dropper, or other such like apparatus, from which the formulation may be applied to an infected area of the body, such as a lung, injected into a subject, or even applied to and mixed with the other components of the kit.

The components of the kit may also be provided in dried or lyophilized forms. When reagents or components are provided as a dried form, reconstitution generally is by the addition of a suitable solvent. It is envisioned that the solvent also may be provided in another container means.

The kits of the present invention also will typically include a means for containing the vials in close confinement for commercial sale such as, e.g., injection or blow-molded plastic containers into which the desired vials are retained.

Irrespective of the number or type of containers, the kits of the invention also may comprise, or be packaged with, an instrument for assisting with the injection/administration or placement of the ultimate complex composition within the body of an animal. Such an instrument may be an inhalant, syringe, pipette, forceps, measured spoon, eye dropper or any such medically approved delivery vehicle.

IV. EXAMPLES
The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventors to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

Example 1
Structure-Activity Relationship Analysis of Substituted 4-Aminquinolinamines
A detailed structure-activity relationship (SAR) analysis of quinoline antagonists of immunostimulatory CpG-ODNs was undertaken. The structure of compounds 1–32 are shown in Tables 4–9. The synthesis work together with SAR analysis of the synthesized quinolines culminated in the finding of an extremely active agent 32.

Substituted analog, “Rennie’s Pharmaceutical Sciences” 15th Edition, pages 1035–1038 and 1570–1580). Some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject. Moreover, for human administration, preparations should meet sterility, pyrogenicity, general safety and purity standards as required by FDA Office of Biologics standards.

B. Kits
All the essential materials and reagents required for delivering analogs and agents to effect inhibition of immunostimulation may be assembled together in a kit. This generally will comprise selected analogs prepared in an administerable formulation or prepared for use as an administerable formulation. Such kits will comprise distinct containers for each individual reagent.

When the components of the kit are provided in one or more liquid solutions, the liquid solution preferably is an aqueous solution, with a sterile aqueous solution being particularly preferred. For in vivo use, the expression component may be formulated into a pharmaceutically acceptable syringeable composition. In this case, the container means may itself be an inhalant, syringe, pipette, eye dropper, or other such like apparatus, from which the formulation may be applied to an infected area of the body, such as the lungs, injected into a subject, or even applied to and mixed with the other components of the kit.

The components of the kit may also be provided in dried or lyophilized forms. When reagents or components are provided as a dried form, reconstitution generally is by the addition of a suitable solvent. It is envisioned that the solvent also may be provided in another container means.

The kits of the present invention also will typically include a means for containing the vials in close confinement for commercial sale such as, e.g., injection or blow-molded plastic containers into which the desired vials are retained.

Irrespective of the number or type of containers, the kits of the invention also may comprise, or be packaged with, an instrument for assisting with the injection/administration or placement of the ultimate complex composition within the body of an animal. Such an instrument may be an inhalant, syringe, pipette, forceps, measured spoon, eye dropper or any such medically approved delivery vehicle.

IV. EXAMPLES

The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventors to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

Example 1
Structure-Activity Relationship Analysis of Substituted 4-Aminquinolinamines
A detailed structure-activity relationship (SAR) analysis of quinoline antagonists of immunostimulatory CpG-ODNs was undertaken. The structure of compounds 1–32 are shown in Tables 4–9. The synthesis work together with SAR analysis of the synthesized quinolines culminated in the finding of an extremely active agent 32.

Substituted analog, “Rennie’s Pharmaceutical Sciences” 15th Edition, pages 1035–1038 and 1570–1580). Some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject. Moreover, for human administration, preparations should meet sterility, pyrogenicity, general safety and purity standards as required by FDA Office of Biologics standards.

B. Kits
All the essential materials and reagents required for delivering analogs and agents to effect inhibition of immunostimulation may be assembled together in a kit. This generally will comprise selected analogs prepared in an administerable formulation or prepared for use as an administerable formulation. Such kits will comprise distinct containers for each individual reagent.

When the components of the kit are provided in one or more liquid solutions, the liquid solution preferably is an aqueous solution, with a sterile aqueous solution being particularly preferred. For in vivo use, the expression component may be formulated into a pharmaceutically acceptable syringeable composition. In this case, the container means may itself be an inhalant, syringe, pipette, eye dropper, or other such like apparatus, from which the formulation may be applied to an infected area of the body, such as the lungs, injected into a subject, or even applied to and mixed with the other components of the kit.

The components of the kit may also be provided in dried or lyophilized forms. When reagents or components are provided as a dried form, reconstitution generally is by the addition of a suitable solvent. It is envisioned that the solvent also may be provided in another container means.

The kits of the present invention also will typically include a means for containing the vials in close confinement for commercial sale such as, e.g., injection or blow-molded plastic containers into which the desired vials are retained.

Irrespective of the number or type of containers, the kits of the invention also may comprise, or be packaged with, an instrument for assisting with the injection/administration or placement of the ultimate complex composition within the body of an animal. Such an instrument may be an inhalant, syringe, pipette, forceps, measured spoon, eye dropper or any such medically approved delivery vehicle.
TABLE 4

Activities of Chloroquine, 2-Phenyldichloroquine, and 2-Substituted 4-[2-(Dimethylamino)ethyl]quinolines 1-6

<table>
<thead>
<tr>
<th>No</th>
<th>Ar</th>
<th>EC50 (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-napthyl</td>
<td>9.1</td>
</tr>
<tr>
<td>2</td>
<td>3-phenanthryl</td>
<td>11.0</td>
</tr>
<tr>
<td>3</td>
<td>1-napthyl</td>
<td>39.8</td>
</tr>
<tr>
<td>4</td>
<td>4-MePh</td>
<td>12.3</td>
</tr>
<tr>
<td>5</td>
<td>trans-CH—CHPh</td>
<td>6.5</td>
</tr>
<tr>
<td>6</td>
<td>4-CF3Ph</td>
<td>155</td>
</tr>
</tbody>
</table>

Chloroquine: R = H (EC50 = 110 nM)Δ
2-Ph-chloroquine: R = Ph (EC50 = 513 nM)Δ

ΔTaken from MacFarlane et al., 1998.

The effect of basicity of the ring nitrogen atom in selected quinolines 1 and 7–10 was investigated (Table 5). As discussed previously (Strekowski et al., 1996), the given pKₐ values are functions of electronic effects of the 4-substituent at the quinoline including inhibition of the conjugation effect in 7 due to steric hindrance. As can be seen from Table 5, the pKₐ values of 1, 7–10 parallel nicely the respective EC50 values.

TABLE 5

The Experimental pKₐ Values of Quinolines 1, 7–10 and Their Activity

<table>
<thead>
<tr>
<th>No.</th>
<th>R</th>
<th>pKₐ</th>
<th>EC50 (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NH(CH₂)₃NMMe₂</td>
<td>7.1</td>
<td>9.1</td>
</tr>
<tr>
<td>7</td>
<td>NMe(CH₂)₃NMMe₂</td>
<td>6.2</td>
<td>416</td>
</tr>
<tr>
<td>8</td>
<td>O(CH₂)₃NMMe₂</td>
<td>6.1</td>
<td>478</td>
</tr>
<tr>
<td>9</td>
<td>S(CH₂)₃NMMe₂</td>
<td>4.4</td>
<td>2400</td>
</tr>
<tr>
<td>10</td>
<td>CONH(CH₂)₃NMMe₂</td>
<td>2.9</td>
<td>>10,000</td>
</tr>
</tbody>
</table>

ΔThe values for 1, 7, 9, and 10 are taken from Strekowski et al., J Med. Chem. 1996.
Further analogs of 1 are analyzed in Table 6. These are quinolines with and without aryl substitution, with an increasing length of the (dimethylamino)polymethylene chain, and several quaternized derivatives in which a positive charge is permanently fixed. There is a dramatic increase in activity, due to 2-aryl substitution, as can be seen from comparison of 11 to 12 and 13 and comparison of 14 to 15. On the other hand, the activities of compounds 4 and 1 containing the same (dimethylamino)dimethylene side chain are similar to those of the respective (dimethylamino)trimethylene analogs 12 and 13. As the chain length increases in the series of compounds 13, 15, and 16, which contain the same 2-(2-naphthyl)quinolin-4-amine core, the activity reaches a maximum for a tetramethylene derivative 15 and then is slightly decreased for compound 16 which has a hexamethylene linker.

TABLE 6

<table>
<thead>
<tr>
<th>No.</th>
<th>R</th>
<th>n</th>
<th>EC_{50} (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>H</td>
<td>3</td>
<td>4400</td>
</tr>
<tr>
<td>12</td>
<td>p-tolyl</td>
<td>3</td>
<td>11.5</td>
</tr>
<tr>
<td>13</td>
<td>2-naphthyl</td>
<td>3</td>
<td>11.0</td>
</tr>
<tr>
<td>14</td>
<td>H</td>
<td>4</td>
<td>316</td>
</tr>
<tr>
<td>15</td>
<td>2-naphthyl</td>
<td>4</td>
<td>4.0</td>
</tr>
<tr>
<td>16</td>
<td>2-naphthyl</td>
<td>6</td>
<td>>10,000</td>
</tr>
<tr>
<td>17</td>
<td>2-naphthyl</td>
<td>18</td>
<td>7600</td>
</tr>
<tr>
<td>18</td>
<td>H</td>
<td>19</td>
<td>>10,000</td>
</tr>
</tbody>
</table>

Methylation of the terminal dimethylamino group of 15 rendered the resultant trimethylammonium derivative 17 completely inactive. An additional methylation of 17 at the ring nitrogen atom restored some activity in the resultant dication 18. However, a dication 19 devoid of the naphthyl group was completely inactive again. Our additional studies (not shown) consistently indicated that compound 1 and its numerous analogs with a severely sterically hindered amino function at the terminus of the side chain showed comparable activities. Accordingly, the lack of activity of 17 and 19 cannot be explained in terms of an increased bulkiness of the trimethylammonium substituent in comparison to that of the dimethylamino group.

Analogues of 1 containing an alkyl group at N4 of the quinoline were inactive as well (not shown; see, however, 26 in Table 5). On the other hand, quinolines that contain groups capable of a hydrogen bonding interaction, such as a urethane in 20 or a hydroxy group in 21–24 (Table 7) show some activity. The activity of 25, the side chain of which contains additional amino functions, is greater.

TABLE 7

<table>
<thead>
<tr>
<th>No.</th>
<th>R</th>
<th>EC_{50} (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>(CH_{2})_{2}NHC(O)Me</td>
<td>570</td>
</tr>
<tr>
<td>21</td>
<td>CH(Me){2}C(Me){2}OH</td>
<td>1150</td>
</tr>
<tr>
<td>22</td>
<td>CH(Me)_{2}CH(PH)OH</td>
<td>1000</td>
</tr>
<tr>
<td>23</td>
<td>(CH_{2}){2}C(OH){2}</td>
<td>330</td>
</tr>
<tr>
<td>24</td>
<td>(CH_{2})_{2}OH</td>
<td>170</td>
</tr>
<tr>
<td>25</td>
<td>(CH_{2}){2}N(CH{2}){2}N(CH{2}){2}NH(O)(CH{2})_{2}OH</td>
<td>25.1</td>
</tr>
</tbody>
</table>

The activity pattern is retained in a series of substituted 4-anilinoquinolines 26–32 (Table 8). Compound 32 has a relatively basic quinoline (pK_{b}=6.9, a calculated value), contains hydroxy and amino functions, and is the most potent antagonist of immunostimulatory CpG-ODN’s thus known.

TABLE 8

<table>
<thead>
<tr>
<th>No.</th>
<th>R</th>
<th>EC_{50} (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>H</td>
<td>>10,000</td>
</tr>
<tr>
<td>27</td>
<td>CH_{2}CH(OH)</td>
<td>510</td>
</tr>
<tr>
<td>28</td>
<td>H</td>
<td>320</td>
</tr>
<tr>
<td>29</td>
<td>morpholinomethyl</td>
<td>10.0</td>
</tr>
<tr>
<td>30</td>
<td>piperidinomethyl</td>
<td>1.5</td>
</tr>
<tr>
<td>31</td>
<td>pyrrolidinomethyl</td>
<td>1.2</td>
</tr>
<tr>
<td>32</td>
<td>N-methylpiperazinomethyl</td>
<td>0.24</td>
</tr>
</tbody>
</table>

In order to better understand the requirements for activity, eleven 2-(Q-naphthyl)quinolin-4-amines of Tables 7 and 8, all containing a hydroxy group at the side chain and occasionally substituted with additional amino groups, were
Materials and Methods

A. Cell Culture

WEHI 231 murine B-lymphoma cells were maintained in log phase in medium as previously described (Macfarlane and Manzel, 1998).

B. Analogs

The structures of the analogs the inventors used are shown in FIG. 1. The pyrimidine derivatives 215, 227, 228 and 231 (Strekowski et al., 1991) and 2-naphthylquinolines 91, 267, 350 and 352 (Strekowski et al., 1992; Strekowski et al., 1994) were prepared using general synthetic methodologies developed for similar compounds. Synthetic details will be reported elsewhere. All compounds were at least 98% pure as indicated by elemental analysis and analysis of their proton NMR spectra. The dimeric compounds 322 and 329 have been described (Ismail et al., 1996). The other analogs have been previously reported (Macfarlane and Manzel, 1998) and were kindly supplied by Dr. Jill Johnson from the National Cancer Institute, or purchased. The compounds were dissolved in dimethyl sulfoxide at a concentration of 10 mM, and thereafter diluted in culture medium to the desired concentration.

C. Efficacy of Analogs

The efficacy of analogs as inhibitors of CpG-ODN-induced responses was determined using [3H]-thymidine uptake by WEHI-231 cells treated for 24 hr with anti-surface-IgM (which kills the cells by apoptosis), ODN1760 (which protects against this cell killing), and a range of concentrations of an analog (which reverses the protection by CpG-ODN) as previously described in detail (Macfarlane and Manzel, 1998).

D. Cellular Uptake of Analogs

Cellular uptake of analogs was estimated by fluorescence. WEHI-231 cells (5x10^6/ml) were incubated in RPMI 1640 without phenol red (Gibco BRL, Gaithersburg, Md.) with the indicated concentration of analog for 30 min. The cells were pelleted by centrifugation, and the fluorescence of the supernatant was measured after dilution with the appropriate buffer and its fluorescence was measured. Preliminary experiments revealed that the CpG-ODN extract contained essentially all of the cell-associated analog. The fluorescence intensity and spectra were determined with a Farrand Manual Spectrofluorometer at three pH's (3.4, 7.4, 10.0). Subsequent measurements of fluorescence were performed at pH giving the highest yield (Table I). Fluorescence intensity was converted to concentration using standard curves prepared by diluting each analog (0.1-5 uM) in CpG-ODN- and RPMI-containing buffer.

E. Uptake of CpG-ODN

WEHI 231 cells were incubated with 5 ug/ml Texas Red labeled ODN 1760. After incubation with the additions indicated, the cells were centrifuged and resuspended three times into Hank's buffered salt solution at 37° to remove surface bound ODN, and then resuspended and fixed in 2% paraformaldehyde for analysis in the University of-Iowa Flow Cytometry Facility. 10,000 events were recorded using a Coulter EPICS 753 at 488/600 nm, gating out dead cells. The mean cellular fluorescence was recorded.

F. pH of CpG-ODN-Containing Cells

The pH of CpG-ODN within cells was estimated by taking advantage of the fact that acidification suppresses the fluorescence of fluorescein (Tonkinson and Stein, 1994;
Ohkuma and Poole, 1978). WEHI-231 cells (1x10^6/ml) were incubated with fluorescein-labeled ODN 1760 (5 μg/ml, 2 hr), and washed as described above. The fluorescence of the live cells was determined by flow cytometry immediately after the addition of analogs or monensin (10 μM). The pH of the ODN containing compartment was determined from the increase in the fluorescence that occurred when monensin was added, assuming that monensin equilibrates this compartment with the medium (pH 7.4). The inventors calibrated this assay using a standard curve of fluorescence of fluorescein-labeled ODN 1760 at a range of pH's, which procedure yielded a pKa of 6.98 in 25 mM Tris acetate/150 mM NaCl buffer.

G. Confocal Microscopy

WEHI 231 cells were incubated with 5 μg/ml Texas Red labeled ODN 1760 plus additions as indicated. The cells were washed three times to remove surface bound ODN, centrifuged onto glass slides using a cytocentrifuge, and immediately fixed with 2% paraformaldehyde. The cells were photographed with a BioRad (Richmond, Calif.) MAC-1024 confocal laser scanning imaging system.

H. Confocal Microscopy of Live Cells

Preliminary studies established that paraformaldehyde does not prevent the leaching of quinacrine (Duve et al., 1974) or other analogs from the cells. The distribution of these compounds was therefore observed in live cells. WEHI 231 cells were incubated with 50 nM quinacrine for 30 min. Cells were then wet mounted on a Fisher brand charged slide, covered with a coverslip, and photographed live as above. For comparison, cells were also incubated with 5 μg/ml Texas Red labeled ODN 1760 for 2 hr, washed, resuspended in RPMI 1640 without phenol red and wet mounted live.

I. NOESY of ODN Interaction with Phospholipid

Preparation of vesicles was based on the procedures of Bammel et al. (Bammel et al., 1986). Compound 91 in solid form was added to the vesicle suspension that was then stirred for 12-15 hr at 35°C. This addition procedure avoids changing the solvent composition and follows the post-membrane-preparation extrinsic lipid addition practice used in functional preparations. The compound 91 content in the DMPC vesicles was limited to 8 mol percent to avoid phase separation in the bilayer.

Phase-sensitive two-dimensional NOESY spectra of sonicated DMPC vesicles to which compound 91 was bound were obtained using a Varian Unity Plus spectrometer operating at a proton frequency of 500 MHz. The pulse sequence developed by States et al. (States et al., 1982) was used for data acquisition. The probe temperature was set at 35°C for all studies. An optimum spectral width of 4773.3 Hz was determined for the initial NOESY study and maintained for all subsequent acquisitions. An optimum balance of sensitivity and resolution was obtained by using 256 t1 increments each consisting of 2048 data points that were signal-averaged over 128 scans with a relaxation delay of 2 s and 215 ms acquisition time while mixing times of 50 and 150 ms were employed. Very similar NOESY spectra were obtained using both of the aforementioned mixing times. In order to minimize the possible appearance of artificial cross peaks due to spin diffusion, NOESY spectra obtained with a 50 ms mixing time only are considered and presented herein. Suppression of the residual HOD signal was accomplished by saturation with the receiver at a power setting of 24 Hz [14 (PW90)]. Data processing was performed using the program VNM R supplied by Varian Associates, Inc. The free induction decays were zero filled to 2K data points in the t1 dimension. The data presented as NOESY spectra were analyzed using a sinewave window function shifted by 60°. Linear prediction (Gray, 1990) was used to obtain the first two points in the FID’s and to extend the number of increments from 256 to 512 in the F1 dimension. Using the algorithm of Brown (Brown, 1995), base line correction was applied to both dimensions after fourier transformation of data in the t2 and t1 dimensions. A fourth order polynomial was usually employed for these corrections. The two-dimensional contour plots are shown in pure absorption phase.

J. DNA Thermal Melting

Thermal melting studies were conducted at 260 nm with a Cary spectrophotometer interfaced to a microcomputer. A thermistor fixed into a reference cuvette was used to monitor the temperature. The DNA oligomer was added to 1 mL of buffer (MES with 150 mM KCl, pH 4.4) in 1 cm path length reduced-volume quartz cells. Studies were generally conducted at a concentration of 5x10^-5 M bases. Studies with chloroquine 15 and quinacrine 17 were at a ratio of 0.3 moles of compound per base.

K. CpG oligonucleotides

CpG-ODN, synthesized with a phosphorothioate backbone. 5'ATAATCGAGCGAACAAGC3'

The fluorescent ODNs were ODN 1760 with either fluorescein or Texas Red linked to the 5'-terminus. The oligodeoxynucleotides were purchased from Genosys (The Woodlands, TX). 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) was obtained in powder form from Avanti Polar Lipids, Albaster, Ala., USA. The lipid was prepared synthetically and was at least 99.9 percent pure. ACS reagent grade KCl and dibasic potassium phosphate were obtained from the Fisher Scientific Co. D.O at 99.9 percent purity was obtained from either Cambridge Isotope Laboratories, Woburn, Mass. or Isotec, Inc., Miamisburg, Ohio. Monensin, chloroquine, quinacrine and quinacrine were purchased from Sigma Chemical Co. (St. Louis, Mo.). Hydroxychloroquine was purchased from Copley Pharmaceutical, Inc. (Canton, Mass.). Charged microscope slides were purchased from Fisher Scientific (Pittsburgh, Pa.).

Example 3

Cellular Uptake of Analogs

The ability of numerous novel analogs of chloroquine and quinacrine to block the activity of CpG-ODN was examined. From the library a number of compounds were selected that are fluorescent (including quinacrine) and that have a range of potency as inhibitors of CpG-ODN (FIG. 2, Table 10). Standard curves of the fluorescent intensity of each analog in cell culture medium and in the cell extract buffer were prepared, measurements being taken at the pH listed in the table. To examine the uptake of the analogs by cells, WEHI 231 cells were incubated with a range of concentrations of the analogs, and measured the concentration of the analog remaining in the supernatant and the amount of analog in the extract of a cell pellet using the standard curves.

FIG. 3 shows some of the results. The cells incorporated substantial amounts of the analogs (often more than half of the added reagent). The volume of each cell is about 1.0 μl (by measuring the volume of a cell pellet). Using this value, it was estimated that the cells accumulated analogs to a concentration several hundred fold higher than in the medium (Table 10). Similar results have been reported for chloroquine e.g. (Ohkuma and Poole, 1981; Fitch et al., 1974). The inventors found a linear relationship between uptake of each of the compounds and its free concentration.
No evidence was found to suggest that the uptake process was saturable in the low micromolar range. It was found that (non-fluorescent) chloroquine (up to 10 μM) did not inhibit the uptake of other analogs, which also suggests that the transport mechanism is not saturable. This result with WEHI 231 cells differs from the uptake of chloroquine by red blood cells infected with malaria parasites, which others have reported to be saturable and inhibitable by analogs, suggesting that infected red cells have a high affinity transport system for chloroquine (Fitch et al., 1974).

The uptake of the fluorescent analogs was rapid, reaching equilibrium in less than two minutes. The efflux analogs from cells when they are diluted into fresh medium was also rapid (FIG. 4).

The inventors found that uptake of quinacrine was partially inhibited by the addition of monensin, an ionophore that collapses pH gradients across biological membranes. Monensin also induced the loss of quinacrine 17 from cells preloaded with the analog. Both effects were half maximal at a monensin concentration of about 1 μM (FIG. 5). Similar results were obtained with other analogs. This result is consistent with equilibration of analog (as weak bases) into acidic vesicles.

TABLE 10

<table>
<thead>
<tr>
<th>Our Number, source</th>
<th>Fluorescence vs quinacrine, pH</th>
<th>Name</th>
<th>50% Efficacy, nM</th>
<th>Cellular uptake ratio</th>
<th>Molecules/cell at 50% efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>329, d</td>
<td>1.2, b</td>
<td>Ism 16</td>
<td>14.5</td>
<td>147</td>
<td>1.28</td>
</tr>
<tr>
<td>24, a</td>
<td>0.7, a</td>
<td>T2</td>
<td>30.2</td>
<td>161</td>
<td>2.92</td>
</tr>
<tr>
<td>17, a</td>
<td>1.0, b</td>
<td>Quinacrine</td>
<td>10.2</td>
<td>601</td>
<td>3.69</td>
</tr>
<tr>
<td>25, b</td>
<td>0.7, a</td>
<td>T2</td>
<td>19.1</td>
<td>438</td>
<td>5.03</td>
</tr>
<tr>
<td>322, d</td>
<td>0.6, b</td>
<td>Ism 9</td>
<td>105.0</td>
<td>86</td>
<td>5.47</td>
</tr>
<tr>
<td>29, b</td>
<td>1.7, a</td>
<td>N2</td>
<td>57.5</td>
<td>164</td>
<td>5.69</td>
</tr>
<tr>
<td>30, b</td>
<td>1.7, a</td>
<td>N4</td>
<td>52.4</td>
<td>299</td>
<td>9.44</td>
</tr>
<tr>
<td>27, b</td>
<td>3.3, a</td>
<td>L1</td>
<td>60.3</td>
<td>583</td>
<td>21.1</td>
</tr>
<tr>
<td>19, a</td>
<td>0.8, pH2.0</td>
<td>Quinine</td>
<td>22000</td>
<td>24</td>
<td>331.1</td>
</tr>
<tr>
<td>267, c</td>
<td>2.2, a</td>
<td>OZ-66</td>
<td>>3000</td>
<td>362</td>
<td>>654</td>
</tr>
<tr>
<td>227, c</td>
<td>1.4, a</td>
<td>MC-241</td>
<td>>3000</td>
<td>63</td>
<td>>115</td>
</tr>
<tr>
<td>228, c</td>
<td>1.3, a</td>
<td>MC-322</td>
<td>>3000</td>
<td>27</td>
<td>>49</td>
</tr>
<tr>
<td>215, c</td>
<td>0.7, a</td>
<td>RW-15</td>
<td>>3000</td>
<td>70</td>
<td>>126</td>
</tr>
<tr>
<td>231, c</td>
<td>0.3, a</td>
<td>DH-77</td>
<td>>3000</td>
<td>29</td>
<td>>52</td>
</tr>
<tr>
<td>91, c</td>
<td>ND</td>
<td>L8-8</td>
<td>9.5</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>390, c</td>
<td>ND</td>
<td>OZ-132</td>
<td>5.9</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>352, c</td>
<td>ND</td>
<td>MBRQ-6</td>
<td>16.3</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>15, a</td>
<td>Non-fluorescent quinacrine</td>
<td>Chloroq</td>
<td>110.0,0</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>16, a</td>
<td>Non-fluorescent chloroquine</td>
<td>Hydroxy</td>
<td>407</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

The sources were a=Sigma Chemical Co., b=National Cancer Institute, c=Synthesized by LS, d=Synthesized by FMI. The second column is the fluorescence intensity (uncorrected) compared to quinacrine, recorded in a buffer at one of three pH’s: a=3.8, n=7.4, b=10.0. The fluorescence of quinacrine was recorded at pH 2.0. The Efficacy is the concentration required for 50% blockage of the ability of CpG-ODN to rescue WEHI 231 cells from anti-surface IgM-induced cell death. The cellular uptake ratio is the concentration of compound in live WEHI 231 cells (assumed to have a volume of 1 nl) to the concentration in the medium at equilibrium. The molecules at 50% efficacy is the calculated number of molecules in the cell required for 50% inhibition of CpG-ODN effect. ND, not determined.

Example 3

Comparison of Uptake and Activity

The ability of analogs to inhibit an immunostimulatory effect of CpG-ODN was examined. This assay measures the reversal of the protection by CpG-ODN against surface IgM induced killing of WEHI 231 cells. The activity of analogs was compared to their uptake, exposing a poor correlation between these two parameters (Table 10). At half maximal efficacy, cells accumulated a few million molecules of the most active analogs.

Example 4

Effect on CpG-ODN Uptake

The effect of chloroquine and non-fluorescent analogs on the uptake of Texas Red-labeled CpG-ODN 1760 was investigated. This derivatized ODN is active as an immune stimulator. Flow cytometry measures cell-associated fluorescence because signals derived from dead cells (which take up ODN avidly, (Tonkinson and Stein, 1994)) are easily gated out of the analysis. The analogs did not significantly alter the uptake of the fluorescent ODN (FIG. 6).

Using confocal microscopy, the inventors determined that the fluorescence of Texas Red-labeled CpG-ODN 1760 is confined to numerous small organelles distributed throughout the cytoplasm with a slight predominance in the peri-
nuclear region and Golgi apparatus. Chloroquine 15 did not influence the subcellular distribution of internalized CpG-ODN.

Example 5

Effect on CpG-ODN pH

The fluorescence of fluorescein is suppressed at acid pH. Cells preloaded with fluorescein-labeled CpG-ODN were used to determine the pH of cell-associated ODN using flow cytometry. The addition of monensin immediately before flow-cytometry results in increased fluorescence, attributable to the equilibration of the pH of the ODN with the pH of the medium and the diluent used in flow cytometry.

A standard curve was implemented to relate fluorescence with pH, enabling the pH of the cell compartment occupied by ODN to be determined to be about 6.4, a value very close to that published by Tonkinson et al. using a similar method (Tonkinson and Stein, 1994). Using this method, the inventors examined the effects of (non-fluorescent) analogs on the pH of the compartment. The effect of 1 μM chloroquine (a concentration that completely suppresses CpG-ODN responses) was an increase in the pH of CpG-ODN-containing compartment by less than 0.01 pH units. No analog increased the pH substantially at the concentration required for activity, although they did collapse the pH at higher concentration.

Example 6

Subcellular Localization of Analogs

Next, the subcellular localization of fluorescent analogs was examined using confocal microscopy. Unable to find a method of fixation that immobilized the analogs within the cells, the inventors incubated the cells with the analogs and examined them live. A consistent difference between the distribution of CpG-ODN and of fluorescent analogs was revealed: the analogs occupy organelles that were larger and more peripherally located within the cell. However, it is not clear that quinacrine does not also enter the compartment occupied by CpG-ODN, because photographs of cells double-labeled with Texas-Red labeled CpG-ODN and quinacrine 17 did not unambiguously reveal a population of ODN-containing vesicles that also did not stain with quinacrine.

Example 7

Interaction Between Analogs and ODN

Structural nucleic acids with duplex or single-stranded folded conformations generally give sigmoid thermal melting curves characteristic of thermal unfolding of the structures. This unfolding results in a change in the UV spectrum. In other studies, the CpG ODN 1760 gave a very small continuous increase in absorbance at 260 nm as a function of temperature, characteristic of some base unstacking in single-stranded DNA, and did not show any transition curve characteristic of a base-paired structure. Addition of chloroquine 15 or quinacrine 17 to the CpG-ODN did not cause any significant change in the thermal melting curve of the free CpG-ODN. It can, thus, be concluded that under these conditions, these compounds bind poorly, if at all, to the CpG-ODN.

Example 8

Interaction Between Analogs and Lipids

The structures of compound 91 and DMPC are provided in FIG. 9; the lipid NMR resonance assignments that are listed in Table 11 are key to the numbered groups on the DMPC structure in this figure. The assignments in Table 11 are derived in part from the work of Ellena et al., 1987 with additional assignments by the inventors.

Table 11

<table>
<thead>
<tr>
<th>Proton Number</th>
<th>Group</th>
<th>Chemical Shift, in D2O (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>—CH3</td>
<td>0.87</td>
</tr>
<tr>
<td>13</td>
<td>—CH2—</td>
<td>1.17</td>
</tr>
<tr>
<td>12</td>
<td>—CH=—</td>
<td>3.25</td>
</tr>
<tr>
<td>4-11</td>
<td>(CH3)4-O^-—</td>
<td>1.29</td>
</tr>
<tr>
<td>3</td>
<td>—CH2—</td>
<td>1.56</td>
</tr>
<tr>
<td>2</td>
<td>—CH—</td>
<td>2.33</td>
</tr>
<tr>
<td>15</td>
<td>CH3CO—</td>
<td>5.26-5.31</td>
</tr>
<tr>
<td>16</td>
<td>H2COO—</td>
<td>4.43</td>
</tr>
<tr>
<td>17</td>
<td>H2COO— (glycerol)</td>
<td>3.99</td>
</tr>
<tr>
<td>18</td>
<td>—OPCH2— (choline)</td>
<td>2.77</td>
</tr>
<tr>
<td>19</td>
<td>—CH3L—</td>
<td>3.56-3.63</td>
</tr>
<tr>
<td>20</td>
<td>N(CH3)2</td>
<td>3.12-3.19</td>
</tr>
</tbody>
</table>

A typical spectrum obtained at a pH of 7, is shown in FIG. 9 and is referenced to the terminal methyl resonance of the DMPC acyl chain (0.87 ppm); this assignment is relative to an external TMS standard. NOESY cross peaks between the compound 91 quinoline and naphthalene ring protons and those of the DMPC fatty acid unsaturated methylenes (1.3 ppm on the F1 axis, Nos. 4-11; FIG. 9A) are present. Additional cross peaks are observed between the compound 91 aromatic ring protons and those of the lipid glycerol backbone methylenes (3.5 ppm, No. 16) and to those of the choline N(CH3)2 moiety (3.2 ppm, No. 19). Very weak, marginal cross peaks are observed between the compound 91 aromatic system protons and those of the choline N(CH3)2 moiety (3.2 ppm, No. 19) and to those of the fatty acid terminal methyl group at 0.87 ppm on the F1 axis (No. 14, FIG. 9A). The NOESY spectrum obtained at a pH of 4.7 is qualitatively similar to that obtained at a pH of 7.4. In the aliphatic region, the cross peak at 4.25 ppm on the F2 axis is assigned to the interaction of the compound 350 aliphatic chain methylene groups with those of the OPO-CH2 methylene (No. 17) (FIG. 9B).

A location model that is consistent with the NOESY data suggests that the charged N(CH3)2 moiety be located no deeper in the membrane bilayer than the onset of the hydrocarbon region—near the outer linkages in the DMPC lipids. The NOESY results indicate that the aliphatic chain of compound 91 is located near the interface of the choline head group and the glycerol backbone of the lipid. Such a location would allow for favorable electrostatic interactions between the protonated N(CH3)2 group and the negatively charged DMPC phosphate moiety.

The unambiguous cross peaks between the aromatic ring protons of compound 91 and the unresolved DMPC fatty acid methylene protons (1.3 ppm on the F1 axis) indicates that a portion of the compound 91 molecules penetrate the bilayer to at least the level of the fourth methylene group on the fatty acid chain and perhaps below this level.

Molecular modeling studies using SYBYL (Tripos Associates) of a DMPC bilayer with the lipids in the all trans conformation and with compound 91 in an energy minimized extended conformation with the protonated N(CH3)2 nitrogen located near the phosphate group will allow an NOE cross peak between protons on the naphthalene ring and the No. 8 methylene protons with a 5 A NOE cutoff distance criterion.

The lack of cross peaks between the terminal methyl group and the aromatic protons does not preclude the
eventual translocation of compound 91 through the bilayer and the accumulation of the drug candidate in the vesicle internal volume as has been observed in whole cell studies based on similar quinolines tagged with fluorescent labels as described in a separate section of this communication. The NMR results suggest in this instance that the steady state population of compound 91 molecules near the middle portion of the bilayer, which would include the roughly 0.5 mol percent of compound 91 in neutral form, is below the detection threshold for the NOESY experiment in the DMPC vesicle system.

Example 9
Preparation of 2-(Substituted phenyl)-4-quinolines

N-[3-(Dimethylamino)propyl]-2-[4-(N-methylpiperazino)phenyl]quinolin-4-amine (44)
A ketime 36 derived from 33 and 34 was cyclized to a quinoline 38 in the presence of potassium tert-butoxide by using a procedure for the preparation of similar compounds (Strekowski et al., 1997). Hydrolysis of 38 in the presence of acid followed by treatment of the resultant hydroxyquinoline 40 with POCl3 gave a chloroquinoline 42. The general procedures are also described in the same reference. The selective displacement of the chlorine atom in 42 was accomplished by treatment with N,N-dimethyl-1,3-propanediamine in the presence of a catalytic amount of SnCl4 (4 h, 130°C). Stirring of the resultant product (1 mmol) with lithium N,N-dimethylpiperizide (20 mmol) in anhydrous THF (50 mL) at 23°C for 20 h followed by quenching with water gave compound 44 that was purified by silica gel chromatography eluting with EtOAc/NEt3 (17:3); yield 61%, mp of the hydrobromide salt (xHBr) 274–276°C.

N-[3-(Dimethylamino)propyl]-2-[2-[2-(dimethylamino)ethyl]amino]phenyl]quinolin-4-amine (45)
A ketime 37 was obtained from 33 and 35 as indicated above. Its cyclization to 39, hydrolysis of 39 to 41, and the synthesis of 43 were carried out as described above well. Following the treatment of 43 with N,N-dimethyl-1,3-propanediamine the resultant product was allowed to react with excess lithium 2-(dimethylamino)ethylamide in THF at 23°C for 20 h. Product 45 was purified by silica gel chromatography eluting with EtOAc/NEt3 (25:1); yield 76%, a solid.

N-(3-Morpholinopropyl)-2-[4-[2-(pyridyl) methylamino]methylphenyl]quinoline (49)
Synthesis of 4-chloro-2-(4-tolyl)quinoline (46) was conducted by using the chemistry described above. The treatment of 46 (5 mmol) with N-bromosuccinimide (5 mmol) in the presence of benzoyl peroxide (100 mg) in CCl4 (50 mL) under reflux for 6 h gave 47: yield 65%, mp 116–117°C. (from hexanes). A mixture of 47 (0.6 mmol) and 2-(aminomethyl)pyridine (2 mL) was stirred at 23°C for 6 h and then treated with water (20 mL). Extraction with ethyl acetate followed by drying of the extract and concentration gave compound 48 that was used for the reaction with 3-morpholinopropylamine without any purification. A mixture of 48, the amine (1 mL), and a catalytic amount of SnCl4 was heated under reflux for 4 h and then quenched with water (20 mL). Following a standard workup, crude product 49 was purified by silica gel chromatography eluting with EtOAc/McOH/NEt3 (10:1:3); yield 58%, mp 140–142°C.

Preparation of Substituted 4-Quinolinamines and 9-Aminoacridines

Compounds have been numbered in this example. This numbering refers only to the compounds found in this example and in Scheme 4 shown in FIG. 11, which corresponds to this example.

Materials and Methods

Melting points (Pyrex capillary) are uncorrected. 1H NMR (300 MHz) and 13C NMR (75.4 MHz) spectra were taken with TMS as an internal reference. Proton-proton coupling constants smaller than 2 Hz are not reported. Ketimine 1 was obtained as reported previously (Strekowski et al., 1992).

Reaction of Ketimine 1 with Potassium tert-Butoxide.

A mixture of 1 (10 g, 32 mmol) and t-BuOK (17 g, 150 mmol) in anhydrous THF (500 mL) was heated under reflux under a nitrogen atmosphere for 1 h. Cooling to 25°C was followed by quenching with water (6.0 mL) and filtration. Concentration of the filtrate on a rotary evaporator to 50 mL followed by dilution with hexanes (40 mL) gave a precipitate of 5, which was filtered off and crystallized from methanol. Flash chromatography of the THF/methanol solution (silica gel; hexanes/Et2N, 95:5) gave an analytically pure sample of compound 4, which was additionally purified by crystallization from hexanes. Crude product 4 was used for the subsequent reaction.

4-(tert-butoxy)-2-(2-naphthyl)quinoline (4)
1.06 g (51%); mp 76–78°C; 1H NMR (CDCl3) 8.64 (s, 9 H), 7.19 (s, 1 H), 7.41 (t, J=8 Hz, 1 H), 7.46 (m, 3 H), 7.63 (t, J=8 Hz, 1 H), 7.83 (m, 1 H), 7.93 (m, 2 H), 8.06 (d, J=8 Hz, 1 H), 8.14 (d, J=8 Hz, 1 H), 8.19 (d, J=8 Hz, 1 H), 8.45 (s, 1 H); 13C NMR (CDCl3) 82.89, 80.7, 105, 112.6, 122.3, 125.2, 125.3, 125.6, 125.9, 127.7, 128.5, 128.8, 12802, 129.8, 133.4, 137.7, 137.8, 140.9, 148.5, 151, 160, 161. Anal. Calcd for C23H14NO: C, 84.39; H, 6.46; N, 4.43. Found: C, 83–84 H; 6.59, N, 4.45.

2-(2-Naphthyl)quinolin-4(1H)-one (5): yield 1.3 g (15%); mp 290–292°C (from MeOH); 1H NMR (DMSO-d6) 83.13 (br s, 1 H), 6.48 (s, 1 H), 7.35 (t, J=8 Hz, 1 H), 7.63 (m, 2 H), 7.69 (t, J=8 Hz, 1 H), 7.81 (d, J=8 Hz, 1 H), 7.93 (d, J=8 Hz, 1 H), 8.03 (m, 1 H), 8.11 (m, 2 H), 8.46 (s, 1 H); 13C NMR (DMSO-d6) 8107, 118.7, 123.3, 124.5, 124.8, 124.9, 127.0, 127.2, 127.5, 127.8, 128.6, 128.7, 131.5, 131.9, 132.6, 133.6, 140.6, 149.9, 176.9; IR (KBr) v 3250, 1630, 1595, 1547, 1508 cm⁻¹. Anal. Calcd for C23H12NO: C, 84.11; H, 4.83; N, 5.16. Found: C, 83.80; H, 4.69; N, 5.14.

4-Hydroxy-2-(2-naphthyl)quinolinium p-toluene sulfonate (6)
A solution of crude compound 4 (6.5 g, 20 mmol) and p-toluene sulfonic acid (6.0 g, 30 mmol) in THF (150 mL) was heated under reflux for 4 h and then cooled to 0°C, the precipitate of 6 was filtered off and crystallized from methanol: yield 8.0 g (93%); mp 223–225°C; 1H NMR (DMSO-d6) 82.26 (s, 3), 7.10 (d, J=8 Hz, 2 H), 7.28 (s, 1 H), 7.50 (d, J=8 Hz, 2 H), 7.71 (m, 3 H), 8.08–8.21 (m, 6 H), 8.33 (d, J=8 Hz, 1 H), 8.61 (s, 1 H). Anal. Calcd for C23H12NO2S: C, 70.40; H, 4.77; N, 3.16. Found: C, 70.38; H, 4.73; N, 3.11.

4-Chloro-2-(2-naphthyl)quinoline (7)
A mixture of salt 6 (7.0 g, 15.7 mmol), phosphorus pentachloride (3.2 g, 15.7 mmol), and phosphorus oxychloride (40 mL) was heated under reflux for 1 h, then cooled, and poured onto ice. The mixture was neutralized with a saturated solution of sodium bicarbonate, and the resultant precipitate of crude product 7 was filtered, washed with water, and dried (50°C/10 mmHg). Purification involved
treatment with hot ethyl acetate (180 mL), filtration from an insoluble yellow solid, then concentration of the solution, and crystallization of the residue from hexanes: yield 3.98 g (86%); mp 114–116°C; 1H NMR (CDCl3) δ 87.48 (m, 2 H), 7.58 (t, J=8 Hz, 1 H), 7.74 (t, J=8 Hz, 1 H), 7.84 (m, 1 H), 7.94 (m, 2 H), 8.08 (s 1 H), 8.17 (m, 2 H), 8.28 (d, J=8 Hz, 1 H), 8.53 (s, 1 H). 13C NMR (CDCl3) δ 61.95, 124.3, 125.0, 125.7, 126.8, 127.3, 127.6 (two signals), 128.0, 129.0, 129.2, 130.4, 130.9, 133.7, 134.4, 136.1, 143.5, 149.4, 157.5. Anal. Calcd for C23H12Cl2N: C, 78.75; H, 4.17; N, 4.71. Found: C, 78.75; H, 4.11; N, 4.65.

The treatment of quinoline 5 as described above furnished product 7 in a similar yield.

2-(Naphthyl)-4-[(p-toluenesulfonyl)oxy]quinoline (8)

A solution of salt 6 (4.3 g, 10 mmol) in pyridine (60 mL) was cooled to 0°C, and treated slowly with p-toluenesulfonyl chloride (3.4 g, 18 mmol) at such a rate that the temperature did not rise above 5°C. After being stirred for an additional 3 h at 5°C, the mixture was diluted with dichloromethane (40 mL) and poured into cold water (200 mL). The organic layer was washed in succession with 1 N hydrochloric acid, a solution of sodium bicarbonate, and water, then dried over sodium sulfate, and concentrated on a rotary evaporator. Chromatography on silica gel eluting with hexanes/tert-butyl methyl ether (1:1) followed by crystallization from tert-butyl methyl ether gave 3.5 g (79%) of 8.

mp 128–130°C; 1H NMR (DMSO-d6) δ 82.43 (s, 3 H), 7.51 (d, J=8 Hz, 2 H), 7.62 (m, 3 H), 7.86 (d, J=8 Hz, 2 H), 7.96 (m, 3 H), 8.02 (m, 1 H), 8.13 (m, 3 H), 8.34 (d, J=8 Hz, 1 H), 8.65 (s, 1 H). 13C NMR (CDCl3) δ 62.7, 110.5, 121.2, 121.4, 124.7, 126.5, 126.9, 127.0, 127.2, 127.7, 128.6, 128.7, 128.8, 129.5, 130.1, 130.6, 132.2, 133.3, 140.4, 136, 146.1, 150.1, 153.8, 157.8. Anal. Calcd for C27H17NO4S: C, 73.39; H, 4.50; N, 3.29. Found: C, 73.12; H, 4.32; N, 3.27.

N-[3-[4-[4-Hydroxybutyramido)propyl]piperazino]-propyl] 2-(Naphthyl)quinolin-4-amine (9)

A mixture of 7 (5.0 g, 17 mmol), 1,4-bis(3-aminopropyl) piperazine (58 ml, 282, mmol), and anhydrous tin tetrachloride (0.8 mL, 6.6 mmol) was stirred and heated to 130°C under a nitrogen atmosphere for 3.5 h. Removal of the excess of the amine (100°C, 0.2 mmHg) was followed by addition of γ-butyrolactone (3 mL, 39 mmol) and stirring of the mixture at 80°C for an additional 2.5 h. After cooling to 23°C, water (10 mL) was added and the resultant solution was extracted with ethyl acetate (6×30 mL). The extract was dried over magnesium sulfate and concentrated, and the residue was crystallized from anhydrous ethyl acetate: yield 5.1 g (56%); mp 177–179°C; 1H NMR (DMSO-d6) δ 1.5–3.5 (m, 26 H), 4.42 (t, J=5 Hz, 1 H, exchangeable with D2O), 7.14 (s, 1 H), 7.38 (br, 1 H, exchangeable with D2O), 7.42 (t, J=8 Hz, 1 H, 7.55 (m, 2 H), 7.65 (t, J=8 Hz, 1 H), 7.73 (br, 1 H, exchangeable with D2O), 7.91 (d, J=8 Hz, 1 H), 7.96 (m, 1 H), 8.02 (d, J=8 Hz, 1 H), 8.09 (m, 1 H), 8.21 (d, J=8 Hz, 1 H), 8.39 (d, J=8 Hz, 1 H), 8.70 (s, 1 H). 13C NMR (DMSO-d6) δ 82.94 26.3, 28.6, 32.1, 36.8, 41.3, 52.7, 53.0, 55.5, 56.1, 60.3, 95.1, 118.0, 121.4, 123.7, 125.0, 126.1, 126.2, 126.4, 127.4, 127.7, 128.5, 129.1, 129.3, 133.2, 137.5, 148.2, 150.9, 156.4, 171.9. Anal. Calcd for C34H24N5O3: C, 73.43; H, 4.75; N, 12.98. Found: C, 73.08; H, 7.71; N, 12.89.

A hemihydrate 9.1/2 H2O was obtained by crystallization of crude 9 from wet ethyl acetate, mp 181–182°C. Anal. Calculated for 9.1/2 H2O: C, 72.22; H, 7.71; N, 12.76. Found: C, 72.19; H, 7.76; N, 12.72.

Discussion

Several synthetic approaches to the title compound and analogs have been evaluated. This compound is a practical precursor to N-substituted 2-(2-naphthyl)quinolin-4-amines, the triple-helix DNA specific intercalators.

The triple-helix structure of nucleic acids is formed by binding a single strand of DNA in the major groove of duplex DNA. The interaction is highly base sequence specific but is quite unstable under normal physiological conditions. Various biotechnology applications have led to an increased interest in stabilization of the triplex DNA form. For example, the formation of a stable triplex structure between a short oligonucleotide and a specific sequence in a long duplex DNA can be used to inhibit expression of the specific gene. Alternatively, with an appropriate cleaving group attached to the third-strand oligomer, highly specific cleavage of DNA can be achieved.

One approach to enhance triplex stability is to design compounds that bind strongly and specifically to triplex DNA but weakly to duplex DNA. Another strategy is to tether such compounds to the triplex-forming oligonucleotide, so that the triplex structure can be stabilized efficiently by intramolecular interactions.

Several DNA intercalators are known to interact nonselectively with triple and double DNA structures or stabilize the triple helix relative to the corresponding duplex with various selectivities. Compound 2 and other N-substituted 2-(2-naphthyl)quinolin-4-amines are far superior in their triplex stabilization ability and the triplex/duplex binding selectivity than any other triplex intercalators reported to date. These unused bi-aromatic derivatives bind to and stabilize strongly and selectively T-A triplets of the triple-helix DNA in the presence of duplex DNA of any sequence.

In this study critically examine several synthetic approaches to such triplex DNA intercalators. The preparation of a standard intercalator 2 and the synthesis of compound 9 with a terminal hydroxy group for the attachment to the 5′-end of an oligonucleotide by using phosphoramidite chemistry serve as examples. A similar strategy can be used for the synthesis of analogs of 9 containing a terminal 1,2-diol functionality for linking to the 3′-end of an oligonucleotide.

Quinoline 2 has been obtained previously by two methods, namely, (i) lithium 2-(dimethylamino)ethyldene mediated cyclization of ketimine 1 derived from 2-(trifluoromethyl)aniline and acetanophene and (ii) nucleophilic displacement of fluoride in 4-fluoroquinoline 3 with N,N-dimethylthelylendiamine. Unfortunately, the short and efficient route (i) is not applicable to the preparation of other quinolines substituted with a primary alkylamino function at position 4.

The attractiveness of the second method (ii) as a general route to 4-(substituted alkylamino) quinolines is severely hampered by the low yield of 4-fluoroquinoline 3 obtained by the reaction of 2-(trifluoromethyl)aniline with the lithium enolate of acetanophene and a tedious purification that requires several consecutive chromatographic separations. Numerous attempts to optimize the synthesis of 3 did not succeed. The 35% yield of 3 obtained on a 200-mg scale decreased to 5–15% for the reactions conducted on a 2-g scale under a variety of experimental conditions. These experiments included the published conditions and reactions conducted in different solvents (ether, hexanes, and ether/hexanes, in the presence and absence of...
hexamethylphosphoramidite) with varying ratios of the reagents and at varying temperatures.

Example 11

Preparation of bis-4-quinoxalimines and bis-9-aminoacridines

Materials and Methods

General Procedure. A mixture of 4-chloro-2-(naphthyl) quinoline (300 mg, 1.0 mmol), an α,ω-diamine (H-R, 0.05 mmol), and a catalytic amount of SnCl\(_2\) (30 μL) was heated in a Parr bomb to 140°C. For 3.5 h. N,N-Bis[3-[2-(naphthyl) quinolin-4-amin]propyl]methyamine was crystallized as a hydrobromide salt, and the purification of 1,4-Bis[3-[2-(naphthyl) quinolin-4-amin]propyl]piperazine and N,N-Bis[3-[2-(naphthyl) quinolin-4-yl]4,9-dioxo-1,12-dodecaanediylamidate was conducted by silica gel chromatography of free bases eluting with AcOEt followed by crystallization of the free bases.

N,N-Bis[3-[2-(naphthyl) quinolin-4-amin] propylimethyamine: yield 52% of C\(_{18}\)H\(_{21}\)N\(_5\)3HBr\(_2\)H\(_2\)O,
mp 257–262°C; \(^1\)H NMR 82.29 (m, 4H), 2.82 (s, 3H), 3.28 (4H), 3.82 (m, 4H), 7.27 (s, 2H), 7.64 (m, 6H), 7.92 (t, J=8 Hz, 2H), 8.02 (d, J=8 Hz, 2H) 8.15 (t, J=8 Hz, 4H), 8.21 (t, J=8 Hz, 4H), 8.69 (d, J=8 Hz, 2H), 8.80 (s, 2H), 9.50 (br, exchangeable with D\(_2\)O), 11.10 (br, exchangeable with D\(_2\)O). Anal. Caled for C\(_{18}\)H\(_{21}\)N\(_5\)3HBr\(_2\)H\(_2\)O: C, 59.40; H, 4.88; N, 7.70. Found: C, 59.70; H, 5.12; N, 7.59.

1,4-Bis[3-[2-(naphthyl) quinolin-4-amin]propyl]piperazine: yield 60% of the free base; mp 192–198°C; \(^1\)H NMR 81.90 (m, 4H), 2.48 (m, 4H), 3.35 (s, 8H), 3.52 (m, 4H), 7.45 (s, 2H), 7.44 (t, J=8 Hz, 2H), 0.50 (br, exchangeable with D\(_2\)O), 7.55 (m, 4H), 7.66 (t, J=8 Hz, 2H), 7.92 (d, J=8 Hz, 2H), 7.96 (m, 2H), 8.04 (d, J=8 Hz, 2H), 8.09 (m, 2H), 8.24 (d, J=8 Hz, 2H), 8.35 (d, J=8 Hz, 2H), 8.17 (s, 2H). Anal. Caled for C\(_{60}\)H\(_{54}\)N\(_{18}\)O\(_{13}\): C, 79.52; H, 6.67; N, 11.60. Found: C, 79.79; H, 7.04; N, 11.70.

N,N-Bis[3-[2-(naphthyl) quinolin-4-yl]4,9-dioxo-1,12-dodecaanediylamidate: yield 40% of the free base; mp 115–117°C; \(^1\)H NMR 81.44 (m, 4H), 1.93 (m, 4H), 3.31 (m, 4H), 3.42 (m, 4H), 3.58 (m, 4H), 7.10 (s, 2H), 7.53 (t, J=8 Hz, 2H), 7.57 (m, 4H), 7.78 (t, J=8 Hz, 2H), 7.96 (m, 2H), 8.06 (m, 6H), 8.22 (m, 6H), 8.22 (d, J=8 Hz, 2H), 8.26 (br, exchangeable with D\(_2\)O), 8.41 (d, J=8 Hz, 2H). Anal. Caled for C\(_{68}\)H\(_{60}\)N\(_{24}\)O\(_{14}\): C, 79.09; H, 6.64; N, 7.69. Found: C, 78.70; H, 6.69; N, 7.41.

Bis[3-[2-(naphthyl) quinolin-4-amin]propyl] Succinate

A solution of 4-chloro-2-(naphthyl) quinoline (420 mg, 1.4 mmol) in 3-aminopropanol (1.0 mL) was heated to 130°C for 1.5 h under a nitrogen atmosphere. Treatment with water (2 mL) was followed by extraction of the mixture with AcOEt, drying of the extract with MgSO\(_4\), and concentration to give a residue of N-(3-hydroxypropyl)-2-(naphthyl)quinolin-4-amine. This compound was purified by silica gel chromatography eluting with CH\(_2\)Cl\(_2\)/MeOH (5:1) followed by crystallization of its hydrobromide salt; yield 82% of C\(_{24}\)H\(_{20}\)N\(_{6}\)O.HBr.H\(_2\)O; mp 230–235°C. Anal. Caled for C\(_{24}\)H\(_{20}\)N\(_{6}\)O.HBr.H\(_2\)O: C, 61.82; H, 5.43; N, 6.55. Found: C, 61.98; H, 5.28; N, 6.49.

A mixture of C\(_{24}\)H\(_{20}\)N\(_{6}\)O.HBr.H\(_2\)O (530 mg, 1.25 mmol), SOCl\(_2\) (1.0 mL), and benzene (5 mL) was heated under reflux for 1.5 h. Following concentration on a rotary evaporator, the oily residue was treated with AcOEt (25 mL) and an aqueous solution of NaHCO\(_3\) (10%, 10 mL), and the mixture was stirred briefly. The organic layer was separated, dried (MgSO\(_4\)), and concentrated. The residue of crude N-(3-chloropropyl)-2-(naphthyl)quinolin-4-amine was purified by silica gel chromatography eluting with hexanes/ether (1:2) and then crystallized; yield 75%; mp 131–135°C. HMRs. Caled for C\(_{24}\)H\(_{20}\)N\(_{6}\)Cl\(_2\): m/z 346.1254. Found m/z 346.1240.

N-(3-chloropropyl)-2-(naphthyl)quinolin-4-amine (208 mg, 0.6 mmol), succinic acid (30 mg, 0.3 mmol), and DBU (90 μL, 0.6 mmol) in anhydrous DMF (1.0 mL) was heated to 90°C for 6 h under a nitrogen atmosphere. Following concentration on a rotary evaporator, the residue of bis[3-[2-(naphthyl) quinolin-4-amin]propyl] succinate was subjected to silica gel chromatography eluting with CH\(_2\)Cl\(_2\)/ i-PrOH (5:1). Then it was transformed into a hydrobromide salt, and the salt was crystallized; yield 30% of C\(_{28}\)H\(_{24}\)N\(_{8}\)O\(_3\).HBr.2H\(_2\)O; mp: 210–216°C. \(^1\)H NMR 82.10 (m, 4H), 2.52 (s, 4H), 4.04 (m, 4H), 4.72 (m, 4H), 6.75 (m, 10H), 7.79 (d, J=8 Hz, 2H), 7.98 (m, 4H), 8.07 (m, 4H), 8.14 (d, J=8 Hz, 2H), 8.30 (2H), 8.52 (d, J=8 Hz, 2H). Anal. Caled for C\(_{28}\)H\(_{24}\)N\(_{8}\)O\(_3\).HBr.2H\(_2\)O: C, 56.13; H, 4.87; N, 5.45. Found: C, 56.03; H, 4.62; N, 5.52.
A mixture of 4-chloro-(2-naphthyl) quinoline (600 mg, 2.1 mmol), N,N-bis(3-aminopropyl)methylamine or 1,3-propanediamine (3 mL), and SnCl₂ (50 mL) was heated to 140°C for 4 h under a nitrogen atmosphere. Removal of excess amine under reduced pressure was followed by treatment of the residue with hydrobromic acid and then crystallization of the resultant salt.

N-[3-[N-3-Aminopropyl)methylaminom]propyl]quinolin-4-amine: yield 64% of C₆H₅NO₂, 3HBr; mp 232–235°C; 1H NMR 82.02 (2, 3H), 2.23 (3, 2H), 2.84 (3, 3H), 2.92 (2, 2H), 3.28 (3, 4H), 3.83 (2, 2H), 7.13 (3, 1H), 7.16 (2, 1H), 7.16 (2, 1H), 7.16 (1, 1H), 7.19 (1, 1H), 7.91 (br, exchangeable with D₂O), 8.02 (1, J=8 Hz, 1H, 8.11 (d, J=8 Hz, 1H) 8.20 (2, 4H), 8.71 (d, J=8 Hz, 1H), 8.81 (3, 1H), 9.44 (br, exchangeable with D₂O), 9.82 (br, exchangeable with D₂O). Anal. Calcd for C₂₉H₅₆N₃O₂·HBr: C, 35.43; H, 4.11; N, 6.36. Found: C, 35.53; H, 3.99; N, 6.12.

N-(3-Aminopropyl)-2-(2-naphthyl)quinoline: yield 61% of C₂₉H₂₆N₂·2HBr·1.5H₂O; mp 280–284°C; 1H NMR 82.13 (2, 3H), 3.03 (2, 2H), 3.24 (br, exchangeable with D₂O), 3.85 (3, 2H), 7.27 (1, 1H), 7.70 (2, 2H), 7.95 (br, exchangeable with D₂O), 7.99 (1, J=8 Hz, 1H), 8.07 (d, J=8 Hz, 1H), 8.18 (2, 3H), 8.24 (1, J=8 Hz, 1H), 8.71 (d, J=8 Hz, 1H), 8.79 (3, 1H), 9.37 (br, exchangeable with D₂O). Anal. Calcd for C₂₉H₂₆N₂·2HBr·1.5H₂O: C, 51.17; H, 5.09; N, 8.14. Found: C, 51.19; H, 4.85; N, 7.96.

1,4-Bis[3-(3-carboxypropionamido)propyl]piperazine

A solution of 1,4-bis(3-aminopropyl)piperazine (1.0 mL, 4.8 mmol) and succinic anhydride (1.0 g, 10.0 mmol) in anhydrous DMF (20 mL) was heated to 70°C for 1 h under a nitrogen atmosphere. The resultant precipitate was filtered, washed with EtOH, and crystallized from DMF: yield 57%; mp 179–180°C; 1H NMR (D₂O, 61.87 (4, 2H), 2.51 (m, 8H), 2.93 (3, 4H), 3.24 (2, 12H). Anal. Calcd for C₃₃H₄₈N₈O₄: C, 54.00; H, 8.05; N, 14.00. Found: C, 53.99; H, 8.26; N, 13.98.

A General Procedure for Preparation of the Remaining Three Compounds. A mixture of succinic acid or 1,4-bis[3-(3-carboxypropionamido)propyl]piperazine (0.3 mmol), triethylamine (0.25 mL, 1.8 mmol), and BOP (225 mg, 0.6 mmol) in anhydrous DMF (4 mL) was stirred at 23°C for 15 min before treatment with a salt C₇H₅NO₃·2HBr or C₇H₅NO₃·2HBr·1H₂O (0.6 mmol). The mixture was stirred at 23°C for 24 h and then filtered. The solution was concentrated on a rotary evaporator and a residue of a crude product was transformed into a hydrobromide salt, and the salt crystallized.

N,N-Bis[3-[N-[3-[2-(2-naphthyl)quinolin-4-amine]propyl]methylamino]propyl]succinimide (from N-[3-[N-3-aminopropyl)methylamino]propyl]quinolin-4-amine and 1,4-bis[3-(3-carboxypropionamido)propyl]piperazine): yield 47% of C₃₃H₄₈N₈O₄; mp 290–296°C; 1H NMR 81.86 (6, 8H), 2.64 (s, 8H), 2.73–3.6 (3, 24H), 7.21 (2, 2H), 7.71 (2, 6H), 8.77 (br, exchangeable with D₂O), 8.01 (J=8 Hz, 2H), 8.15 (m, 10H), 8.62 (d, J=8 Hz, 2H), 8.71 (s, 2H). Anal. Calcd for C₃₃H₄₈N₈O₄·4HBr·C₄, 44.78; H, 4.60; N, 8.42. Found: C, 44.69; H, 4.86; N, 8.24.

1,4-Bis[3-[N-[3-[2-(2-naphthyl)quinolin-4-amine]propyl]methylamino]propyl]succinimide (from N-[3-[N-3-aminopropyl)methylamino]propyl]quinolin-4-amine and 1,4-bis[3-(3-carboxypropionamido)propyl]piperazine]: yield 46% of C₃₃H₄₈N₈O₄·2HBr·2H₂O; mp 234–240°C; 1H NMR 81.89 (m, 8H), 2.08 (3, 4H), 2.32 (4, 2H), 2.56 (8, 4H), 2.65 (8, 4H), 2.82 (s, 6H), 2.94 (m, 4H), 3.11 (m, 4H), 3.34 (m, 4H), 3.87 (m, 8H), 7.30 (3, 2H), 7.71 (m, 6H), 7.93 (br, exchangeable with D₂O), 8.01 (J=8 Hz, 2H), 8.08 (d, J=8 Hz, 2H), 8.21 (m, 8H), 8.74 (d, J=8 Hz, 2H), 8.81 (s, 2H), 9.38 (br, exchangeable with D₂O), 9.93 (br, exchangeable with D₂O). Anal. Calcd for C₃₃H₄₈N₈O₄·2HBr·2H₂O·C, 43.64; H, 5.28; N, 8.73. Found: C, 43.81; H, 5.43; N, 8.46.

All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents that are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

REFERENCES

The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.

U.S. Pat. No. 4,016,100
U.S. Pat. No. 4,089,801
U.S. Pat. No. 4,234,871
U.S. Pat. No. 4,485,054

What is claimed is:

1. A method of inhibiting immunostimulation in a subject, the method comprising administering an effective amount of a substituted 4-quinolinamine composition to said subject, the 4-quinolinamine composition comprising a compound having the structural formula A

wherein

R₁ is a hydrogen atom or a lower alkyl group;

R₂ is a substituted or unsubstituted alkyl, alkenyl or alkynyl secondary or tertiary amine;

R₃ is a substituted or unsubstituted phenyl group, a substituted or unsubstituted napthyl group, an unsubstituted or unsubstituted anthracenyl group, a substituted or unsubstituted phenanthenyl group or a substituted or unsubstituted styril group;

R₄ is a hydrogen atom;

R₅ is a hydrogen atom; and

R₆ is a hydrogen atom or a halogen atom;
R₁ is a hydrogen atom; and
R₉ is a hydrogen atom,
and pharmaceutically acceptable salts thereof.

2. The method of claim 1, wherein said R₂ phenyl, naphthyl, anthracyl, styryl or phenanthryl group substitution is further defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an alkoxyalkyl group, an ester group, an alkyaminogroup, a dialkylamino group, a cyclic amino group, a halogen atom, and any combination thereof.

3. The method of claim 2, wherein said cyclic amino group is a piperazino group, a pyridino group, a pyrroldino group, an imidazolyl group, a pyridyl group, or a morpholino group.

4. The method of claim 1, wherein said R₆ alkyl substitution is selected from the group consisting of a cyclic amino group, an alkyaminogroup, a dialkylamino, furyl, phenyl, thieryl, and any combination thereof.

5. The method of claim 4, wherein said cyclic amino group is a piperazino group, a pyridino group, a pyrroldino group, an imidazolyl group, a pyridyl group, or a morpholino group.

6. A method of inhibiting immunostimulation in a subject, the method comprising administering an effective amount of a substituted 4-quinoiminamine composition to said subject, the 4-quinoiminamine composition comprising a compound having the structural formula B

wherein the phenyl group can be unsubstituted or substituted at R₁₀, R₁₀₉, R₁₁, R₁₂, and R₁₃, wherein said substituted phenyl group comprises one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, a hydroxy group, an alkyaminokyl group, an alkoxyalkyl group, an ester group, an alkyaminogroup, a dialkylamino group, a cyclic amino group, a furan group, a thiophene group, a halogen atom, or any combination thereof;
R₂ is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracyl group, a substituted or unsubstituted styryl group or a substituted or unsubstituted phenanthryl group;
R₃ is a hydrogen atom;
R₄ is a hydrogen atom;
R₅ is a hydrogen atom or a halogen atom;
R₆ is a hydrogen atom, a halogen atom or an alkyl halogen atom;
R₇ is a hydrogen atom, and pharmaceutically acceptable salts thereof.

7. The method of claim 6, wherein said cyclic amino group is a piperazino group, a pyridino group, a pyrroldino group, an imidazolyl group, or a morpholino group.

8. The method of claim 7, wherein said piperidino group is 4-alkyl piperazino.

9. The method of claim 6, wherein the R₁ phenyl, naphthyl, anthracyl, styryl or phenanthryl group substitution is further defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, a hydroxy group, an alkoxyalkyl group, an ester group, an alkyaminogroup, a dialkylamino group, a cyclic amino group, a halogen atom or any combination thereof.

10. The method of claim 9, wherein said cyclic amino group is a piperazino group, a pyridino group, a pyrroldino group, an imidazolyl group or a morpholino group.

11. A method of inhibiting immunostimulation in a subject, the method comprising administering an effective amount of a substituted 4-quinoiminamine composition to said subject, the 4-quinoiminamine composition comprising a compound having the structural formula C

wherein
the phenyl group can be unsubstituted or substituted at R₁₀, R₁₀₉, R₁₁, R₁₂, and R₁₃, wherein said substituted phenyl group comprises one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an alkoxyalkyl group, an alkyaminokyl group, a hydroxy group, an ester group, an alkyaminogroup, a dialkylamino group, a cyclic amino group, a furan group, a thiophene group, a halogen atom, or any combination thereof;
n is 0 to 4 CH₂;
R₂ is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracyl group, a substituted or unsubstituted styryl group or a substituted or unsubstituted phenanthryl group;
R₃ is a hydrogen atom;
R₄ is a hydrogen atom;
R₅ is a hydrogen atom or a halogen atom;
R₆ is a hydrogen atom, a halogen atom or an alkyl halogen atom;
R₇ is a hydrogen atom, and pharmaceutically acceptable salts thereof.

12. The method of claim 11, wherein said cyclic amino group is a piperazino group, a pyridino group, a pyrroldino group, an imidazolyl group or a morpholino group.

13. The method of claim 11, wherein the R₁ phenyl, naphthyl, anthracyl, styryl or phenanthryl group substitution is further defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, a hydroxy group, an alkoxyalkyl group, an ester group, an alkyaminogroup, a dialkylamino group, a cyclic amino group, a halogen atom or any combination thereof.

14. The method of claim 13, wherein said cyclic amino group is a piperazino group, a pyridino group, a pyrroldino group, an imidazolyl group or a morpholino group.
15. A method of inhibiting immunostimulation in a subject, the method comprising administering an effective amount of a substituted bis-4-quinolinamine composition to said subject, the bis-4-quinolinamine composition comprising a compound having the structural formula D

wherein

R₁ on the first 4-quinolinamine is covalently attached to
Rₕ on the second 4-quinolinamine by linker group Y,
wherein the linker group Y is an alkyl group, an ester group, an alkoxyalkyl group, an alkylamino group, an alkylamino group, an amido group, a cyclohexane, a cyclohexanediyl, a piperazino group, 1-4, piperazinediyl, or any combination thereof;
R₂ is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted styrlyl group or a substituted or unsubstituted phenanthryl group;
R₃ is a hydrogen atom;
R₄ is a hydrogen atom;
R₅ is a hydrogen atom or a halogen atom;
R₆ is a hydrogen atom or a halogen atom;
R₇ is a hydrogen atom;
R₈ is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted styrlyl group or a substituted or unsubstituted phenanthryl group;
R₉ is a hydrogen atom;
R₁₀ is a hydrogen atom;
R₁₁ is a hydrogen atom or a halogen atom;
R₁₂ is a hydrogen atom or a halogen atom;
and
Rₐ is a hydrogen atom,
and pharmaceutically acceptable salts thereof.

16. The method of claim 15, wherein the R₂ phenyl, naphthyl, anthracenyl, styrly or phenanthryl group substitution is further defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an alkoxyalkyl group, a hydroxy group, an ester group, an alkylamino group, an alkylamino group, a cyclic amino group, a cyclohexane, a cyclohexanediyl, a piperazino group, 1-4, piperazinediyl, or any combination thereof.

17. The method of claim 16, wherein said cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolino group or a morpholino group.

18. The method of claim 17, wherein the R₂ phenyl, naphthyl, anthracenyl, styrly or phenanthryl group substitution is further defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an alkoxyalkyl group, a hydroxy group, an ester group, an alkylamino group, an alkylamino group, a cyclic amino group, a cyclohexane, a cyclohexanediyl, a piperazino group, 1-4, piperazinediyl, or any combination thereof;
R₃ is a hydrogen atom;
R₄ is a hydrogen atom;
R₅ is a hydrogen atom or a halogen atom;
R₆ is a hydrogen atom or a halogen atom;
and
Rₐ is linked covalently to Rₐ by linker Y.
OR\textsubscript{2} is a lower alkyl group; and
R\textsubscript{3} is a hydrogen atom, or a lower alkoxy group;
X is a halogen atom,
and pharmaceutically acceptable salts thereof.

24. The method of claim 23, wherein said R\textsubscript{2} phenyl, naphthyl, anthracyl, styril or phenanthryl group substitution is further defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an alkoxyalkyl group, a hydroxy group, an ester group, an alkylamino group, an dialkylamino group, a cyclic amino group, a halogen atom or any combination thereof.

25. The method of claim 24, wherein said cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolino group or a morpholino group.

26. The method of claim 23, wherein said linker is α,ω-alkanediyl.

27. A substituted 4-quinolinamidine composition having the structural formula A

\[
\text{\includegraphics{formula_A.png}}
\]

wherein
R\textsubscript{4} is a hydrogen atom or a lower alkyl group;
R\textsubscript{5} is a substituted or unsubstituted alkyl, alkenyl or alkynyl secondary or tertiary amine;
R\textsubscript{6} is a substituted naphthyl group, an substituted or unsubstituted anthracyl group, a substituted or unsubstituted phenanthryl group or a substituted or unsubstituted styryl group;
R\textsubscript{7} is a hydrogen atom;
R\textsubscript{8} is a hydrogen atom;
R\textsubscript{9} is a hydrogen atom or a halogen atom;
R\textsubscript{10} is a hydrogen atom or a halogen atom; and
R\textsubscript{11} is a hydrogen atom,
and pharmaceutically acceptable salts thereof.

28. The composition of claim 27, wherein said R\textsubscript{3} phenyl, naphthyl, anthracyl, styril or phenanthryl group substitution is further defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an alkoxyalkyl group, a hydroxy group, an ester group, an alkylamino group, a dialkylamino group, a cyclic amino group, a halogen atom and any combination thereof.

29. The composition of claim 28, wherein said cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolyl group, a pyridyl group, or a morpholino group.

30. The composition of claim 27, wherein said R\textsubscript{2} alkyl substitution is selected from the group consisting of a cyclic amino group, furyl, thiencyl, alkylamino group, dialkylamino group, phenyl, and any combination thereof.

31. The composition of claim 30, wherein said cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolyl group, a pyridyl group, or a morpholino group.

32. A substituted 4-quinolinamidine composition having the structural formula B

\[
\text{\includegraphics{formula_B.png}}
\]

wherein
the phenyl group can be substituted at R\textsubscript{10}, R\textsubscript{11}, R\textsubscript{12} and R\textsubscript{13}, wherein said substituted phenyl group comprises one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an alkoxyalkyl group, an alkylaminoalkyl group, an ester group, an alkylamino group, a dialkylamino group, a cyclic amino group, a furan group, a thiophene group, a halogen atom or any combination thereof;
R\textsubscript{1} is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracyl group, a substituted or unsubstituted styryl group or a substituted or unsubstituted phenanthryl group;
R\textsubscript{3} is a hydrogen atom;
R\textsubscript{4} is a hydrogen atom;
R\textsubscript{5} is a hydrogen atom or a halogen atom;
R\textsubscript{6} is a hydrogen atom, a halogen atom or an alkyl halogen atom;
R\textsubscript{7} is a hydrogen atom,
and pharmaceutically acceptable salts thereof.

33. The composition of claim 32, wherein said cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolino group or a morpholino group.

34. The composition of claim 33, wherein said cyclic amino group is 4-alkyl-piperazino.

35. The composition of claim 32, wherein the R\textsubscript{2} phenyl, naphthyl, anthracyl, styril or phenanthryl group substitution is further defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an alkoxyalkyl group, an ester group, an alkylamino group, a hydroxy group, a dialkylamino group, a cyclic amino group, a halogen atom or any combination thereof.

36. The composition of claim 35, wherein said cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolino group or a morpholino group.

37. A substituted 4-quinolinamidine composition having the structural formula C
the phenyl group can be unsubstituted or substituted at R_2, R_{10}, R_{11}, R_{12}, and R_{13}, wherein said substituted phenyl group comprises one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an alkoxyalkyl group, an alkylaminoalkyl group, an ester group, an alkylamino group, an alkylaminogroup, a cyclic amino group, a furan group, a thiophene group, a halogen atom, or any combination thereof;

n is 0 to 4 CH_2;

R_2 is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracyl group, a substituted or unsubstituted styryl group or a substituted or unsubstituted phenanthryl group;

R_3 is a hydrogen atom;

R_4 is a hydrogen atom;

R_5 is a hydrogen atom or a halogen atom;

R_6 is a hydrogen atom, a halogen atom or an alkyl halogen atom;

R_8 is a hydrogen atom,

and pharmaceutically acceptable salts thereof.

38. The composition of claim 37, wherein said cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolino group or a morpholino group.

39. The composition of claim 37, wherein the R_2 phenyl, naphthyl, anthracyl, styryl or phenanthryl group substitution is further defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an alkoxyalkyl group, an ester group, an alkylaminogroup, an alkylaminogroup, a cyclic amino group, a halogen atom or any combination thereof.

40. The composition of claim 39, wherein said cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolino group or a morpholino group.

41. A substituted bis-4-quinolinamine composition having the structural formula D

R_2 on the first 4-quinolinamine is covalently attached to R_6 on the second 4-quinolinamine by linker group Y, wherein the linker group Y is an alkyl group, an ester group, an alkoxyalkyl group, an alkylaminogroup, an alkylaminogroup, an amido group, a cyclohexane, a cyclohexanediyl, a piperazino group, 1-4, piperazinediyl, or any combination thereof;

R_3 is a substituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracyl group, a substituted or unsubstituted styryl group or a substituted or unsubstituted phenanthryl group;

R_4 is a hydrogen atom;

R_5 is a hydrogen atom;

R_6 is a hydrogen atom or a halogen atom;

R_7 is a hydrogen atom or a halogen atom;

R_6 is a hydrogen atom;

R_6 is a hydrogen atom or a halogen atom;

R_7 is a hydrogen atom or a halogen atom; and

R_8 is a hydrogen atom, and pharmaceutically acceptable salts thereof.

42. The composition of claim 41, wherein the R_2 phenyl, naphthyl, anthracyl, styryl or phenanthryl group substitution is further defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an alkoxyalkyl group, an ester group, an alkylaminogroup, an alkylaminogroup, a cyclic amino group, a halogen atom or any combination thereof.

43. The composition of claim 42, wherein said cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolino group or a morpholino group.

44. The composition of claim 41, wherein the R_2 phenyl, naphthyl, anthracyl, styryl or phenanthryl group substitution is further defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxy group, an ester group, an alkylaminogroup, an alkylaminogroup, a cyclic amino group, a halogen atom or any combination thereof.

45. The composition of claim 44, wherein said cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolino group or a morpholino group.

46. A substituted bis-9-aminoacridine composition having the structural formula E
wherein

R_n on the first 9-aminoacridine is covalently attached to R_n' on the second 9-aminoacridine by linker group Y, wherein the linker group Y is an alkyl group, an ester group, an alkoxyalkyl group, an alkylamino group, an alkyloxynaphthyl group, an amido group, a cyclohexane, a cyclohexanediylyl, a piperazino group, 1–4, piperazinediylyl, or any combination thereof;

OR_2 is a lower alkyl group;

OR_2' is a lower alkyl group;

R_3 is a lower alkoxy group;

R_4 is a lower alkoxy group;

X is a halogen atom;

X' is a halogen atom,

and pharmaceutically acceptable salts thereof.

47. A 4-quinolinamine, 9-aminoacridine composition having the structural formula F

48. The composition of claim 47, wherein said R_2 phenyl, naphthyl, anthracyl, styril or phenanthryl group substitution is further defined as one or more substitutions selected from the group consisting of an alkyl group, an alkoxyalkyl group, an alkyloxynaphthyl group, an ester group, an alkylamino group, an alkyloxynaphthyl group, a cyclic amino group, a halogen atom or any combination thereof.

49. The composition of claim 48, wherein said cyclic amino group is a piperazino group, a piperidino group, a pyrrolidino group, an imidazolino group or a morpholino group.

* * * * *
It is certified that an error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title page.
Item [73], please insert -- Australia National University, Australian Capital Territory, (AU). --.

Column 51.
Line 49, please delete “or any” and insert -- and any -- therefor.

Column 52.
Lines 7, 39 and 64, please delete “or any” and insert -- and any -- therefor.

Column 53.
Line 64, please delete “or any” and insert -- and any -- therefor.

Column 54.
Line 2, please delete “α,ω)- alkanedieyl” and insert -- α,ω- alkanedieyl -- therefor.

Column 55.
Line 11, please delete “or any” and insert -- and any -- therefor.

Column 56.
Lines 26 and 59, please delete “or any” and insert -- and any -- therefor.

Column 57.
Lines 27 and 59, please delete “or any” and insert -- and any -- therefor.

Column 58.
Line 50, please delete “or any” and insert -- and any -- therefor.
Line 60, please delete “or any” and insert -- and any -- therefor.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 60.
Line 31, please delete “or any” and insert -- and any -- therefor.

Signed and Sealed this

Fifteenth Day of April, 2003

JAMES E. ROGAN
Director of the United States Patent and Trademark Office