(54) VARIANT VARICELLA-ZOSTER VIRUSES AND METHODS OF USE

(75) Inventors: Charles F. Grose, Iowa City, IA (US); Richard Santos, Iowa City, IA (US)

(73) Assignee: University of Iowa Research Foundation, Iowa City, IA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 47 days.

(21) Appl. No.: 09/661,596
(22) Filed: Sep. 14, 2000

Related U.S. Application Data

(60) Provisional application No. 60/153,779, filed on Sep. 14, 1999.

(51) Int. Cl. A61K 39/245, A61K 39/12
(52) U.S. Cl. 424/229.1, 424/230.1; 424/204.1; 435/91.1; 435/91.33; 435/89; 536/23.72

(57) Field of Search 435/89, 91.1, 91.33; 424/229.1, 230.1, 204.1; 536/23.72

(56) References Cited

U.S. PATENT DOCUMENTS

5,596,880 A 1/1997 Newton et al.
5,952,174 A 9/1999 Nikiforov et al.
6,087,170 A * 7/2000 Kemble 435/368

OTHER PUBLICATIONS

(List continued on next page.)

Primary Examiner—Ali R. Salimi
(74) Attorney, Agent, or Firm—Mucting, Raasch & Gebhardt, P.A.

(57) ABSTRACT

The present invention provides methods directed to detecting antibodies that specifically bind to a varicella zoster polypeptide, detecting the presence of a varicella zoster virus in an animal, diagnosing a disease caused by varicella zoster virus, and detecting a varicella zoster virus having a single nucleotide polymorphism in ORF68. The present invention also provides a vaccine composition, a method for producing a modified attenuated varicella zoster virus, isolated polynucleotides, and isolated polypeptides, and viruses.

3 Claims, 10 Drawing Sheets
OTHER PUBLICATIONS

B. Rentier, “Introduction”, *Neurol., 45(Suppl 8), S8 (1995).*

M. Yang et al., “Retrograde, Transneuronal Spread of Pseudorabies Virus in Defined Neuronal Circuitry of the Rat Brain is Facilitated by gE Mutations that Reduce Virulence,” *J. Virol.*, 73, 4350–4359 (May, 1999).

P. R. Kinchington et al., “Molecular basis for a geographic variation of varicella-zoster virus recognized by a peptide antibody,” Neurology, 45 (Suppl 8), S16–21 (1995).

M. Yang et al., “Retrograde, Transneuronal Spread of Pseudorabies Virus in Defined Neuronal Circuitry of the Rat Brain is Facilitated by gE Mutations that Reduce Virulence,” *J. Virol.*, 73, 4350–4359 (May, 1999).

* cited by examiner
Fig. 1A

(SEQ ID NO:72)

1 MTVPNKPVVG VLMGFIITG LTRITNPVRA SVLRYDDFT DEDKLDTNSV
51 YEPPYHSADA ESSWVNRGES SRKAYDHNSP YIWPNDYDG FLENAHEHG
101 VYNQGRGIDS GERLMQPTQM SAQEDLGDDT GIHVIIPTLNG DDRHKIVNVD
151 **QRQGYGDVF** DLNPKPGQQR LIEVSVEENH PFTLRPIQR IYGVRYTETW
201 SFLPSLTCTG DAAAPAIHIC LKHTTCFQDV VVDVDAENT KEDQLABISY
251 RFQGKKEADQ PWIVVTSTL FDELELDPE IEPGVKVLR TEKQYLGVYI
301 WNMRLRGTTS TYATFLVTWK GDEKTRNPTP AVTPQPRGAE PHMNYHSHV

Fig. 1B

<table>
<thead>
<tr>
<th>3B3.2</th>
<th>3B3.11</th>
<th>3B3.13</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>GTG</td>
<td>GAC</td>
<td></td>
</tr>
<tr>
<td>CAA</td>
<td>CGT</td>
<td>CAA</td>
</tr>
<tr>
<td>TAC</td>
<td>GGT</td>
<td>GAC</td>
</tr>
<tr>
<td>GAC</td>
<td>GTG</td>
<td>TTT</td>
</tr>
<tr>
<td>TTT</td>
<td>AAA</td>
<td>GGA</td>
</tr>
<tr>
<td>GAT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(SEQ ID NO:73)

(SEQ ID NO:74)

VZVgE (149-161)

VZVgE-D150N (149-161)

<table>
<thead>
<tr>
<th>V</th>
<th>D</th>
<th>Q</th>
<th>R</th>
<th>Q</th>
<th>Y</th>
<th>G</th>
<th>D</th>
<th>V</th>
<th>F</th>
<th>K</th>
<th>G</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTG</td>
<td>GAC</td>
<td>CAA</td>
<td>CGT</td>
<td>CAA</td>
<td>TAC</td>
<td>GGT</td>
<td>GAC</td>
<td>GTG</td>
<td>TTT</td>
<td>AAA</td>
<td>GGA</td>
<td>GAT</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

(SEQ ID NO:75)
Fig. 2

Reaction 1:
MP24/P3

Reaction 2:
MP23/P4

Transformation in DH5α MAX Efficient Cells

IN VIVO RECOMBINATION

pTM1-VZV gL3B3.13

3B3.13
Fig. 3

![Graph showing the number of pixels positive for VZV IE 62 over hours post-infection. The x-axis represents hours post-infection with bars for 4 HR, 8 HR, 12 HR, 24 HR, and 48 HR. The y-axis represents the number of pixels positive. The graph shows a significant increase in positive pixels at 48 HR for VZV-MSP compared to VZV-32.](image-url)
Fig. 4

AVERAGE FOLD INCREASE

0 20 40 60 80 100 120

VZV-32

VZV-MSP

HOURS POST-INFECTION

24 HR 48 HR
Polymorphisms in gE

<table>
<thead>
<tr>
<th>bp</th>
<th>119</th>
<th>448</th>
<th>660</th>
<th>1606</th>
<th>1808</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>T>I</td>
<td>D>N</td>
<td>silent</td>
<td>L>I</td>
<td>G>D</td>
</tr>
</tbody>
</table>

Dumas

- CACACCGAT\-
- GTGACGA\-
- ATA\-
- TTTCTACGA\-
- TTTGGTAAC

MSP

- CACACCGAT\-
- GTG\-
- ACC\-
- TTTCTACGA\-
- TTTGGTAAC

Ellen

- CACATCGAT\-
- GTG\-
- ACC\-
- ATA\-
- TTT\-
- ATACGA\-
- TTTGGTAAC

Iceland

- CACATCGAT\-
- GTG\-
- ACC\-
- ATA\-
- TTT\-
- ATACGA\-
- TTTGGTAAC

80-2

- CACATCGAT\-
- GTG\-
- ACC\-
- ATA\-
- TTT\-
- ATACGA\-
- TTTGGTAAC

Oka

- CACATCGAT\-
- GTG\-
- ACC\-
- ATA\-
- TTTCTACGA\-
- TTTGGTAAC

VSD

- CACACCGAT\-
- GTG\-
- ACC\-
- ATA\-
- TTTCTACGA\-
- TTTGGTAAC

32

- CACACCGAT\-
- GTG\-
- ACC\-
- ATA\-
- TTTCTACGA\-
- TTTGGTAAC

VIA

- CACACCGAT\-
- GTG\-
- ACC\-
- ATA\-
- TTTCTACGA\-
- TTTGGTAAC
<table>
<thead>
<tr>
<th>bp</th>
<th>Polymorphisms in gl</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>546</td>
</tr>
<tr>
<td></td>
<td>Q>H</td>
</tr>
<tr>
<td>aa</td>
<td>silent</td>
</tr>
<tr>
<td>Dumas</td>
<td>ATCCAAATGT +/- TCTCCGCT</td>
</tr>
<tr>
<td>MSP</td>
<td>ATCCAAATGT +/- TCTCCGCT</td>
</tr>
<tr>
<td>Ellen</td>
<td>ATCCAAATGT +/- TCTCCGCT</td>
</tr>
<tr>
<td>Iceland</td>
<td>ATCCAAATGT +/- TCTCCGCT</td>
</tr>
<tr>
<td>80-2</td>
<td>ATCCAAATGT +/- TCTCCGCT</td>
</tr>
<tr>
<td>Oka</td>
<td>ATCCAAATGT +/- TCTCCGCT</td>
</tr>
<tr>
<td>VSD</td>
<td>ATCCAAATGT +/- TCTCCGCT</td>
</tr>
<tr>
<td>32</td>
<td>ATCCAAATGT +/- TCTCCGCT</td>
</tr>
<tr>
<td>VIA</td>
<td>ATCCAAATGT +/- TCTCCGCT</td>
</tr>
</tbody>
</table>
Polymorphisms in gH

<table>
<thead>
<tr>
<th>bp</th>
<th>39</th>
<th>215</th>
<th>573</th>
<th>806</th>
<th>1254</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>silent</td>
<td>76</td>
<td>R>K</td>
<td>silent</td>
<td>269</td>
</tr>
<tr>
<td>Dumas</td>
<td>---CCTCTTTGG--/GATAGAAAA--/ATTCTGGAA--/GGACCACCCG--/AACACTATA---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSP</td>
<td>---CCTCTTTGG--/GATAGAAAA--/ATTCTGGAA--/GGACTACCG--/AACACTATA---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellen</td>
<td>---CCTCTGTTG--/GATAAAAAA--/ATTCTGGAA--/GGACTACCG--/AACACTATA---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td>---CCTCTGTTG--/GATAAAAAA--/ATTCTGGAA--/GGACTACCG--/AACACTATA---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-2</td>
<td>---CCTCTGTTG--/GATAAAAAA--/ATTCTGGAA--/GGACTACCG--/AACACTATA---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oka</td>
<td>---CCTCTTTGG--/GATAGAAAA--/ATTCTGAA--/GGACTACCG--/AACACTATA---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSD</td>
<td>---CCTCTTTGG--/GATAGAAAA--/ATTCTGGAA--/GGACCACCCG--/AACACTATA---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>---CCTCTTTGG--/GATAGAAAA--/ATTCTGGAA--/GGACTACCG--/AACACTATA---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIA</td>
<td>---CCTCTTTGG--/GATAGAAAA--/ATTCTGGAA--/GGACTACCG--/AACACTATA---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bp</th>
<th>2028</th>
<th>2099</th>
<th>2181</th>
<th>2445</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>silent</td>
<td>700</td>
<td>R>K</td>
<td>silent</td>
</tr>
<tr>
<td>Dumas</td>
<td>---AAACCTCAA--/AGCAGGGAT/TATTTGGAA--/CTGGCCGTA---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSP</td>
<td>---AAACCTCAA--/AGCAGGGAT/TATTTGGAA--/CTGGCCGTA---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellen</td>
<td>---AAACCTCAA--/AGCAGAGAT/TATTTGGAA--/CTGGCCGTA---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td>---AAACCTCAA--/AGCAGAGAT/TATTTGGAA--/CTGGCCGTA---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-2</td>
<td>---AAACCTCAA--/AGCAGAGAT/TATTTGGAA--/CTGGCCGTA---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oka</td>
<td>---AAACCTCAA--/AGCAGGGAT/TATTTGGAA--/CTGGCCGTA---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSD</td>
<td>---AAACCTCAA--/AGCAGGGAT/TATTTGGAA--/CTGGCCGTA---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>---AAACCTCAA--/AGCAGGGAT/TATTTGGAA--/CTGGCCGTA---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIA</td>
<td>---AAACCTCAA--/AGCAGGGAT/TATTTGGAA--/CTGGCCGTA---</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 9

Polymorphisms in gL

<table>
<thead>
<tr>
<th>(SEQ ID NO:77)</th>
<th>(SEQ ID NO:78)</th>
<th>(SEQ ID NO:79)</th>
<th>(SEQ ID NO:80)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dumas</td>
<td>L</td>
<td>Oka</td>
<td>L</td>
</tr>
<tr>
<td>aa 8 9 10 11</td>
<td>Q I V</td>
<td>aa 8 9 10</td>
<td>Q M I</td>
</tr>
<tr>
<td>106 107 108</td>
<td></td>
<td>106 107 108</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V D E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 10

Polymorphisms in IE62

<table>
<thead>
<tr>
<th>AA</th>
<th>30</th>
<th>42</th>
<th>61</th>
<th>129</th>
<th>131</th>
<th>172</th>
<th>190</th>
<th>195</th>
<th>341</th>
<th>473</th>
<th>516</th>
<th>602</th>
<th>609</th>
<th>628</th>
<th>657</th>
<th>688</th>
<th>703</th>
<th>743</th>
<th>879</th>
<th>958</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S>A</td>
<td></td>
</tr>
<tr>
<td>Dumas</td>
<td>GCG</td>
<td>TCG</td>
<td>CAC</td>
<td>CTT</td>
<td>ACA</td>
<td>GTT</td>
<td>CAA</td>
<td>AAT</td>
<td>CCA</td>
<td>GCA</td>
<td>GTG</td>
<td>GCG</td>
<td>CGA</td>
<td>AGC</td>
<td>GCT</td>
<td>CCA</td>
<td>GTC</td>
<td>CTT</td>
<td>GGA</td>
<td>AGG</td>
</tr>
<tr>
<td>MSP</td>
<td>GCG</td>
<td></td>
</tr>
<tr>
<td>Ellen</td>
<td></td>
<td></td>
<td>CAT</td>
<td>CTC</td>
<td>ACG</td>
<td>GTG</td>
<td>CAG</td>
<td>GAT</td>
<td>CCG</td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td></td>
</tr>
<tr>
<td>80-2</td>
<td>GCG</td>
<td></td>
<td>CAT</td>
<td>CTC</td>
<td></td>
</tr>
<tr>
<td>OKA</td>
<td>GCG</td>
<td></td>
<td>CAT</td>
<td>CTC</td>
<td></td>
</tr>
<tr>
<td>VSD</td>
<td>GCG</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>GCG</td>
<td></td>
</tr>
<tr>
<td>VIA</td>
<td>GCG</td>
<td></td>
</tr>
</tbody>
</table>

AA	963	1035	1057	1071	1072	1080	1093	1143	1145	1201	1208	1209	1215	1228	1241	1243	1255	1260	
		*	Q>R	*	Q>R	*		*		*		*							
		S>A																	
Dumas	TTG	GCA	CAG	CGA	CAG	GCA	CCA	CAC	TCA	TCA	CAG	CTG	AGC	GAG	TCC	ATC			
MSP																			
Ellen			CTG																
Iceland																			
80-2																			
OKA																			
VSD																			
32																			
VIA																			

* Q>R
* H>R
* S>A
* Q>R
* L>P
* S>G
* E>G
* S>A
I>V
1

VARIKEA-ZOSTER VIRUSES AND METHODS OF USE

CONTINUING APPLICATION DATA

This application claims the benefit of U.S. Provisional Application Ser. No. 60/153,779, filed Sep. 14, 1999, which is incorporated by reference herein.

GOVERNMENT FUNDING

The present invention was made with government support under Grant No. AI 22795, awarded by the National Institutes of Health. The Government has certain rights in this invention.

BACKGROUND

Varicella-zoster virus (VZV) is an ancient virus. Estimations of its origins have established that the modern herpesviruses arose some 60–80 million years ago. VZV is a member of the alphaherpesvirus subfamily of herpesviridae. It is the etiologic agent of chickenpox in childhood, after which the virus enters a latent state in the dorsal root ganglia; decades later, the same virus reactivates and causes the disease shingles (herpes zoster). The entire sequence of the 125 kbp VZV genome has been published (see Davison et al., J. Gen. Virol., 67:1759–1816 (1986)). With the subsequent publication of sequence data from other herpesviruses, the alphaherpesviruses have now been subdivided into two genera called Simplexvirus and Varicellovirus. VZV is considered to have one of the most stable genomes of all herpesviruses. The Oka strain of varicella vaccine derived from a Japanese child with chickenpox has a few minor genomic differences from North American strains, but to date no antigenic variation has been discovered among the major surface immunogens of the virion (Arvin et al., Annu. Rev. Microbiol., 50:59–100 (1996)).

Based on their extensive analyses of herpesviral molecular evolutionary history, it has been estimated that herpesvirus DNA sequences mutate 10–100 times faster than the equivalent classes of sequences on the host genome. For glycoprotein gB, a highly conserved open reading frame (ORF) among all herpesviruses, it has been calculated that nonsynonymous substitutions have occurred at a rate of 2.7×10^{-8} substitutions per site per year and synonymous substitutions at 10^{-7} substitutions per site per year. Convincing arguments have been made in favor of the concept of cospeciation; in other words, herpesvirus lineages arise by way of co-evolution with their specific host. In the case of VZV, the progenitor virus most likely arose 60–70 million years before the present.

Of all the human herpesviruses, VZV may undergo the fewest replication cycles during the lifetime of the infected host. Based on a probable schema of pathogenesis, the virus actively replicates for a period of 10–14 days after infection of the human host. During a bout of chickenpox, therefore, VZV has at most 20 replication cycles. Based on the current understanding of VZV latency and reactivation, no further replication occurs unless the individual develops herpes zoster in late adulthood. Because of the above scenario, the genetic stability of the VZV genome has been presumed.

VZV contains the smallest genome of the human herpesviruses, containing about 70 ORFs within the complete VZV-Dumas sequence. Of these ORFs, at least seven code for glycoproteins, of which glycoprotein B (gB), glycoprotein E (gE), glycoprotein H (gH), and glycoprotein I (gI) are present on the exterior of the virion. VZV gE, in complex with glycoprotein I (gI), acts as a human Fe receptor on the surface of infected cells (Litwin et al., J. Virol., 66:3643–51 (1992), Litwin et al., Virology, 178:263–72 (1990)). The cytoplastic tails of both gE and gI contain endocytosis motifs, allowing internalization and recycling of the complex to and from the cell (Olson et al., J. Virol., 71:110–119 (1997), Olson et al., J. Virol., 71:4042–4054 (1997)). The gE and gI cytoplasmic tails also are modified by both serine/threonine and tyrosine phosphorylation motifs. The fact that gE cannot be deleted suggests that it is essential (Cohen et al., Proc. Natl. Acad. Sci. USA, 90:7376–7380 (1993), Mallory et al., J. Virol., 71:8279–88 (1997)).

In VZV infection in humans, VZV gE is the most abundantly produced viral glycoprotein during infection. VZV gE is a major antigenic determinant to which numerous humoral and cytolytic responses are observed (Arvin et al., J. Immunol., 137:1346–1351 (1986); Bergen et al., Viral Immunol., 4:151–166 (1991); and Ito et al., J. Virol., 54:98–103 (1985)). Recently, an immunodominant B-cell epitope was demarcated in the gE ectodomain; the epitope is defined by murine monoclonal antibody (MAb) 3B3 (Duus et al., J. Virol., 70:8961–8791 (1996); Hatfield et al., Biochimica et Biophysica Acta, 22:332–337 (1997), and Grose, U.S. Pat. No. 5,710,348).

It has long been believed that varicella zoster virus exists in nature as a single serotype (Rentier, Neutral, 45 (Suppl. 8), 38 (1995), and that all varicella zoster viruses had essentially the same immunological properties. The first strain of varicella zoster virus that was sequenced was VZV-Dumas. Following the publication of this sequence, it was further believed that all varicella zoster viruses had essentially the same genetic properties as VZV-Dumas.

Significant progress has been made in the diagnosis of and vaccination against the sole VZV serotype that is believed to exist and cause disease in the United States. However, the production of the reagents used in diagnosis and vaccination of VZV is time consuming and expensive due to the slow growth rate of the strain grown to produce antigens for diagnostic and vaccine use.

SUMMARY OF THE INVENTION

The present invention represents a significant advance in the art of detecting and preventing varicella zoster virus infection and disease. During the characterization of a varicella zoster virus isolated from a patient, the surprising and unexpected observation was made that the virus had a different serotype. This strain was designated VZV-MSP. The molecular basis of the different serotype was found to be a single nucleotide polymorphism in the genome between VZV-Dumas and VZV-MSP. It was also determined that this single nucleotide polymorphism resulted in the loss of an epitope that is the epitope to which most protective antibody is produced upon vaccination with most currently used vaccines.

Typically, varicella zoster virus isolates can be divided into two groups with respect to growth rate in tissue culture cells. Some isolates, for instance VZV-Oka and VZV-Ellen, grow at a rate that results in complete lysis of a monolayer in about 5 to 7 days. Clinical isolates typically grow at a rate that results in complete lysis of a monolayer in about 4 to 5 days. Further investigation revealed that the new strain, VZV-MSP, unexpectedly and surprisingly had by in vitro tissue culture a growth rate that was significantly higher than previously characterized isolates, and was able to lyse a monolayer in about 2 days.
The present invention provides a method for detecting antibodies that specifically bind to a varicella zoster polypeptide. A biological sample that includes an antibody is contacted with a preparation that includes a varicella zoster polypeptide, for instance an isolated varicella zoster polypeptide or fragment thereof, to form a mixture. The varicella zoster polypeptide includes a polymorphism and can be encoded by a polymorphism of ORF37. The polymorphism in the polypeptide encoded by the polymorphic ORF37 can be due to a single amino acid polymorphism, which can be present in the polypeptide as a leucine at amino acid 269. Alternatively, the varicella zoster polypeptide includes a polymorphism and can be encoded by a polymorphism of ORF68. The polymorphism in the polypeptide encoded by the polymorphic ORF68 can be due to a single amino acid polymorphism, which can be present in the polypeptide as an asparagine at amino acid 150. The mixture is incubated under conditions to allow the antibody to bind to the polypeptide, thereby forming a polypeptide:antibody complex. The presence or absence of the polypeptide:antibody complex is then detected. Detecting the polypeptide:antibody complex indicates the presence of antibodies that specifically bind to a varicella zoster polypeptide.

The preparation can include whole varicella zoster virus, for instance VZV-MSP or a modified varicella zoster virus, where the modified virus has the ATCC designation VR-795 wherein the nucleotide sequence of the virus has been modified to comprise the polymorphism of ORF37 or ORF68. The biological sample can be blood, vesicle fluid, bone marrow, brain tissue, or combinations thereof. Also provided are kits for detecting antibodies that specifically bind to a varicella zoster polypeptide. These kits include a whole varicella zoster virus.

In another aspect, the present invention provides a method for detecting the presence of a varicella zoster virus in an animal. The method includes detecting the presence of an antibody to a varicella zoster virus polypeptide encoded by a polymorphic ORF of GenBank X04370. The ORF can be ORF37 or ORF68, where the encoded polypeptide includes a single amino acid polymorphism. When the polypeptide is encoded by ORF37, the single amino acid polymorphism present in the polypeptide can be a leucine at amino acid 269. When the polypeptide is encoded by ORF68, the single amino acid polymorphism present in the polypeptide can be an asparagine at amino acid 150. Optionally, the antibody that is detected does not specifically bind to the varicella zoster polypeptide encoded by ORF37 of GenBank Accession X04370 or ORF68 of GenBank Accession X04370.

The present invention is also directed to a method for diagnosing a disease, for instance chicken pox and shingles, caused by varicella zoster virus. The method includes contacting an isolated polynucleotide, of a subject suspected of having a disease caused by varicella zoster virus with a primer pair. This is incubated under conditions suitable to form a detectable amplification product, and the primer pair will not form a detectable amplification product when incubated with a polynucleotide having the nucleotide sequence of GenBank Accession X04370. An amplification product is detected, where the detection indicates that the subject has a disease caused by varicella zoster virus. The polynucleotide of the subject can be present in a biological sample, including blood, vesicle fluid, bone marrow, brain tissue, or combinations thereof.

The polynucleotide that is amplified to result in a detectable amplification product can include a single nucleotide polymorphism relative to the nucleotide sequence of GenBank Accession X04370 (SEQ ID NO:76). The primer pair can include a first primer that includes nucleotides that hybridize with a polynucleotide of GenBank Accession X04370, and a second primer comprising nucleotides that hybridize with a polynucleotide of GenBank Accession X04370, with the proviso that the 3' nucleotide of the second primer hybridizes to the single nucleotide polymorphism relative to the nucleotide sequence of GenBank Accession X04370 and does not hybridize with the corresponding nucleotide present in the nucleotide sequence of GenBank Accession X04370. The single nucleotide polymorphism can be present in ORF37, and the single nucleotide polymorphism can be present at nucleotide 806 of ORF37. The nucleotide at nucleotide 806 can be a thymine. The single nucleotide polymorphism can be present in ORF68, and the single nucleotide polymorphism can be present at nucleotide 448 of ORF68. The nucleotide at nucleotide 448 can be an adenine. An example of a primer pair is CGATGACAGCATAAAATGTTAAATGTA (SEQ ID NO:1) and CACCCAGATATGTTTTTCTGTCCG (SEQ ID NO:2). Nucleotide of the second primer hybridizes to the single nucleotide polymorphism relative to the nucleotide sequence of GenBank Accession X04370 and does not hybridize with the corresponding nucleotide present in the nucleotide sequence of GenBank Accession X04370. The single nucleotide polymorphism can be present in ORF37, and the single nucleotide polymorphism can be present at nucleotide 806 of ORF37. The nucleotide at nucleotide 806 can be a thymine. The single nucleotide polymorphism can be present in ORF68, and the single nucleotide polymorphism can be present at nucleotide 448 of ORF68. The nucleotide at nucleotide 448 can be an adenine. An example of a primer pair is CGATGACAGCACAATGTTAAATGTA (SEQ ID NO:1) and CACCCAGATATGTTTTTCTGTCCG (SEQ ID NO:2).

The present invention further provides a method for detecting a varicella zoster virus, for instance VZV-MSP, having a single nucleotide polymorphism in ORF68. The method includes contacting a polynucleotide with a primer pair and incubating under conditions suitable to form a detectable amplification product. The primer pair amplifies a portion of ORF68 of GenBank Accession X04370 and/or a polymorphism thereof, that includes nucleotide 448 of ORF68. The amplification product is exposed to a restriction endonuclease having nucleotide 448 in its recognition sequence. Examples of restriction endonuclease include AllI, Asul, AvaiII, CfiI, Eco47I, NsplV, PshAl, Sau96I, and SmlI. The amplification product is then detected. The presence of an amplification product that is not cleaved by the restriction endonuclease indicates the presence of a varicella zoster virus having a single nucleotide polymorphism in ORF68. The polynucleotide can be present in a biological sample, including, for instance, blood, vesicle fluid, bone marrow, brain tissue, or combinations thereof. Optionally, the polynucleotide can be isolated. An example of a primer pair is GGCAATACAAATGACAGC (SEQ ID NO:12) and AAGCTCCAAGTCTGTTGTAACC (SEQ ID NO:71). The present invention is directed to a vaccine composition that includes a modified attenuated varicella zoster virus. The modified attenuated virus has the ATCC designation VR-795, and the nucleotide sequence of the virus has been modified to contain a single nucleotide polymorphism. The
A single nucleotide polymorphism can be present in the coding sequence encoding glycoprotein H. For instance, the single nucleotide polymorphism in the virus can be present at nucleotide 806 of the coding sequence encoding glycoprotein H. The nucleotide present at nucleotide 806 can be a thymine. The single nucleotide polymorphism can be present in the coding sequence encoding glycoprotein E. For instance, the single nucleotide polymorphism in the virus is present at nucleotide 448 of the coding sequence encoding glycoprotein E. The nucleotide present at nucleotide 448 can be an adenine.

Also provided by the present invention is a method for producing a modified attenuated varicella zoster virus. The method includes growing the virus in a tissue culture preparation. The virus has the ATCC designation VR-795, and the nucleotide sequence of the virus has been modified to contain a single nucleotide polymorphism. The single nucleotide polymorphism can be present in the coding sequence encoding glycoprotein H. For instance, the single nucleotide polymorphism in the virus can be present at nucleotide 806 of the coding sequence encoding glycoprotein H. The nucleotide present at nucleotide 806 can be a thymine. The single nucleotide polymorphism can be present in the coding sequence encoding glycoprotein E. The single nucleotide polymorphism in the virus can be present at nucleotide 448 of the coding sequence encoding glycoprotein E. The nucleotide present at nucleotide 448 can be an adenine.

The modified attenuated virus can have an in vitro growth rate that is greater than the in vitro growth rate of a second varicella zoster virus. The second varicella zoster virus can be, for instance, VZV-32, ATCC VR-586, ATCC VR-1367, or ATCC VR-795. The growth rate of the modified varicella virus can be at least about 4-fold greater than the second varicella zoster virus at 48 hours post infection. Optionally, the modified varicella virus can be isolated.

The present invention further provides isolated nucleic acids, including an isolated nucleic acid having the nucleotide sequence of nucleotides 66,074 to 68,599 of GenBank Accession X04370, with the proviso that the nucleotide 66,879 is a thymine; and an isolated nucleic acid having the nucleotide sequence of nucleotides 115,808 to 117,679 of GenBank Accession X04370, with the proviso that nucleotide 116,255 is an adenine. Also provided are the isolated nucleic acid having the nucleotide sequence of nucleotides 66,074 to 68,599 of GenBank Accession X04370, with the proviso that the nucleotide 66,879 is a thymine; and an isolated nucleic acid having the nucleotide sequence of nucleotides 115,808 to 117,679 of GenBank Accession X04370, with the proviso that nucleotide 116,255 is an adenine.

As used herein, the term “polypeptide” refers to a polypeptide or a polynucleotide that encodes a polypeptide, usually via mRNA, when placed under the control of appropriate regulatory sequences. The boundaries of the coding region are generally determined by a translation start codon at its 5’ end and a translation stop codon at its 3’ end.

An “ORF” followed immediately by a number, for instance ORF37 or ORF68, refers to a specific open reading frame of varicella zoster viruses. The approximately 70 individual open reading frames of varicella zoster viruses are known to the art, and are described in Davison et al. (J. Gen. Virol., 67:1759–1816 (1986)) and at GenBank Accession X04370. GenBank Accession X04370 is also referred to herein as SEQ ID NO:76. For instance, ORF37 is the open reading frame encoded by nucleotides 66,074 to 68,599 of the nucleotide sequence at GenBank Accession X04370, and ORF68 is the open reading frame encoded by nucleotides 115,808 to 117,679 of the nucleotide sequence at GenBank Accession X04370. A “polymorphic ORF” followed immediately by a number, for instance polymorphic ORF37 or polymorphic ORF68, refers to an open reading frame of varicella zoster virus that has a nucleotide sequence similar to the appropriate nucleotide sequence of GenBank Accession X04370, but includes at least one single nucleotide polymorphism. A polymorphic ORF may contain an insertion or deletion of nucleotides, preferably an insertion of 3 nucleotides or a deletion of 3 nucleotides. When referring to a specific nucleotide of an ORF, the first nucleotide of the start codon is considered to be nucleotide 1, with the following amino acids labeled consecutively. When referring herein to a specific amino acid of a polypeptide encoded by an ORF, the first methionine (prior to any post-translational modification that may occur) is considered to be amino acid 1, with the following amino acids labeled consecutively.

As used herein, the term “polynucleotide” refers to a polymeric form of nucleotides of any length, either ribonucleotides or deoxynucleotides, and includes both double- and single-stranded DNA and RNA. A polynucleotide may include nucleotide sequences having different functions, including for instance coding sequences, and non-coding sequences. A polynucleotide can be obtained directly from a natural source, for instance from a virus, or can be prepared with the aid of recombinant, enzymatic, or chemical techniques. A polynucleotide can be linear or circular in topology. A polynucleotide can be, for example, a portion of a vector, such as an expression or cloning vector, or a fragment.

An “isolated” polypeptide or polynucleotide means a polypeptide or polynucleotide that has been either removed from its natural environment, produced using recombinant techniques, or chemically or enzymatically synthesized. Preferably, a polypeptide or polynucleotide of this invention is purified, i.e., essentially free from any other polypeptide or polynucleotide and associated cellular products or other impurities. An “isolated” varicella zoster virus means a varicella zoster virus has been removed from its natural environment, e.g., the cell that produced the virus.

As used herein, the term “whole varicella zoster virus” refers to a varicella zoster virus particle or virion. The particle can be infective, i.e., be able to reproduce when introduced to an appropriate tissue culture cell under the appropriate conditions, or the particle can be inactive, i.e., incapable of reproducing.

As used herein, a “biological sample” refers to a sample of tissue or fluid isolated from a subject, including not limited to, for example, blood, plasma, serum, lymph tissue and lymph fluid, cerebrospinal fluid, bone marrow, brain tissue, samples of the skin, external secretions of the skin.
including vesicle fluid from a pox, organs, biopsies and also samples of in vitro cell culture constituents including but not limited to conditioned media resulting from the growth of cells and tissues in culture medium, and cell components, or combinations thereof. A “subject” is an animal, including, for instance, a mouse or a human, preferably a human.

As used herein, the term “whole varicella zoster virus particle” refers to an intact varicella zoster virus, for instance a varicella zoster virus that has been produced by a cell and not manipulated to cause the polypeptides that make up the envelope to dissociate from one another.

As used herein, a “primer pair” refers to two single stranded nucleotides that can be used together to amplify a region of a nucleotide, preferably by a polymerase chain reaction (PCR). The nucleotide that results from amplifying a region of a nucleotide is referred to as an “amplification product.” The phrase “under conditions suitable to form a detectable amplification product” refers to the reactions conditions that result in an amplification product. For instance, in the case of a PCR, the conditions suitable to form a detectable amplification product include the appropriate temperatures, ions, and enzyme.

As used herein, the term “hybridize” refers to the ability of two complementary single stranded nucleotides to base pair with each other, where an adenine of one nucleotide will base pair to a thymine of a second nucleotide and a cytosine of one nucleotide will base pair to a guanine of a second nucleotide. The term “hybridize” is used to describe the interaction between a primer and a nucleotide. Hybridization requires that the 3’ nucleotide of a primer be able to base pair with the corresponding nucleotide of the nucleotide that is to be amplified. Typically, the inability of the 3’ nucleotide of a primer to base pair with the nucleotide that is to be amplified results in no amplification (see Newton et al., U.S. Pat. No. 5,595,890).

As used herein, the term “in vitro growth rate” refers to the rate at which a varicella zoster virus spreads from an infected tissue culture cell to an adjacent uninfected tissue culture cell. A tissue culture cell is a cell that replicates in vitro in a nutritive media. The in vitro growth rate of a varicella zoster virus can be measured as described herein.

As used herein, the term “vaccine composition” refers to a pharmaceutical composition containing an antigen, where the composition can be used to prevent or treat a disease or condition in a subject. “Vaccine composition” thus encompasses both subunit vaccines, as described below, as well as compositions containing whole killed, attenuated or inactivated virus. “Subunit vaccine composition” refers to a composition containing at least one antigenic polypeptide, but not all antigens, derived from a varicella zoster virus. Such a subunit vaccine composition is substantially free of intact virus particles. Thus, a “subunit vaccine composition” is prepared from an isolated, preferably purified, immunogenic polypeptide from the virus. A subunit vaccine composition can comprise the subunit antigen or antigens of interest isolated from other antigens or polypeptides from the pathogen.

As used herein, an “attenuated varicella zoster virus” refers to a varicella zoster virus that is less virulent in humans and preferably, when introduced to a human in the appropriate manner, causes a protective immunological response such that resistance to infection will be enhanced and/or the clinical severity of the disease reduced.

As used herein, a “single nucleotide polymorphism” and a “single amino acid polymorphism” refers to a specific type of polymorphism in a nucleotide and a polypeptide, respectively, and are described in greater detail herein.

As used herein, the term “re cognition sequence” refers to the site on a nucleotide to which a restriction endonuclease binds prior to cleaving the polynucleotide.

Unless otherwise specified, “a,” “an,” “the,” and “at least one” are used interchangeably and mean one or more than one.

FIG. 1. Sequence of the ectodomain of VZV gE. (A) The deduced amino acid sequence of the N-terminal 400 of 623 codons of wild-type VZV gE. The previously defined MAb 3B3 epitope is underlined. The aspartic acid residue altered in VZV-MSP is designated by an arrowhead at codon 150. The silent mutation is indicated by an arrowhead at codon 341. (B) Nucleotides 149–161 and deduced amino acid sequence of the MAb 3B3 epitope in the wild type VZV-32 strain (designated VZV gE) and the mutant VZV-MSP strain (designated VZV gE-D150N). The altered nucleotides (G to A) and amino acids (D to N) are underlined and marked with the arrow. The two additional codons inserted into the expression plasmid described in FIG. 4 are designated 3B3.2, while the original 3B3 epitope is designated 3B3.11.

FIG. 2. Recombination PCR mutagenesis. Two additional codons (3B3.2) were inserted into the MAb 3B3 epitope to produce plasmid gl. 3B3.13 from plasmid gl. 3B3.11.

FIG. 3. Quantitative analysis of VZV IE 62 by confocal microscopy. VZV-MSP or VZV-32, infected, monolayers were examined by confocal microscopy at increasing times post-infection at ×4 magnification. The total number of pixels positive for VZV IE 62 within each image was quantitated with the Brainvox tal support programs (University of Iowa) as described herein. The graph summarizes the results from four separate images. Error bars: +/-1 S.D.

FIG. 4. Infectious center assays of VZV-MSP and VZV-32.

FIG. 5. Summary of genetic analysis of VZV-MSP (A) Schematic diagram showing regions of the VZV-MSP genome where the nucleotide sequence has been determined. ORFs 31, 37, 47, 60, 61, 62, 66, 67, and 68 are shown. The polypeptide encoded by the ORF is shown in parentheses under the appropriate ORF. The horizontal arrows above the schematic of the VZV-MSP genome represent the location of the ORFs and the direction of transcription. Uf, unique long; IRS, internal repeat short; Us, unique short; TRs, terminal repeat short; shaded boxes, regions of the VZV-MSP that have been sequenced; hatched boxes, repeat sequences. (B) Summary of results of sequence analysis of amplified fragments. All mutations discovered are listed by the nucleotide number of the Dumas strain. Any substitutions within open reading frames are followed by the predicted amino acid expressed by VZV-MSP. Nucleotides, nucleotides that were sequenced (the numbering system used is that described in Davison et al., J. Gen. Virol., 67:1759–1816 (1986)); Size of Region, number of nucleotides sequenced; ORF(s), the ORF or region near an ORF that was sequenced; Substitutions, locations and nature of single nucleotide polymorphism. If the single nucleotide polymorphism encodes a mutation in the resulting polypeptide, the location and nature of the mutation is shown in parentheses. For instance, at position 269 of glycoprotein gH, the proline has been replaced with a leucine.

FIG. 6. Comparative sequence analysis of the VZV gE. VZV ORF 68 was amplified from the viral DNA of eight
VZV strains, including VZV-MSP. Each sequence was compared to the prototype VZV-Dumas genotype. The location of each detected polymorphism is designated by nucleotide number (bp) of the gE gene. Any resulting single amino acid polymorphism that results in gE (e.g., T->I) is noted below the location of the appropriate detected polymorphism. Silent, the single nucleotide polymorphism did not result in a single amino acid polymorphism; asterisk, location of the single nucleotide polymorphism.

FIG. 7. Comparative sequence analysis of VZV gL. VZV ORF 67 was amplified from viral DNA of eight VZV strains. Each sequence was compared to prototype VZV-Dumas genotype. Any resulting single amino acid polymorphism that results in gL (e.g., Q->H) is noted below the location of the appropriate detected polymorphism. Silent, the single nucleotide polymorphism did not result in a single amino acid polymorphism.

FIG. 8. Comparative sequence analysis of VZV gH. VZV ORF 37 was amplified from viral DNA of eight VZV strains. Each DNA sequence was compared to the prototype VZV-Dumas genotype. Nucleotide variations from the VZV-Dumas genotype were tabulated. The P269L mutation originally discovered in VZV-MSP was also present in six other VZV strains, including VZV-32. A total of nine polymorphisms within ORF 37 were discovered among the eight tested strains. Any resulting single amino acid polymorphism that results in gH (e.g., R->K) is noted below the location of the appropriate detected polymorphism. Silent, the single nucleotide polymorphism did not result in a single amino acid polymorphism.

FIG. 9. Comparative sequence analysis of VZV gI. VZV ORF 60 was amplified from eight VZV strains. Each sequence was compared to the VZV Dumas genotype. Only the gL gene of VZV Oka differed from the gL sequence of VZV Dumas.

FIG. 10. Comparative sequence analysis of the VZV IE 62 regulatory gene. VZV ORF 62 was amplified from eight VZV strains. Each sequence was compared to the VZV-Dumas genotype. A total of 38 polymorphisms were detected among the eight VZV strains. VZV-MSP contained only a silent substitution within codon 30 when compared to the VZV-Dumas gene. Any resulting single amino acid polymorphism that results in IE 62 (e.g., S->A) is noted below the location of the appropriate detected polymorphism. Asterisk, location of single nucleotide polymorphism that did not result in a single amino acid polymorphism.

DETAILED DESCRIPTION OF THE INVENTION

Polynucleotides

The present invention provides polynucleotides, preferably isolated polynucleotides, having a (at least one) single nucleotide polymorphism. An isolated polynucleotide has a nucleotide sequence that is identical to a nucleotide sequence present in VZV-Dumas, but there is a nucleotide that is polymorphic between the isolated polynucleotide of the present invention and the corresponding polynucleotide present in VZV-Dumas. The nucleotide sequence of VZV-Dumas is present at GenBank Accession X04370. The term “polymorphism” refers to the coexistence of at least two different forms (i.e., at least two different nucleotide sequences or at least two different amino acid sequences) of a polynucleotide or a polypeptide in members of Varioilzoster. The polymorphism can be due to a single nucleotide that is different (a single nucleotide polymorphism). In contrast, a polymorphism can be due to several consecutive nucleotides, for instance 2, 3, or 4 consecutive nucleotides, that are different, which is not within the scope of the present definition of “single nucleotide polymorphism.” In the isolated polynucleotides of the present invention, a polymorphism is due to, in increasing order of preference, the presence of 1 single nucleotide polymorphism, at least 1, at least 2, at least 3, most preferably at least 4 single nucleotide polymorphisms in the polynucleotide. Preferably, the isolated polynucleotides of the present invention include no greater than 4 single nucleotide polymorphisms. A single nucleotide polymorphism could be separated from another single nucleotide polymorphism by only one nucleotide.

An example of a polynucleotide of the present invention is a polymorphic ORF37 or the complement thereof, where a polymorphism is at nucleotide 806 of ORF37 (see FIG. 8). The nucleotide at nucleotide 806 can be a guanine, adenine, or thymine, preferably a thymine.

Another example of a polynucleotide of the present invention has the nucleotide sequence of nucleotides 101, 650 to 103,081 (i.e., the region upstream of ORF60) of GenBank Accession X04370 or the complement thereof, but contains a single nucleotide polymorphism at nucleotide 102,203, or a single nucleotide polymorphism at nucleotide 102,575, or a single nucleotide polymorphism at nucleotide 102,617, or a single nucleotide polymorphism at nucleotide 102,969. The nucleotide at nucleotide 102,203 can be a guanine, cytosine, or thymine, preferably a guanine. The nucleotide at nucleotide 102,575 can be a guanine, cytosine, or thymine, preferably a guanine. The nucleotide at nucleotide 102,617 can be a guanine, adenine, or thymine, preferably a thymine. The nucleotide at nucleotide 102,969 can be a guanine, cytosine, or thymine, preferably a guanine.

A further example of a polynucleotide of the present invention has the nucleotide sequence of nucleotides 104, 468 to 104,936 (i.e., the region upstream of ORF61) of GenBank Accession X04370 or the complement thereof, but contains a single nucleotide polymorphism at nucleotide 104,898. The nucleotide at nucleotide 104,898 can be a guanine, cytosine, or thymine, preferably a guanine.

Another example of a polynucleotide of the present invention is a polymorphic ORF62 or the complement thereof, where a polymorphism is at nucleotide 90 of ORF62 (see FIG. 10). The nucleotide at nucleotide 90 can be a guanine, adenine, or thymine, preferably a guanine.

Another example of a polynucleotide of the present invention is a polymorphic ORF66 or the complement thereof, where a polymorphism is at nucleotide 1,104 of ORF66. The nucleotide at nucleotide 1,104 can be a guanine, cytosine, or thymine, preferably a guanine.

Another example of a polynucleotide of the present invention is a polymorphic ORF68 or the complement thereof, where a polymorphism is at nucleotide 448 of ORF68 (see FIG. 6). The nucleotide at nucleotide 448 can be an adenine, cytosine, or thymine, preferably an adenine.

Other examples of polynucleotides of the present invention are shown in FIGS. 5–10.

The polynucleotides of the present invention can be obtained by recombinant techniques known to the art including, for instance, cloning from a member of Varioilzoster or mutagenizing a polynucleotide so that it has the nucleotide sequence of a polynucleotide of the present invention. Alternatively, a polynucleotide of the present invention can be chemically or enzymatically synthesized by, for instance, an oligonucleotide synthesizer or PCR.

The present invention further includes polynucleotides that are similar to polynucleotides of the present invention as described above, including nucleotides of a polymorphic ORF37 or a polymorphic ORF68, or the complements...
thereof. The similarity is referred to as structural similarity and is determined by aligning the residues of the two polynucleotides (i.e., the nucleotide sequence of the candidate polynucleotide and the nucleotide sequence of a preferred polynucleotide of the invention) to optimize the number of identical nucleotides along the lengths of their sequences; gaps in either or both sequences are permitted in making the alignment in order to optimize the number of shared nucleotides, although the nucleotides in each sequence must nonetheless remain in their proper order. Moreover, the nucleotide at the position of the single nucleotide polymorphism (e.g., the thymine at nucleotide 806 in a polymorphic ORF37) is invariant in the candidate polynucleotide. A candidate polynucleotide is the polynucleotide being compared to a preferred polynucleotide of the present invention. Preferably, two nucleotide sequences are compared using the Blastn program, version 2.0.14, of the BLAST 2 search algorithm, as described by Tatusova, et al. (FEMS Microbiol Lett 1999, 174:247–250), and available at http://www.ncbi.nlm.nih.gov/gorf/b2.html. Preferably, the default values for all BLAST 2 search parameters are used, including reward for match=1, penalty for mismatch=–2, gap penalty of the invention is 20. A polynucleotide of the invention is expressed as gap x_dropout=50, expect=10, wordsize=11, and filter on. In the comparison of two nucleotide sequences using the BLAST search algorithm, structural similarity is referred to as “identities.” Preferably, a polynucleotide includes a nucleotide sequence having a structural similarity with a preferred polynucleotide of the present invention of at least about 98%, more preferably at least about 99%, most preferably at least about 99.5% identity.

The present invention further includes isolated polynucleotide fragments. A polynucleotide fragment is a portion of an isolated polynucleotide as described herein, where the portion is preferably at least about 15 bases, more preferably at least about 20 bases, most preferably at least about 25 consecutive nucleotides and includes at least one single nucleotide polymorphism. The single nucleotide polymorphism can be at any location in the polynucleotide fragment, and preferably is the nucleotide at one of the 3′ ends of the fragment (when the polynucleotide fragment is double stranded) or the nucleotide at the 3′ end of the fragment (when the polynucleotide fragment is single stranded).

Construction of vectors containing a polynucleotide of the invention employs standard ligation techniques known in the art. See, for instance, Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press (1989). A vector can provide for further cloning (amplification of the polynucleotide), i.e., a cloning vector, or for expression of the polypeptide encoded by the coding sequence, i.e., an expression vector. The term vector includes, but is not limited to, plasmid vectors, viral vectors, cosmid vectors, or artificial chromosome vectors. Typically, a vector is capable of replication in a bacterial host, for instance E. coli. Preferably the vector is a plasmid.

Selection of a vector depends upon a variety of desired characteristics in the resulting construct, such as a selection marker, vector replication rate, and the like. Suitable host cells for cloning or expressing the vectors herein are prokaryotic or eukaryotic cells. Preferably the host cell secretes minimal amounts of proteolytic enzymes. Suitable prokaryotes include eubacteria, such as gram-negative or gram-positive organisms. Preferably, E. coli is used. Suitable host cells for the expression of the polypeptides of the invention, preferably encoded by a polymorphic ORF37 or a polymorphic ORF68 as described herein and containing a single amino acid polymorphism can be derived from multicellular organisms. Such host cells are capable of complex processing and glycosylation activities. Vertebrate or invertebrate culture can be used. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda, Aedes aegypti, Aedes albopictus, Drosophila melanogaster, Tricholepis ni, and Bombyx mori are known to the art. Vertebrate cells can also be used as hosts. Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (CAS-7, ATCC CRL-1651); human embryonic kidney line (293 or 293A (Mus musculus, used for growth in suspension culture, Graham et al., J. Gen. Virol., 36:59 (1977)); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells-DHFR (CHO); CHO-K1 (ATCC CCL-61); CHO-D; mouse sertoli cells (TM4); monkey kidney cells (CV1, ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELa, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (WI 38, ATCC CCL 75); human liver cells (Hep G2, HB 8063); mouse pancytopenic (MNT 060S2, ATCC CCL 51); TR1 cells; MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).

Suitable plasmids for expression in E. coli, for example, include pUC(X), pKK223-3, pKK232-3, pTrc99A, and pET(X) wherein X denotes a vector family in which numerous constructs are available. pUC(X) vectors can be obtained from Pharmacia Biotech (Piscataway, NJ) or Sigma Chemical Co. (St. Louis, Mo.). pKK223-3, pKK232-3 and pTrc99A can be obtained from Amersham (Buckinghamshire, UK). To facilitate replication inside a host cell, the vector preferably contains an origin of replication (known as an “ori”) or replicon. For example, ColE1 and pPlA replicons are commonly used in plasmids that are to be propagated in E. coli.

Suitable plasmids for expression in eukaryotic cells, for example, include the EPITAG vectors available from Invitrogen (Carlsbad, Calif.) for mammalian cells. Examples of suitable EPITAG vectors include pDNA5.1/myc-His and pEF1/myc-His. Other plasmids that can be used in mammalian cells include, for example, pRC/RSV (Invitrogen) and pSecTag2 (Invitrogen). Suitable plasmids for expression in insect cells include, for instance, pIZ/V5-His (Invitrogen), and pBlueBac.4.5 (Invitrogen).

An expression vector optionally includes regulatory sequences operably linked to the coding sequence. The invention is not limited by the use of any particular promoter, and a wide variety are known. Promoters act as regulatory signals that bind RNA polymerase in a cell to initiate transcription of a downstream (3′ direction) coding sequence. The promoter used in the invention can be a constitutive or an inducible promoter. It can be, but need not be, heterologous with respect to the host cell. Preferred promoters for bacterial transformation include lac, lacUV5, tac, trc, t7, SP6 and ara.

Promoter sequences are known for eukaryotes. Most eukaryotic coding sequences have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is the CXXCAAT region where X may be any nucleotide. At the 3′ end of most eukaryotic genes is an AATAAA sequence that may be a signal for addition of the poly A tail to the 3′
end of the coding sequence. All these sequences are suitably inserted into eukaryotic expression vectors.

Transcription of a coding sequence encoding a polypeptide of the present invention in mammalian host cells can be controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, and Hepatitis-B virus.

Transcription of a coding sequence encoding a polypeptide of the present invention by eukaryotes can be increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually having about 10 to 300 bp, that act on a promoter to increase its transcription. Enhancers are relatively orientation- and position-independent, having been found 5' and 3' to coding sequences, within an intron as well as within the coding sequence itself. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, alphafetoprotein, and insulin). Enhancers from eukaryotic cell viruses are also known and include the SV40 enhancer on the late side of the replication origin, the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. The enhancer may be spliced into the vector at a position 5' or 3' to the coding sequence encoding a polypeptide of the present invention, but is preferably located at a site 5' of the promoter.

An expression vector can optionally include a ribosome binding site (a Shine Dalgarno site for prokaryotic systems or a Kozak site for eukaryotic systems) and a start site (e.g., the codon ATG) to initiate translation of the transcribed message to produce the enzyme. It can also include a termination sequence to end translation. A termination sequence is typically a codon for which there exists no corresponding aminoacyt-IRNA, thus ending polypeptide synthesis. The nucleotide used to transform the host cell can optionally further include a transcription termination sequence. The rrnB terminators, which is a stretch of DNA that contains two terminators, T1 and T2, is often used terminator that is incorporated into bacterial expression systems. Transcription termination sequences in vectors for eukaryotic cells typically include a polyadenylation signal 3' of the coding sequence. The polynucleotide used to transform the host cell option-ally includes one or more marker sequences, which typically encode a molecule that inactivates or otherwise detects or is detected by a compound in the growth medium. For example, the inclusion of a marker sequence can render the transformed cell resistant to an antibiotic, or it can confer compound-specific metabolism on the transformed cell. Examples of a marker sequence arc sequences that confer resistance to kanamycin, ampicillin, chloramphenicol, tetracycline, penicillin, and formulations of polymyxin B1, including, for example, the formulation available under the trade-name ZEOCIN (Invitrogen).

Polypeptides

The present invention is also directed to polypeptides, preferably isolated polypeptides, encoded by polynucleotides of the present invention. A polypeptide has an amino acid sequence that is identical to an amino acid sequence encoded by a coding sequence present in VZV-Dumas, but there is an amino acid that is polymorphic between the polypeptide of the present invention and the corresponding polypeptide encoded by VZV-Dumas. The polymorphism can be due to a single amino acid that is different (a single amino acid polymorphism). In contrast, a polymorphism can be due to several consecutive amino acids, for instance 2, 3, or 4 consecutive amino acids, that are polymorphic, which is not within the scope of the present definition of “single amino acid polymorphism.” In the polypeptides of the present invention, a polymorphism is due to, in increasing order of preference, the presence of 1 single amino acid polymorphism, at least 1, at least 2, at least 3, most preferably at least 4 single amino acid polymorphisms in the polypeptide. Preferably, the isolated polypeptides of the present invention include no greater than 4 single amino acid polymorphisms. A single amino acid polymorphism could be separated from another single amino acid polymorphism by only one amino acid.

Preferably, a polypeptide of the present invention has immunogenic activity. “Immunogenic activity” refers to an amino acid sequence which elicits an immunological response in a subject. An immunological response to a polypeptide is the development in a subject of a cellular and/or antibody-mediated immune response to the polypeptide fragment. Usually, an immunological response includes but is not limited to one or more of the following effects: the production of antibodies, B cells, helper T cells, suppressor T cells, and, optionally, directed specifically to an epitope or epitopes of the polypeptide fragment.

The polypeptides of the present invention can be obtained from, for instance, a biological sample from a subject infected with a varicella zoster virus that encodes the polypeptide. The polypeptide can be obtained from tissue culture cells that have, for instance, been infected with a varicella zoster virus that encodes the polypeptide or contain a recombinant polynucleotide, preferably a polynucleotide of the invention, that encodes the polypeptide of the invention. Alternatively, the polypeptide can be obtained from a prokaryotic cell, for instance Escherichia coli, that contains a recombinant polynucleotide, preferably a polynucleotide of the invention, that encodes the polypeptide of the invention. The polypeptides of the present invention can also be obtained by chemical synthesis.

An example of a polypeptide of the present invention is encoded by a polynucleic ORF37, where a polymorphism is at amino acid 269 (see FIG. 8). When referring herein to a specific amino acid of a polypeptide encoded by an open reading frame, the first methionine is considered to be amino acid 1, with the following amino acids labeled consecu-tively. The polypeptide encoded by ORF37 is referred to in the art as glycoprotein H, gpH, and gpIII. Preferably, the amino acid at position 269 in the polypeptide encoded by a polynucleic ORF37 is an amino acid other than proline, more preferably, the amino acid is a nonpolar (hydrophobic) amino acid, for instance alanine, leucine, isoleucine, valine, phenylalanine, tryptophan, or tyrosine, most preferably, the amino acid is leucine.

An example of a polypeptide of the present invention is encoded by a polynucleic ORF68, where a polymorphism is at amino acid 150 (see FIG. 6). The polypeptide encoded by nucleotides ORF68 is referred to in the art as glycoprotein E, eG, and gpC. Preferably, the amino acid at position 150 in the polypeptide encoded by a polynucleic ORF68 is an amino acid other than aspartic acid, more preferably, the amino acid is asparagine, lysine, histidine, or glutamic acid, most preferably, the amino acid is asparagine.

Other examples of polypeptides of the present invention are shown in FIGS. 5-10. The present invention further includes polypeptides having similarity with the polypeptides of the present invention as described above, including the polypeptide encoded by a polynucleic ORF37 or a polynucleic ORF68. The simi-
larity is referred to as structural similarity and is generally determined by aligning the residues of the two amino acid sequences (i.e., a candidate amino acid sequence and the amino acid sequence of a preferred polypeptide of the present invention) to optimize the number of identical amino acids along the lengths of their sequences; gaps in either or both sequences are permitted in making the alignment in order to optimize the number of identical amino acids, although the amino acids in each sequence must nonetheless remain in their proper order. Moreover, the amino acid at the position of the single amino acid polymorphism (e.g., the leucine at amino acid 269 in the polypeptide encoded by a polymorphic ORF37) is invariant in the candidate polypeptide. A candidate amino acid sequence is the amino acid sequence being compared to an amino acid sequence present in a preferred polypeptide of the present invention. Preferably, two amino acid sequences are compared using the BLAST program, version 2.0.14, of the BLAST 2 search algorithm, as described by Tatusova et al. (JFMN Microbiol. Lett., 174:247–250 (1999)), and available at http://www.ncbi.nlm.nih.gov/gorf/bl2.html. Preferably, the default values for all BLAST 2 search parameters are used, including z-score values of the query alignment include, open gap penalty=1, gap x. dropoff=50, expect=10, words=5, and filter on. In the comparison of two amino acid sequences using the BLAST search algorithm, structural similarity is referred to as “identities.” Preferably, a polypeptide includes an amino acid sequence having a structural similarity with a preferred polypeptide of the present invention of at least 95%, at best at least 97%, at least 98%, and most preferably, at least 99% identity.

The present invention further includes polypeptide fragments. A polypeptide fragment is a portion of a polypeptide as described herein, where the portion includes at least one single amino acid polymorphism. Preferably, the polypeptide fragment has immunogenic activity. Preferably, a polypeptide fragment is at least about 8, more preferably at least about 12, most preferably at least about 20 amino acids in length.

Virology

The present invention further provides isolated varicella zoster viruses. Preferably, the genome of an isolated varicella zoster virus of the present invention includes, in increasing order of preference, 1, at least 1, at least 2, at least 3, most preferably at least 4 single nucleotide polymorphisms when compared to the nucleotide sequence of GenBank Accession X04370. Preferably, the genome of an isolated varicella zoster virus of the present invention includes no greater than 4 single nucleotide polymorphisms. Examples of isolated varicella zoster viruses of the present invention include VZV-MSP, VZV-VSD, VZV-VIA, VZV-Iceland. Alternatively, the isolated varicella zoster virus can be a modified varicella zoster virus, preferably a modified attenuated varicella zoster virus. Modified varicella zoster viruses are described in greater detail herein.

A single nucleotide polymorphism can be present in a coding sequence where it can result in the encoded polypeptide containing a single amino acid polymorphism when compared to the polypeptides encoded by the nucleotide sequence of GenBank X04370. Alternatively, a single nucleotide polymorphism can be silent, i.e., not alter the amino acid sequence of a polypeptide encoded by a coding sequence. A single nucleotide polymorphism can be present in a region of the genome that is not a coding sequence. In an isolated varicella zoster virus of the present invention that encodes a polypeptide having a single amino acid polymorphism, the varicella virus may have a serotype that is different than the serotype known to the art. Preferably, the serotype of an isolated varicella zoster virus of the invention is one that does not contain the epitope to which the monoclonal antibody 3B3 binds. Monoclonal antibody is available from the ATCC (accession number HB-12377). An example of a varicella zoster virus having this serotype is VZV-MSP.

Preferably, the isolated varicella zoster viruses of the present invention have the ability to spread from one cell to another at a rate that is greater than previously characterized varicella zoster viruses. This phenotype, which is also referred to herein as in vitro growth rate and cell-to-cell spread, can be measured by methods that are known to the art, including, for instance, the methods described in Example 2 (i.e., laser scanning confocal microscopy combined with pixel intensity measurement, infectious center assays, and replication in the SCID-hu mouse). Examples of previously characterized varicella zoster viruses that can be used as a baseline for measuring the in vitro growth rate of an isolated varicella virus of the present invention include VZV-32, Oka strain (see Kubo, U.S. Pat. No. 3,985,615), or the varicella zoster viruses having the designations ATCC VR-886, ATCC VR-131, or ATCC VR-133. Vero cells or tissue culture cells that can be used include human melanoma cells (including, for instance, McWo cells), lung fibroblasts (including, for instance, MRC-5 cells, which have the ATCC designation CCL-171), cells derived from human embryos, simian cells, or guinea pig cells.

Preferably, when the infectious center assay is used to measure the in vitro growth rate of a varicella zoster virus, tissue culture cells are added to the well of a 35-mm tissue culture plate and grown until they form a substantially confluent monolayer. The well is inoculated with between about 300 infectious centers to about 700 infectious centers, preferably about 500 infectious centers, i.e., an aliquot of the appropriate varicella zoster virus to result in the initial infection of about 500 cells. The resulting number of infectious centers in the well is measured at 24 hours after inoculation and at 48 hours after inoculation. Preferably, the number of infectious centers of a varicella zoster virus at 48 hours after inoculation is at least about 1.5-fold greater, more preferably at least about 2-fold greater, most preferably at least about 3-fold greater than a previously characterized varicella zoster virus.

Preferably, when laser scanning confocal microscopy combined with pixel intensity measurement is used to measure the in vitro growth rate of a varicella zoster virus, tissue culture cells are inoculated with the varicella zoster virus to be measured. These infected cells are then used to inoculate uninfected cells at a 1:8 ratio of infected to uninfected cells. The spread of the varicella zoster virus is then determined at 24 hours after inoculation at the 1:8 ratio and at 48 hours after inoculation at the 1:8 ratio. The spread of the varicella zoster virus away from a single cell that initially contained the virus can be measured by assaying for evidence of virus in adjacent cells. For instance, the presence of viral nucleic acid or a viral encoded polypeptide can be measured. Preferably, the presence of a viral encoded polypeptide is measured. Preferably, the viral encoded polypeptide is JE62. Preferably, the spread of a varicella zoster virus at 24 hours after inoculation at the 1:8 ratio is at least about 1.5-fold greater, more preferably at least about 2-fold greater than a previously characterized varicella zoster virus. Preferably, the spread of a varicella zoster virus at 48 hours after inoculation at the 1:8 ratio is at least about 2-fold greater, more preferably at least about 4-fold greater than a previously characterized varicella zoster virus.
The present invention is also directed at modifying a varicella zoster virus so that it has an in vitro growth rate that is greater than the in vitro growth rate prior to modification. A varicella zoster virus can be modified by altering the genome of the varicella zoster virus. Preferably, the genome is modified to contain, in increasing order of preference, 1 single nucleotide polymorphism, at least 1, at least 2, at least 3, most preferably, at least 4 single nucleotide polymorphisms. Preferably, the genome is modified to include no greater than 4 single nucleotide polymorphisms. The single nucleotide polymorphisms that could be incorporated into the genome of a varicella zoster virus are described herein. Methods of modifying a genome of a varicella zoster virus are known to the art (see, for instance, Cohen et al., Proc. Natl. Acad. Sci. USA, 90:7376–7380 (1993)). Preferably, recombinant DNA techniques are used to make the modification. Preferably, the single nucleotide polymorphisms that could be incorporated into a varicella zoster virus include nucleotide 806 of ORF37, where the single nucleotide polymorphism is a thymine, and/or nucleotide 448 of ORF68, where the single nucleotide polymorphism is an adenine. Examples of varicella zoster viruses that could be modified include a clinical isolate, Oka strain (see Kubo, U.S. Pat. No. 3,985,615), ATCC VR-586, ATCC VR-1367, or ATCC VR-795, preferably ATCC VR-795. It is expected that varicella zoster virus that is presently used to produce, for instance, antigen for diagnostic assays or whole virus for use in vaccine compositions, can be modified by this method. Diagnostic assays and vaccine compositions are described in greater detail herein. The modified virus will grow at a faster rate and result in lowered production costs.

Another aspect of the present invention is directed to methods for detecting a varicella zoster virus that has a high in vitro growth rate. Preferably, the varicella zoster virus has an in vitro growth rate that is greater than the in vitro growth rate of a second varicella zoster virus, including, for instance, a clinical isolate, Oka strain (see Kubo, U.S. Pat. No. 3,985,615), VZV-32, ATCC VR-586, ATCC VR-1367, or ATCC VR-795. The method can further include isolation of the varicella virus that has the high in vitro growth rate.

Methods of Use

The present invention provides methods for detecting a varicella zoster virus. These methods are useful in, for instance, detecting a varicella zoster virus in an animal, diagnosing a disease caused by a varicella zoster virus, and detecting a varicella zoster virus having a single nucleotide polymorphism. Preferably, such diagnostic systems are in kit form. Kits are described in greater detail herein. In some aspects of the invention, preferably the varicella zoster virus detected is one having a serotype that is different than VZV-32, or the varicella zoster viruses having the designations ATCC VR-586, ATCC VR-1367, or ATCC VR-795, or having a single nucleotide polymorphism when compared to the nucleotide sequence of GenBank Accession X04370. Preferably, the varicella zoster virus detected is one to which the monoclonal antibody 3B3 does not bind. In some aspects of the invention, detecting a varicella zoster virus includes detecting antibodies that specifically bind to a varicella zoster polypeptide. Whether an antibody specifically binds a polypeptide or non-specifically binds a polypeptide can be determined using methods that are known in the art. Preferably, the polypeptide is gE, gH, gB, or IE62, most preferably gE. The methods include contacting an antibody with a preparation that includes a varicella zoster polypeptide to result in a mixture. Preferably, the antibody is present in a biological sample, more preferably blood, vesicle fluid, bone marrow, or brain tissue.
by using, for instance, a primer pair that will form a detectable amplification product when incubated with a polynucleotide having the nucleotide sequence of GenBank Accession X04370. An example of such a primer pair is CAGATGACAGACATAAAATTTGGAATTG (SEQ ID NO: 3), and CACCAAGTATGTTTTCGTGC (SEQ ID NO: 2). Other primer pairs can be designed using methods known to the art to detect other single nucleotide polymorphisms described herein.

In another aspect of the invention that involves detecting a varicella zoster virus by amplification of a polynucleotide, preferably by PCR, the method is directed to detecting a varicella zoster virus having a single nucleotide polymorphism, preferably at nucleotide 448 of ORF68. Preferably, in the varicella zoster virus to be detected, nucleotide 448 of ORF68 is a cytosine, thymine, or adenine, more preferably an adenine. The method includes contacting a polynucleotide with a primer pair and incubating under conditions suitable to form a detectable amplification product. The amplification product is then exposed to a restriction endonuclease, preferably one that has the recognition sequence that includes nucleotide 448 and is no longer able to cleave when that nucleotide of the recognition sequence is not a guanine. Examples of such restriction endonucleases are AflII, AsalI, AvalI, BstGI, Eco471I, NspIV, PshAI, Sau96I, and SlaI. In VZV-Dumas and other varicella zoster viruses, the nucleotide at position 448 of ORF68 in the viral genome is a guanine, and is cleaved by the above-identified restriction endonucleases. When the nucleotide at position 448 of a polymorphic ORF68 is a cytosine, thymine, or adenine, more preferably an adenine, the restriction endonuclease is no longer able to cleave the amplification product. Thus, the method further includes detecting the amplification product after exposure to the restriction endonuclease. The presence of an amplification product that is not cleaved by, for instance, AvalI, indicates the presence of a varicella zoster virus having a single nucleotide polymorphism at nucleotide 448.

The primer pair that is used in this aspect of the invention must amplify a region of varicella zoster virus genomic DNA that includes nucleotide 116,255. With our intending to be limiting, an example of a primer pair includes GGCA- CATCAATGCAGGCAGG (SEQ ID NO:12) and AAGCTC- CCAAGGCTATGAC (SEQ ID NO:7), as well as some of the primers listed in Table 1. Other primers can be designed using methods known in the art.

The methods that involve detecting a varicella zoster virus by amplification of a polynucleotide, preferably by PCR, can also be used to determine the percentage of a population that has a particular single nucleotide polymorphism. Methods of screening populations for the presence of a single nucleotide polymorphism are known to the art. For instance, PCR is sensitive enough to allow samples from a large number of subjects to be pooled and assayed for the presence of a varicella zoster virus having a single nucleotide polymorphism.

The present invention also provides a kit for detecting a varicella zoster virus. The kit includes a varicella zoster polypeptide as described herein (when detecting antibody to varicella zoster virus) or a primer pair as described herein (when amplifying a polynucleotide) in a suitable packaging material in an amount sufficient for at least one assay. Optionally, other reagents such as buffers and solutions needed to practice the invention are also included. Instructions for use of the packaged polypeptide or primer pair are also typically included.

As used herein, the phrase “packaging material” refers to one or more physical structures used to house the contents of the kit. The packaging material is constructed by well-known methods, preferably to provide a sterile, contaminant-free environment. The packaging material has a label which indicates that the polypeptide or primer pair can be used for detecting a varicella zoster virus. In addition, the packaging material contains instructions indicating how the materials within the kit are employed to detect a varicella zoster virus. As used herein, the term “package” refers to a solid matrix or material such as glass, plastic, paper, foil, and the like, capable of holding within fixed limits a polypeptide or a primer pair. Thus, for example, a package can be a glass vial used to contain milligram quantities of a primer pair, or it can be a microtiter plate well to which microgram quantities of a polypeptide have been affixed. “Instructions for use” typically include a tangible expression describing the reagent concentration or at least one assay method parameter, such as the relative amounts of reagent and sample to be admixed, maintenance time periods for reagent/sample admixtures, temperature, buffer conditions, and the like.

The present invention is also directed to vaccines. In one aspect, the present invention is directed to vaccine compositions. Preferably, the vaccine composition will display a protective immunological response such that resistance to infection will be enhanced and/or the clinical severity of the disease reduced. A vaccine composition can include a modified varicella zoster virus, more preferably a modified attenuated varicella zoster virus. A varicella zoster virus can be modified as described above under “Viruses.” In other alphaherpesviruses, for instance, pseudorabies virus (PRV), it has been found that spread of the virus in an infected animal is facilitated by gE mutations that reduce virulence (Yang et al., J. Virol., 73:4350 (1999)), it has been found that increasing the in vitro growth rate does not result in an increased virulence of the virus. It is expected that the varicella zoster viruses used as a source of viral antigen for vaccination can be modified to have an increased in vitro growth rate, and not have a increase in virulence. Preferably, the varicella zoster virus that is modified to have an increased in vitro growth rate is Oka strain (see Kubo, U.S. Pat. No. 3,985,615), or ATCC VR-795. The modified varicella zoster virus of the vaccine composition can a live virus, or an inactivated whole virus preparation. The virulence of a varicella zoster virus modified to have a higher in vitro growth rate can be determined using methods known in the art, for instance by using human volunteers.

In another aspect, the vaccine composition can include an isolated varicella zoster virus polypeptide of the present invention or a fragment thereof. Varicella zoster virus polypeptides of the present invention are described herein.

The vaccine composition includes polypeptide or modified varicella zoster viruses having immunogenic activity. Immunogenic carriers can be used to enhance the immunogenicity of the polypeptide or modified varicella zoster viruses. Such carriers include but are not limited to other polypeptides, polysaccharides, liposomes, and bacterial cells and membranes. Polypeptide carriers may be joined to the polypeptides or modified varicella zoster viruses of the present invention to form fusion polypeptides by recombinant or synthetic means or by chemical coupling. Useful carriers and means of coupling such carriers to polypeptide antigens are known in the art.

The vaccine compositions may be formulated by means known in the art. The formulations include those suitable for parenteral (including subcutaneous, intramuscular, intraperitoneal, and intravenous administration. They are typically prepared as injectables, either as liquid solutions or
suspensions. Solid forms suitable for solution in, or suspension in, liquid prior to injection may also be prepared. The composition may also, for example, be emulsified, or the polypeptide or modified varicella zoster virus encapsulated in liposomes. Where mucosal immunity is desired and the vaccine includes a polypeptide or an inactivated varicella virus, the vaccine compositions may advantageously contain

an adjuvant such as the nontoxic cholera toxin B subunit (see, e.g., U.S. Pat. No. 5,462,734). Cholera toxin B subunit is commercially available, for example, from Sigma Chemical Company, St. Louis, Mo. Other suitable adjuvants are available and may be substituted therefor.

The polypeptide or modified varicella zoster virus can be mixed with pharmacologically acceptable excipients or carriers. Suitable excipients include but are not limited to water, saline, dextrose, glycerol, ethanol, or the like and combinations thereof. In addition, if desired, the vaccine compositions may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, and/or adjuvants which enhance the effectiveness of the vaccine. Such additional formulations and modes of administration as are known in the art may also be used.

The invention is illustrated by the following examples. It is to be understood that the particular examples, materials, amounts, and procedures are to be interpreted broadly in accordance with the scope and spirit of the invention as set forth herein.

EXAMPLE 1

Identification of Single Nucleotide Polymorphisms in ORF 68 (the gE gene) of VZV-6-4

This example demonstrates the presence of a single nucleotide polymorphism in gE. Because of the important functions of gE, this discovery was completely unexpected. This example provides a more complete characterization of the altered biological properties and genetic composition of this contemporary variant in VZV evolution. For the first time, a VZV variant virus has been discovered which has a cell-to-cell spread phenotype clearly distinguishable from previously characterized VZV strains.

Materials and Methods

Viruses and Cells

The mutant VZV was isolated from a 6 year old boy with leukemia, who contracted chickenpox and was hospitalized for intravenous acyclovir treatment in late 1995. The child’s illness responded to treatment and no unusual sequelae were observed. The child’s vesicle fluid was inoculated onto MRC-5 cells in glass tubes. The isolate was designated VZV-MSP because the child lived in Minnesota. The VZV-32 laboratory strain was isolated in Texas in 1976 from an otherwise healthy child with chickenpox (Grose, Virology, 101:1-9 (1980)). This virus has never been passaged more than 20 times. The VZV Oka strain was isolated from a Japanese child with chickenpox and attenuated by M. Takahashi in Japan in the 1970s (Takahashi et al., Biken J., 18:25-33 (1975)). All viruses were subcultured in either MRC-5 cells or human melanoma cells (MeWo strain, available from C. Grose, University of Iowa, Iowa). MeWo cells are highly permissive for VZV replication but no infectious virus is released into the culture medium (Grose, Virology, 101:1-9 (1980)). Therefore, transfer of infectivity is carried out by tranfection dispersion of infected cells and relayering of infected cells onto an uninfected monolayer at a ratio of 1:8 (infected to uninfected cells). The HSV-1 Miyama strain was propagated in the FL line derived from human amion cells (Padilla et al., J. Elect. Microscopy, 46:171-180 (1997)).

Antibodies and Immunodetection by Confocal Microscopy

MAb 3B3 was produced in this laboratory (Grose et al., Infect. Immun., 40:381-388 (1983)). The antigen for mouse immunization was VZV-32 infected cells. MAb 3B3 attaches to VZV gE even under stringent conditions of buffers containing 1% SDS. Other monoclonal antibodies to VZV gE (MAb 711), VZV gD (MAb 6B5) and VZV gH (MAb 206) were also produced and characterized in this laboratory and are described in Grose (Annu. Rev. Microbiol., 44: 59-80 (1990)). Conditions for immunodetection of VZV proteins by laser scanning confocal microscopy have been outlined by Duss et al., J. Virol., 70:8961-8971 (1996). Immunoblotting was performed with the above antibodies as described (Grose, Annu. Rev. Microbiol., 44:59-80 (1990)).

Epitope Mapping by Recombination PCR Mutagenesis

The technique of recombination PCR mutagenesis has been adapted to investigate epitope mapping and tagging (Yao et al., J. Virol., 67:305-314 (1993)), Hatfield et al., BioTechniques, 22:332-337 (1997)). By this methodology, the epitope of MAb 3B3 was initially defined between amino acids 151-161 in the ectodomain of the 62-amino acid gE glycoprotein. The methodology for producing plasmid pIM1-VZV gL 3B3.11 is described in detail by Hatfield et al., (BioTechniques, 22:332-337 (1997)). As part of the investigation in Results (FIG. 2), an additional two codons were inserted at the N-terminus of the 11-amino acid 3B3 epitope, to produce a 13-amino acid epitope tag in the VZV gE protein. The mutating primers included the following: MP23 (sense) CAT ACT GTG TGC ACC AAA GGC AAT ACC GTG AGC TGG TG (SEQ ID NO:4) and MP24 (antisense) TTG CTT TTG GTC GAC ACA GTA TGC GT TGG CAT GAT AG (SEQ ID NO:5). PCR amplification was performed under the following parameters: 94° C. denaturation for 30 seconds, 50° C. annealing for 30 seconds, 72° C. extension for 5 minutes; after 25 cycles, there was a final extension at 72° C. for 7 minutes. PCR products were combined and transformed into cells where the overlapping regions underwent recombination to yield a plasmid containing the mutated insert. Plasmid purification was performed with a Quagen Maxi Kit. The newly designated pIM1-VZV gL 3B3.13 plasmid was partially sequenced at the University of Iowa DNA Core Facility to confirm the authenticity of the insertional mutagenesis. This PCR mutageneis protocol is very reliable with a error frequency of less than 0.025% (Jones et al., Biotechniques, 8:178-183 (1990)).

Subcloning of VZV-MSP gE

The subcloning of wild type VZV gE has been described previously (Yao et al., J. Virol., 67:305-314 (1993)). Briefly, two flanking PCR primers were utilized which amplified the VZV-MSP gE ORF directly from VZV-MSP infected melanoma cells. These primers also created a Spe I and a Ssc I restriction enzyme site at the 5’ and 3’ ends, respectively. The primers were the following: Nco gpl (sense) CGA CCC GGG GAG CTC CCA TGG GGA CAG TTA ARA AAC C (SEQ ID NO:6) and IP2 (anti-sense) CGC TCT AGA ACT AGT GGA TCC CCC GGG GAA TTT GTC ACA GGC TTT T (SEQ ID NO:7). PCR amplification was performed using AmpliTaq (Applied Biosystems, Foster City, Calif.) under the following conditions: 94° C. denaturation for 40 seconds, 50° C. annealing for 40 seconds, 72° C. extension for 4 minutes; after 35 cycles, there was a final extension at 72° C. for 7 minutes. After amplification, the PCR fragment was digested with Sac I and Spe I before cloning into the multiple cloning site of the expression vector pIM1.
Imaging of Viral Particles
Clean coverslips were coated with carbon, hydrophilized, irradiated with ultraviolet light for 12 hours, followed by a glow discharge for a few seconds and then sterilization by dry heat (160°C overnight). MeWo cells were cultivated on the glass coverslips. When the cells became confluent, they were co-cultivated with either VZV-32 or VZV-MSP infected cells at a 1:8 ratio and incubated at 32°C. At the designated times after infection, the cells were prefixed with 1% glutaraldehyde in PBS at 4°C for 1 hour, rinsed in chilled PBS followed by postfixation with 1% osmium tetroxide in PBS at 4°C for 1 hour, and then dehydrated in a graded ethanol series. Finally, after two changes in 100% ethanol, the specimens were subjected to a critical point drying method. In the case of HSV-1 samples, FL cells prepared on coverslips were inoculated with HSV-1 Miyama strain at an MOI of 10. Twenty four hours after virus inoculation, coverslips were washed with PBS and processed as described for VZV. Subsequently, the specimens were mounted onto aluminum plates and observed with either a Hitachi S4000 or a Hitachi S-900 SEM. Imaging was performed at the University of Iowa Central Microscopy Research Facility and the University of Wisconsin-Madison Integrated Microscopy Facility.

Results
Analysis of the VZV Isolate by Confocal Microscopy
The virus designated VZV-MSP was initially isolated in human fibroblast monolayers. The cytopathic effect (CPE) was compatible with VZV, but the isolate was poorly reactive with antibodies in a commercial VZV diagnostic kit. Since the isolate did not stain with antibodies to herpes simplex virus (HSV) types 1 and 2 nor did its CPE resemble that of HSV, the virus isolate was further analyzed. When the isolate (VZV passage 1) was received, the infected cell monolayer was trypsin-dispersed and inoculated onto human melanoma cells (VZV passage 2). When CPE was apparent in 5 days, the infected cell monolayer was trypsin-dispersed one more time and inoculated onto 35 mm monolayers for examination by laser scanning confocal microscopy (VZV passage 3). The low passage VZV-32 strain was included in separate dishes as a control virus. When CPE covered about 70% of each monolayer, the infected monolayers were probed with MAb 3B3 against gE and MAb 6B5 against gI and examined by confocal microscopy. In prior studies, it has been shown that these two MAb does not cross-react with other viral or cellular proteins (Grose, Annu. Rev. Microbiol., 44:59–80 (1990)). As expected from numerous published experiments, MAb 3B3 and MAb 6B5 reacted with the laboratory strain VZV-32. In marked contrast, the anti-gE MAb 3B3 did not attach to cells infected with the VZV-MSP strain, even though MAb 6B5 did bind the infected cells strongly. As an additional control, the anti-gI MAb 206 was added to cultures individually infected with both VZV strains; all VZV-infected cultures were positive in this assay.

The next question addressed was whether the VZV-MSP strain failed to express the entire glycoprotein or whether it has lost an epitope on the glycoprotein. Monoclonal antibodies produced in the epitope-mapping of gE were used. It was previously established that the 3B3 epitope consisted of at least 11 amino acids 151–161 of gE (Duus et al., J. Virol., 70:8961–8971 (1996)). Another monoclonal antibody, MAb 711, attaches to another as yet undefined epitope on the ectodomain of gE. This epitope does not overlap with the 3B3 epitope. Therefore, the above experiment was repeated with MAb 711 as the immunoprobe of VZV-32 and VZV-MSP infected monolayers. Both monocloners stained positively, a result which indicated that gE was expressed in VZV-MSP infected cells but appeared to have lost either a small segment of its ectodomain or just the 3B3 epitope.

Sequence Analysis of VZV-MSP gE
To further investigate the nature of the gE mutation, we used PCR amplification techniques to first determine whether a full-length gE gene (VZV ORF 68) was present in the mutant strain. The full length gene was amplified. Thereafter, primers were used to amplify overlapping portions of the gE gene, each overlapping portion about 300 bases in size, beginning at the upstream region of ORF 68. Each fragment was subjected to DNA sequencing and each sequence was compared with the published Davison and Scott (Davison et al., J. Gen. Virol., 67:1759–1816 (1986)) sequence of the Dumas strain (FIG. IA; Genbank Accession number X04370). After analysis of the first 337 codons of VZV-MSP gE ORF, we found the first and most important base change in codon 150 (FIG. IB, arrow); the substitution involved a replacement of a guanine by an adenine. Of great interest, this point mutation led to a change in amino acid from aspartic acid to asparagine (FIG. IB). Since this alteration in gE occurred one amino acid away from the deduced 3B3 epitope, which is under study, the sequencing data strongly suggested that amino acid 150 was a previously unrecognized contributor to the 3B3 epitope. Further sequencing of VZV-MSP gE revealed one silent mutation in codon 341 of VZV-MSP gE. All other codons were identical to those in the gE sequence of the Dumas strain.

Epitope Mapping of VZV-MSP gE
In an earlier experiment, we had evaluated the 3B3 epitope by inserting the 11-amino-acid sequence into the unadulterated VZV ORF 60, namely, the gE glycoprotein (Duus et al., J. Virol., 70:8961–8971 (1996)). The epitope tag within gE was recognized by MAb 3B3 when observed by laser scanning confocal microscopy. To evaluate the contribution of the aspartic acid residue to formation of the epitope, the gE epitope mapping and tagging experiment was repeated in order to insert the aspartic acid residue in its correct location at the N-terminus of the 3B3 epitope. In order to obtain the proper parameters for the mutagenesis primers, one additional codon was inserted along with an aspartic acid (FIG. IB). The pTM-1 expression plasmids, including gL-3B3.11 and gL-3B3.13, were transfected into HeLa cells and observed by confocal microscopy after labeling with MAb 3B3. Cells transfected with the gL-3B3.11 plasmid were positive in a restricted cytoplasmic pattern, as previously described by Duus et al., J. Virol., 70:8961–8971 (1996)). Cells transfected with the gL-3B3.13 were not only more intensely stained, the pattern was more widely distributed throughout the cytoplasm. Cells transfected with the pTM-1 plasmid alone were negative.

Subcloning the VZV-MSP gE ORF
After completion of the above experiment, we sought to confirm the epitope experiments by amplifying the entire gE gene from VZV-MSP DNA and inserting it into a pTM-1 expression vector. We had previously cloned wild-type gE into the same expression vector; the same primers were used for the second cloning experiment (Yao et al., J. Virol., 67:305–314 (1993)). After transient transfection with these two forms of VZV gE as well as the pTM-1 vector as a control, the cell lysates were solubilized and subjected to electrophoresis followed by transfer to membranes. Additional control samples for the transcription immunoblotting experiments included MeWo cell monolayers infected with three VZV strains: VZV-32, VZV-Oka and VZV-MSP. Unin-
ected MeWo cells served as a negative control. All samples were blistered with MAB 3B3 followed by detection using chemiluminescence. The MAB attached to VZV-32, VZV Oka and VZV ge wild type, but not to VZV-MS P, VZV MSP ge or the vector and uninfected cell controls. When VZV-MS P ge was subsequently immunoblotted with a polyclonal monospecific antibody to ge, the result was positive. Thus, these results confirmed that VZV-MS P ge by itself was expressed but lacked the 3B3 epitope.

Alterations in Topography of Egress of Viral Particles

In previously published studies, it was shown that the egress of wild-type VZV particles onto the surface of infected cells occurs in a distinctive pattern which was termed “viral highways” (Harson et al., J. Virol., 69:4994–5010 (1995)). The viral highways are composed of thousands of viral particles which emerge in long rows across the surface of the syncytia. When the distribution of VZV-32 and VZV-MS P particles were compared at a low magnification level by scanning electron microscopy (SEM), wild type virions were again arranged in a pattern consistent with viral highways. Cells infected with the VZV-Oka strain show a similar pattern of viral highways (Grose, Virology 125: 468–488 (1983)). In contrast, no such topographical pattern was observed on samples infected with VZV-MS P; instead, viral particles were distributed more uniformly over the cell surface. After observation of numerous monolayers by SEM, it appeared that the number of VZV wild type virions present on the cell surface was less than those of VZV-MS P. The topographical arrangement of VZV-MS P particles also exhibited a high degree of similarity with that of HSV-1, in which thousands of particles covered the cell surface.

In a VZV-infected monolayer, cytopathic effect follows the longitudinal axis of the cells. In VZV-infected human melanoma cell cultures, individual syncytial foci enlarge and eventually merge until the entire monolayer has become a single syncytium. Virions only emerge after syncytia are formed but the virions are never released into the culture medium. If syncytial formation is blocked by adding anti-gH antibody into the culture medium, virions do not egress until the antibody is removed. Based on the imaging studies in this as well as previous reports, it is postulated that virions exit at the leading edge of syncytial foci which are merging. Further, VZV gE (ge) mediated and VZV-infected cell-to-cell fusion (gHgL mediated) are separate but interdependent events. The mutation on VZV-MS P ge appears to lessen that interdependence.

Example 2

Identification of Single Nucleotide Polymorphisms in other ORFs of VZV-MS P and Assessment of Cell-to-cell Spread

This example provides a more complete characterization of the altered biological properties and genetic composition of this contemporary variant in VZV evolution. For the first time, a varicella zoster virus variant is described which has a cell-to-cell spread phenotype clearly distinguishable from previously characterized varicella zoster virus strains.

Cells, viruses and transfer of infectivity. VZV-MS P was isolated in Minnesota in late 1995. VZV-32 was isolated in Texas in the 1970s (Grose et al., Infect. Immun., 19:199–203 (1976)). Reserve stocks of VZV-32 and VZV-MS P were prepared; thus low passages (< 20) were used in all experiments in this report. VZV-Oka was isolated in Japan and attenuated in the 1970s (Takahashi et al., Biken J., 18:25–33 (1975)). VZV-Dumas was isolated in Holland and sequenced in its entirety by Davison et al., (Davison et al., J. Gen. Virol., 67:1759–816 (1986)). All strains were propagated in human melanoma cells (McWo strain). MeWo cells are highly permissive for VZV replication with no release of infectious virus into the culture medium (Grose, Virology 101:1–9 (1980)). Transfer of infectivity was carried out by inoculation of trypsin-dispersed infected cells onto an uninfected monolayer at a 1:8 ratio of infected:uninfected cells. Similarly, infected trypsin solutions were carried out by described methods; these assays included both melanoma cell and human neonatal foreskin cell substrates (Cole et al., J. Virol. Methods, 36:111–8 (1992), Grose et al., Infect. Immun., 19:199–203 (1978)).

Imaging by confocal microscopy. Replicate 35-mm monolayers of McWo cells were overlaid with VZV-infected cells at a 1:8 ratio of infected:uninfected cells. At 4, 8, 12, 24, and 48 hours post-infection, the monolayers were fixed and permeabilized with 0.5 ml % paraformaldehyde with 0.05% Triton X-100. Cells were probed with an anti-IE 62 mouse monoclonal ascites (MAB SCG, available from C. Grose, University of Iowa, Iowa) at a dilution of 1:1000 (Ng et al., J. Virol., 68:1350–1359 (1994)). The secondary antibody was goat anti-mouse IgG (ab), conjugated to Alexa 488 at a dilution of 1:1000 (Molecular Probes, Oregon). Cell nuclei were stained with TOTO-3 (Molecular Probes), a dimeric cyanine nucleic acid stain, at a dilution of 1:10,000. Samples were examined with a BioRad 1024 laser scanning confocal microscope, as described (Dus et al., Virology 210:429–440 (1995)).

Quantitative Analysis of Confocal Images. Confocal images were converted to TIFF (Technical Assistant, v. 4.02, Bio-Rad Laboratories, Hercules, Calif.), available from ftp://ftp.genetics.bio-rad.com/Public/confocal/cas) and transferred to a Silicon Graphics Indy workstation in order to produce the color prints by Showcase software program (Silicon Graphics, Mountain View, Calif.). Confocal images also were analyzed with the Brainvox tab support programs (Frank et al., Neurimage, 5:13–30 (1997)). Similar analyses can be performed with the public domain NIH Image program, which was developed at the U.S. National Institutes of Health (http://rsb.info.nih.gov/nih-image/).

Repllication in the SCID-hu mouse. The SCID-hu mouse has been established as an animal model for VZV replication (Moffat et al., J. Virol., 69:5236–42 (1995)). In this model, C.B-17 scid/sld mice were implanted with infected human skin tissue and subcutaneously as full thickness dermal grafts. Human fetal tissues were obtained with informed consent according to federal and state regulations and were screened for human immunodeficiency virus. The general care of the experimental animals used for this study was in accordance with the National Institutes of Health guidelines for laboratory animals and in compliance with the Animal Welfare Act (Public Law 94–279) as well as the Stanford University Administrative Panel on Laboratory Animal Care. Animal inoculations were performed according to the previously described protocol (Moffat et al., J. Virol., 69:5236–42 (1995)), viz., an aliquot of infected cell suspension containing 10^6 infectious centers was injected into each implant. Mock-infected implants were injected with human cells alone. Skin implants were harvested at 7, 14, and 21 days post-inoculation. The implants were fixed in 4% paraformaldehyde, paraffin-embedded, cut into 3-μm sections, and stained with hematoxylin and eosin. Tissue sections were examined on a Leitz Diaplan light microscope, and digital images were acquired with an Optronics DEI 750 digital camera (Optronics Engineering, Goleta, Calif.). Digital images were formatted as described above.
Isolation of viral DNA. For all viral strains, a 25 cm² monolayer of MeWo cells was infected as described above. After development of 80–100% cytopathology, the infected monolayer was washed thrice with 0.5 ml of 1 M phosphate buffered saline (PBS), pH 7.4. Infected cells were then harvested by dislodging into 0.5 ml of PBS. Viral DNA was collected with a DNA easy Kit following the Blood and Body Fluid Protocol (Qiagen Inc., Valencia, Calif.). Following DNA easy protocol, DNA was placed onto a Microcon 50 filter (Millipore, Bedford, Mass.) and washed twice with 0.5 ml of Nanopure water (Barnstead/Thermolyne, Dubuque, Iowa). Viral DNA was resuspended in 100 µl of Nanopure water. DNA concentration was assessed visually after 1% agarose gel electrophoresis.

PCR amplification and sequencing of VZV genes. For each ORF, a pair of flanking primers was designed to amplify the gene of interest. PCR amplifications were performed with the Expand High-Fidelity PCR System (Boehringer Mannheim, Indianapolis, Ind.). This system utilizes both Taq DNA and Pwo DNA polymerases, with the 3'-5' proofreading activity of Pwo DNA polymerase allowing increased fidelity (8.5×10⁻⁹ per bp error rate) (Boehringer Mannheim). After amplification, the PCR product was sequenced by using the dye terminator cycle sequencing chemistry with AmpliTaq DNA polymerase, FS enzyme (Perkin Elmer Applied Biosystems, Foster City, Calif.). Sequencing reactions were performed on and analyzed with an Applied Biosystems Model 373A stretch fluorescent automated sequencer (Perkin Elmer) at the University of Iowa DNA facility. All genes were PCR amplified twice and each PCR fragment was sequenced at least twice to confirm reported mutations. Each DNA sequence was compared to the prototype VZV-Dumas sequence. The accession number for the complete VZV-Dumas sequence is X04370. The primers used for amplification and/or sequencing the amplified fragments are shown in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Protein^1</th>
<th>Primer^2</th>
<th>bp^3</th>
<th>Seq Ampl^4</th>
<th>Sequence^5</th>
</tr>
</thead>
<tbody>
<tr>
<td>eB</td>
<td>(ORF 31)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep 1 (S)</td>
<td></td>
<td>−163 to −136</td>
<td>Seq/Ampl</td>
<td>GGCCTTTTCATAACCTCCGTACGGGGG (SEQ ID NO:8)</td>
</tr>
<tr>
<td>Sep 2 (AS)</td>
<td></td>
<td>2685 to 2658</td>
<td>Seq/Ampl</td>
<td>CCGCTTGATGCGTAATGGAAGACACATGA (SEQ ID NO:9)</td>
</tr>
<tr>
<td>Sp 1 (A)</td>
<td></td>
<td>309 to 328</td>
<td>Seq</td>
<td>CTTGTTGAAACACTGTCGCG (SEQ ID NO:10)</td>
</tr>
<tr>
<td>Sp 2 (S)</td>
<td></td>
<td>201 to 220</td>
<td>Seq</td>
<td>CGTACGATAGAAGCAGAGCT (SEQ ID NO:11)</td>
</tr>
<tr>
<td>Sp 3 (S)</td>
<td></td>
<td>596 to 588</td>
<td>Seq</td>
<td>GCTACGATACCAATGACAG (SEQ ID NO:12)</td>
</tr>
<tr>
<td>Sp 4 (S)</td>
<td></td>
<td>929 to 948</td>
<td>Seq</td>
<td>AGTGGCGCAAAGTGAGAAC (SEQ ID NO:13)</td>
</tr>
<tr>
<td>Sp 5 (S)</td>
<td></td>
<td>1294 to 1283</td>
<td>Seq</td>
<td>CACCCGACTACGGAAATCAG (SEQ ID NO:14)</td>
</tr>
<tr>
<td>Sp 6 (S)</td>
<td></td>
<td>1615 to 1634</td>
<td>Seq</td>
<td>TCTGTTGATACGTACGGG (SEQ ID NO:15)</td>
</tr>
<tr>
<td>Sp 7 (S)</td>
<td></td>
<td>1948 to 1970</td>
<td>Seq</td>
<td>GACTACGATGAATCACGACCCCG (SEQ ID NO:16)</td>
</tr>
<tr>
<td>Sp 8 (S)</td>
<td></td>
<td>2259 to 2279</td>
<td>Seq</td>
<td>CCACCAGAGAATACATCC (SEQ ID NO:17)</td>
</tr>
<tr>
<td>Sp 9 (A)</td>
<td></td>
<td>1418 to 1437</td>
<td>Amp</td>
<td>TACGCTGACCCAGCAGGAGAAG (SEQ ID NO:18)</td>
</tr>
<tr>
<td>Sp 10 (A)</td>
<td></td>
<td>2569 to 2584</td>
<td>Amp</td>
<td>TCAGCAACAGGAGAATCAC (SEQ ID NO:19)</td>
</tr>
<tr>
<td>eH</td>
<td>(ORF 37)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sp 2 (S)</td>
<td></td>
<td>104 to 131</td>
<td>Seq</td>
<td>CTGCTCTCTACGAGAAATCCGACG (SEQ ID NO:20)</td>
</tr>
<tr>
<td>Sp 3 (A)</td>
<td></td>
<td>223 to 199</td>
<td>Seq</td>
<td>CTTGTTTCTACATCTTCATCCCCAGT (SEQ ID NO:21)</td>
</tr>
<tr>
<td>Sp 4 (S)</td>
<td></td>
<td>448 to 471</td>
<td>Seq</td>
<td>ACTACGCTCCCCAACAACCCCTTGT (SEQ ID NO:22)</td>
</tr>
<tr>
<td>Sp 5 (S)</td>
<td></td>
<td>850 to 873</td>
<td>Seq</td>
<td>GCGTCTACGACGGCAACACATGG (SEQ ID NO:23)</td>
</tr>
<tr>
<td>Sp 6 (S)</td>
<td></td>
<td>1165 to 1191</td>
<td>Seq</td>
<td>CCTGTTGATAGATCGTATGTTGAC (SEQ ID NO:24)</td>
</tr>
<tr>
<td>Sp 7 (S)</td>
<td></td>
<td>1498 to 1514</td>
<td>Seq</td>
<td>GCTACGAGAGGCGAGGCT (SEQ ID NO:25)</td>
</tr>
<tr>
<td>Sp 8 (S)</td>
<td></td>
<td>1816 to 1840</td>
<td>Seq</td>
<td>TCGTATCACAAAACTGACGGATCG (SEQ ID NO:26)</td>
</tr>
<tr>
<td>Sp 9 (S)</td>
<td></td>
<td>2129 to 2152</td>
<td>Seq</td>
<td>TAGAGACGGTGGCACGACTCCCCCATC (SEQ ID NO:27)</td>
</tr>
<tr>
<td>Sp 10 (S)</td>
<td></td>
<td>−32 to −5</td>
<td>Seq/Ampl</td>
<td>CGTGGATATTTGACGCAAGTACAGC (SEQ ID NO:28)</td>
</tr>
<tr>
<td>Sp 11 (A)</td>
<td></td>
<td>2605 to 2580</td>
<td>Seq/Ampl</td>
<td>CCGCTTTCCTGTTTCGTCCG (SEQ ID NO:29)</td>
</tr>
<tr>
<td>Sp 12 (A)</td>
<td></td>
<td>223 to 198</td>
<td>Seq</td>
<td>CGTCTGTGGCCGTTTGTTG (SEQ ID NO:30)</td>
</tr>
<tr>
<td>Sp 14 (A)</td>
<td></td>
<td>1005 to 988</td>
<td>Seq</td>
<td>ATCCCAACTCTCTTCGGG (SEQ ID NO:31)</td>
</tr>
<tr>
<td>Sp 15 (A)</td>
<td></td>
<td>2218 to 2199</td>
<td>Seq</td>
<td>TCACCCGCTGTTGAGTAC (SEQ ID NO:32)</td>
</tr>
<tr>
<td>eF</td>
<td>(ORF 68)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ip2 (A)</td>
<td></td>
<td>2061 to 2039</td>
<td>Seq/Ampl</td>
<td>CGCCCTGAAATGTGATGCCTGCCGCGGGAATT</td>
</tr>
<tr>
<td>NcoI (S)</td>
<td></td>
<td>1 to 11</td>
<td>Amp</td>
<td>CGACCCGGGAGGTCACAAGGGAATTAACAAAC (SEQ ID NO:9)</td>
</tr>
<tr>
<td>Sp 1 (S)</td>
<td></td>
<td>1452 to 1470</td>
<td>Seq</td>
<td>GCTGTTGACGCGCGAGCA (SEQ ID NO:33)</td>
</tr>
<tr>
<td>Sp 3 (S)</td>
<td></td>
<td>199 to 217</td>
<td>Seq</td>
<td>ATGCGGGCGCTGATGTA (SEQ ID NO:34)</td>
</tr>
<tr>
<td>Sp 4 (A)</td>
<td></td>
<td>505 to 486</td>
<td>Seq</td>
<td>GCTGCTGATGCTGGTATTA (SEQ ID NO:35)</td>
</tr>
<tr>
<td>Sp 6 (S)</td>
<td></td>
<td>−70 to −48</td>
<td>Seq</td>
<td>GTCTCTCTCTGTACGAGC (SEQ ID NO:36)</td>
</tr>
<tr>
<td>Sp 7 (S)</td>
<td></td>
<td>543 to 561</td>
<td>Seq</td>
<td>GTTACCTTACCGCG (SEQ ID NO:37)</td>
</tr>
<tr>
<td>Sp 8 (S)</td>
<td></td>
<td>523 to 640</td>
<td>Seq</td>
<td>GAAATGACCCCGCG (SEQ ID NO:38)</td>
</tr>
</tbody>
</table>
VZV sequencing and amplification primers

<table>
<thead>
<tr>
<th>Protein</th>
<th>Primer</th>
<th>by</th>
<th>Seq/Amp</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sp 9 (S)</td>
<td>1127 to 1146</td>
<td>Seq</td>
<td>TAGAGTGTTGTGGTATGTCGCC (SEQ ID NO:29)</td>
<td></td>
</tr>
<tr>
<td>Sp 10 (S)</td>
<td>1601 to 1619</td>
<td>Seq</td>
<td>CACCTTGACATGGTCGCC (SEQ ID NO:47)</td>
<td></td>
</tr>
<tr>
<td>Sp 12 (A)</td>
<td>846 to 827</td>
<td>Seq</td>
<td>TTCAACTGCGGCGGATGCTGA (SEQ ID NO:41)</td>
<td></td>
</tr>
<tr>
<td>Sp 13 (A)</td>
<td>1790 to 1772</td>
<td>Seq</td>
<td>TCGTGATGATCGCAATGTC (SEQ ID NO:42)</td>
<td></td>
</tr>
</tbody>
</table>

gl.

<table>
<thead>
<tr>
<th>ORF 60</th>
<th>Seq/Primer</th>
<th>Seq/Amp</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 (S)</td>
<td>-1 to 16</td>
<td>Seq/Amp</td>
<td>CAAGGCAGACAGCAGACACA (SEQ ID NO:43)</td>
</tr>
<tr>
<td>P2 (A)</td>
<td>913 to 886</td>
<td>Amp</td>
<td>AAAACATAGTTGTCATGTCGCC (SEQ ID NO:47)</td>
</tr>
<tr>
<td>Sp 1 (A)</td>
<td>548 to 530</td>
<td>Seq</td>
<td>GCTTGCAGCGGTAATTGCATG (SEQ ID NO:45)</td>
</tr>
<tr>
<td>Sp 2 (A)</td>
<td>320 to 302</td>
<td>Seq</td>
<td>GCAGCGCCCAAGATGTTGAC (SEQ ID NO:46)</td>
</tr>
<tr>
<td>Sp 4 (S)</td>
<td>473 to 494</td>
<td>Seq</td>
<td>CCAATGAAAAAGAAGCTACG (SEQ ID NO:47)</td>
</tr>
</tbody>
</table>

gl.

<table>
<thead>
<tr>
<th>ORF 67</th>
<th>Seq/Primer</th>
<th>Seq/Amp</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep 1 (S)</td>
<td>-60 to -33</td>
<td>Seq/Amp</td>
<td>CGGAGCTCACAGAGCTGCATGCGATGTAG (SEQ ID NO:48)</td>
</tr>
<tr>
<td>Sep 2 (A)</td>
<td>1154 to 1137</td>
<td>Seq/Amp</td>
<td>TACGCTCTCCCTCCATACACAACAACGCTG (SEQ ID NO:49)</td>
</tr>
<tr>
<td>Sp 1 (A)</td>
<td>955 to 978</td>
<td>Seq</td>
<td>GCGCGCTCAAGACATCA (SEQ ID NO:50)</td>
</tr>
<tr>
<td>Sp 2 (A)</td>
<td>363 to 365</td>
<td>Seq</td>
<td>CAGCGATCCGCCGCTGTTG (SEQ ID NO:51)</td>
</tr>
<tr>
<td>Sp 4 (S)</td>
<td>314 to 337</td>
<td>Seq</td>
<td>CAGGTCAGGTACACAGCTG (SEQ ID NO:52)</td>
</tr>
</tbody>
</table>

ORF 47

<table>
<thead>
<tr>
<th>Seq/Primer</th>
<th>Seq/Amp</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scp 1 (S)</td>
<td>-349 to -320</td>
<td>Amp</td>
</tr>
<tr>
<td>Scp 2 (A)</td>
<td>103 to 132</td>
<td>Amp</td>
</tr>
<tr>
<td>Sp 1 (A)</td>
<td>3 to 22</td>
<td>Seq</td>
</tr>
<tr>
<td>Sp 2 (A)</td>
<td>163 to 182</td>
<td>Seq</td>
</tr>
<tr>
<td>Sp 3 (S)</td>
<td>341 to 360</td>
<td>Seq</td>
</tr>
<tr>
<td>Sp 4 (S)</td>
<td>743 to 762</td>
<td>Seq</td>
</tr>
<tr>
<td>Sp 5 (S)</td>
<td>1155 to 1154</td>
<td>Seq</td>
</tr>
</tbody>
</table>

IE62

<table>
<thead>
<tr>
<th>ORF 62</th>
<th>Seq/Primer</th>
<th>Seq/Amp</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep 1 (S)</td>
<td>-79 to -50</td>
<td>Seq/Amp</td>
<td>CACCAACTGGAGAAGCAGTGGC (SEQ ID NO:60)</td>
</tr>
<tr>
<td>Sep 2 (AS)</td>
<td>3990 to 3961</td>
<td>Amp</td>
<td>TATTTAACAACACAGACTGCGGGCGCGCA (SEQ ID NO:61)</td>
</tr>
<tr>
<td>Sp 1 (S)</td>
<td>318 to 342</td>
<td>Seq</td>
<td>GCGAGGCTCTACACACCCGATCT (SEQ ID NO:62)</td>
</tr>
<tr>
<td>Sp 2 (S)</td>
<td>749 to 773</td>
<td>Seq</td>
<td>TTTGGAGCTAGTACCTGACCTCGG (SEQ ID NO:63)</td>
</tr>
<tr>
<td>Sp 3 (S)</td>
<td>1142 to 1166</td>
<td>Seq</td>
<td>TACGAGGTACGGAGGCTCGACGG (SEQ ID NO:64)</td>
</tr>
<tr>
<td>Sp 4 (S)</td>
<td>1511 to 1535</td>
<td>Seq</td>
<td>TTAGAGGTGCTAACGGAAGG (SEQ ID NO:65)</td>
</tr>
<tr>
<td>Sp 5 (S)</td>
<td>1925 to 1949</td>
<td>Seq</td>
<td>GATCGGCGGCGCTACCTTCC (SEQ ID NO:66)</td>
</tr>
<tr>
<td>Sp 6 (S)</td>
<td>2309 to 2333</td>
<td>Seq</td>
<td>CAAGGGTGACTGTCACCCCGAAAC (SEQ ID NO:67)</td>
</tr>
<tr>
<td>Sp 7 (S)</td>
<td>2685 to 2709</td>
<td>Seq</td>
<td>ACTCATGCCTGGCAGCAGCTGGA (SEQ ID NO:68)</td>
</tr>
<tr>
<td>Sp 8 (S)</td>
<td>3098 to 3122</td>
<td>Seq</td>
<td>CGTCGATACACCGGTGTGATCCGC (SEQ ID NO:69)</td>
</tr>
<tr>
<td>Sp 9 (S)</td>
<td>3500 to 3524</td>
<td>Seq</td>
<td>TGCCATCCCGGGATCCGAGGTA (SEQ ID NO:70)</td>
</tr>
</tbody>
</table>

Results

Cell-to-cell spread phenotype of VZV-MSP. During the initial assessment of VZV-MSP, it was observed that the egress of VZV-MSP particles in cell culture differed from that of other typical VZV laboratory strains, such as VZV-32 and VZV-Oka. Like other VZV strains, however, infectious virus was not released into the culture medium. The fact that greater numbers of VZV-MSP particles were present on the surface suggested that cell-to-cell spread may be increased. Cell-to-cell spread has been assessed in both herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV) through measurement of plaque size in permissive cells or number of cells infected within a typical plaque. Neither technique is easily applicable in the VZV system given the formation of irregularly shaped syncytia by VZV in cell culture and the absence of cell-free virus in tissue culture. Therefore, a technique was developed to assess cell-to-cell spread through confocal microscopic examination.

The spread of low-passage VZV-MSP was compared to the low-passage laboratory strain VZV-32. Human mela-

1The protein that is encoded by the listed ORF.
2The designation of the primer.
3The base pairs to which the primer hybridizes. The numbering used denotes the transcriptional start site as +1.
4Seq, the primer was used as a primer in a sequencing reaction; Amp, the primer was used as a primer in PCR. Some primers were used in both sequencing and amplification.
5The nucleotide sequence of the primer, listed 5’ to 3’.
noma cells were inoculated with either VZV-32 or VZV-MSP at a 1:8 ratio of infected:uninfected cells. At increasing intervals post-infection, the infected monolayers were probed with an antibody against the VZV immediate early protein 62 (IE 62). The number of cells expressing IE 62 and the intracellular localization of the protein were determined. This assay was based on the observation by Kinchington et al., (J. Infect. Dis., 178 Suppl 1:S16–21 (1998)) that VZV IE 62 is present in the nuclei of infected cells during early stages of infection, but then appears in the cytoplasm during later stages.

At the time point of four hours post-infection, comparing VZV-32 and VZV-MSP by confocal microscopy represents the number of infected cells originally overlaid onto each monolayer. Both monolayers contained similar levels of IE 62 positive cells. At twenty-four hours post-infection the difference in extent of spread between VZV-MSP and VZV-32 was apparent. For VZV-32 at 24 hours, 6–8 cells with advanced infection were present in each focus; IE 62 was present in both nucleus and cytoplasm. A few scattered cells adjacent to the infectious focus contained nuclei with IE 62 concentrated near the membrane; these cells represented a recent transfer of infectivity from the central focus. When the VZV-MSP culture was examined at 24 hours, large syncytia had already formed. A typical syncytium contained 20–30 nuclei, an infectious focus 3 to 4 fold larger than that seen with VZV-32. This experiment was repeated four times with equivalent results.

Quantitative analysis of confocal images of VZV IE 62. To quantify the difference in cell-to-cell spread, multiple confocal images were analyzed with the image analysis programs called Brainvax tal-support programs. Each confocal image is made up of 512x512 pixels, for a total of 262,144 pixels. The green fluorescence channel representing the presence of VZV IE 62 within each confocal image was analyzed. The image analysis program initially assigns a relative signal intensity within each pixel of the confocal image. Then, a threshold of signal intensity is calculated to remove background signals. This analysis facilitated quantification of all pixels within each confocal image that contained IE 62. Thus, confocal microscopy of IE 62 coupled with image analysis facilitated a comparison of the extent of viral spread between two different VZV strains.

The results for this analysis are shown in FIG. 3. There was no major difference between the extent of IE 62 spread for VZV-32 and VZV-MSP at 4, 8, and 12 hours post-infection. The results at both 4 and 8 hours, in particular, demonstrated that each monolayer was infected with a similar inoculum of infected cells. Also, the lack of a difference between the three time points (4 hours–12 hours) confirmed that the replication cycle for both VZV strains was greater than 12 hours, in agreement with previous studies. However, at twenty-four hours post-infection, there was a noticeable difference between spread of VZV-MSP and VZV-32. The extent of VZV-MSP spread was at least two-fold greater than VZV-32. At forty-eight hours post-infection, this difference increased further, as VZV-MSP spread was four-fold greater than VZV-32. Thus, image analysis provided a new method by which to measure differences in cell-to-cell spread between VZV strains. Again, this methodology is particularly suited for VZV because cell free virus is not released spontaneously from infected cell cultures; even after some disruption of infected monolayers, most viral particles remain attached to remnants of outer cellular membranes.

VZV infectious center assays. Because the results in the previous experiments represented a new application of confocal microscopy, a traditional method was also used to confirm the differences in VZV cell-to-cell spread, namely, infectious center assays. For these titrations, the initial virus inocula were replicate samples of VZV-infected cells frozen and stored in liquid nitrogen. After freezing, one aliquot was thawed and titrated from each lot. The inoculum for each 35-mm tissue culture dish was 500 infectious centers. Two dishes were harvested and assayed at each of the following time points: immediately after inoculation and 24 hours, 24 hours, and 48 hours post-inoculation (FIG. 4). When comparing the average fold increase of VZV-MSP infectious centers to VZV-32 infectious centers, the spread of VZV-MSP was consistently greater than the spread of VZV-32 over both the first 24 hour period (24 hr pi) and the second 24 hr period (48 hr pi). Otherwise stated, at 48 hours post-infection, the cytopathic effect of VZV-MSP was complete, while numerous infectious center titrations with VZV-32 demonstrated that a 60–72 hr interval was required for similar spread (Grose et al., Infect. Immun., 19:199–203 (1978)). Furthermore, the rapidity of VZV-32 spread was not altered over the initial 20 passages. VZV-Oka and VZV-Ellen titrations exhibited a time course similar to that of VZV-32. Therefore, results from both confocal microscopic image analyses and infectious center assays documented that the spread of VZV-MSP was 3–4 fold greater than the spread of VZV-32.

Growth of VZV-MSP in the SCID-hu mouse. The SCID-hu mouse has provided the first reproducible animal model of VZV pathogenesis. Published studies have documented the pathology of viral infection in human thymus/liver and skin implants after inoculation with parental and vaccine VZV-Oka strains as well as low passage wild type virus (Moffat et al., J. Virol., 69:5236–42 (1995), Moffat et al., J. Virol., 72:965–974 (1998)). To assess whether VZV-MSP showed enhanced pathology in the SCID-hu mouse model, skin implants infected with VZV-MSP were harvested at 7, 14, and 21 days after infection. At 7 days post-infection, numerous foci of infection were visible in the epidermis of the human skin implant. By 14 days the foci coalesced into large necrotic lesions with histopathology typical of varicella vesicles. These vesicles were characterized by epidermal hyperplasia, balloon cells, and the separation of the keratin roof from the epidermis. After 21 days, the infection had spread into the dermis and destroyed the entire implant. Samples of the implants also were examined by previously described electron microscopy methods; the virion formation closely resembled that shown in FIG. 2 of the report by Moffat et al., (1995). Mock infected skin implants showed normal skin structure consisting of a thin layer of keratinocytes above the dermis and hair follicles.

Prior published studies had not shown such a rapid progression of pathology in the SCID-hu mouse infected with VZV. To further assess this aspect of VZV infection in the animal model, another experiment was performed with a clinical isolate passed even fewer times than VZV-32; in addition, the low passage parent VZV-Oka strain was included. Again, the skin samples were collected and examined at days 7, 14, and 21 post-inoculation. When all the specimens were reviewed, the histopathology of the clinical isolate and parental VZV-Oka at 21 days post-inoculation were similar, and for both strains the histopathology was approaching that caused by VZV-MSP at 14 days post-inoculation. Even at 21 days, however, the former two viral strains never caused the total destruction seen after VZV-MSP infection. In short, even through the skin implant was noticeably more extensive than seen with other viral strains tested in the SCID-hu animal model.
33 Genetic analysis of other major glycoproteins of VZV-MSP. After documenting the enhanced cell-to-cell spread of VZV-MSP, it was determined whether mutations were present in ORFs other than gE which may be contributing to this phenotype. Specifically, ORFs 31, 37, 60, and 67 coding for VZV gB, gH, gL, and gL, respectively, were analyzed. The ORFs were amplified from the VZV-MSP viral genome and sequenced, then compared to the published VZV-Dumas sequences. Neither of the gL genes contained any nucleotide differences when compared to the nucleotide sequences of VZV-Dumas. Further, the gB sequence was identical to that of VZV-Dumas. However, VZV-MSP gH contained a single point mutation within codon 269 (CCA→CTA), converting a proline residue in the predicted VZV-Dumas peptide sequence to a leucine residue in VZV-MSP gH.

Given the presence of mutations within VZV-MSP gE and gH, a similar genetic analyses of VZV-32 were performed. As expected, VZV-32 lacked the D150N mutation within gE. VZV-32 gH, however, revealed the identical point mutation found within codon 269 of VZV-MSP gH. Thus, the mutation within VZV-MSP gH cannot account for the VZV-MSP cell-spread phenotype. VZV-32 contained one additional mutation within ORF 67 (gL) which would lead to a Q5H substitution (CAA→CAT). This substitution was within the probable leader sequence of VZV gL and thus would not be present in mature gL (Davison et al., J. Gen. Virol., 67:1759–1816 (1986)). Altogether, within five major glycoprotein ORFs, VZV-MSP contained two point mutations which caused amino acid substitutions when compared to VZV-Dumas: D150N in gE, and P269L in gH (FIG. 5).

In addition to 5 ORFs, we sequenced major portions of the 5′ untranslated regions of ORFs 31, 60, 67, and 68. All regions were identical to VZV-Dumas except for that of ORF 60. The latter region contained four polymorphisms; these ranged from 554 to 1320 nucleotides from the ORF 60 initiation codon (FIG. 5). It is very unlikely that these polymorphisms will alter the expression of gL since they are located over 500 nucleotides upstream of the gL start site.

Genetic analysis of VZV-MSP regulatory proteins and kinases. Although viral glycoproteins are the most likely candidates for mediating the cell-to-cell spread phenotype of VZV-MSP, we considered the possibility that an alteration in the immediate early (IE) regulatory events may contribute to this enhanced cell-to-cell spread phenotype. VZV expresses one predominant species, IE 62, which acts as the major regulatory protein for viral gene expression. This protein contains a potent acidic activation domain at its N-terminus and is a component of the virus particle. Therefore, the IE 62 gene of VZV-MSP was sequenced, but detected only one silent polymorphism within codon 30 when compared to the Dumas strain (GCG→GCC) (FIG. 5). Thus, the peptide sequence of VZV-MSP IE 62 was identical to the predicted VZV-Dumas sequence. Further, we sequenced the 5′ untranslated region containing 525 nucleotides and this region was identical to VZV-Dumas. In addition, we sequenced the adjacent VZV-MSP ORF 61, which encodes the functional homolog of HSV-1 ICP0. Again, the nucleotide sequence was identical to VZV-Dumas.

Previous studies have shown that the viral protein kinase VZV ORF 47 can phosphorylate IE 62 (Ng, et al., 1994). Also, VZV ORF 66 encodes a protein kinase which has been shown to affect the intracellular localization and transactivation function of IE 62. Based upon these results, we wanted to determine whether mutations in these viral kinases could affect the function of IE 62 within VZV-MSP infected cells. Therefore, we sequenced both protein kinase genes within the VZV-MSP genome and found both to be identical to the prototype VZV-Dumas sequence (FIG. 5). Thus, there was no genetic evidence of polymorphisms within either of two regulatory ORFs or either of two viral protein kinase ORFs. In short, after sequence analysis of over 15% of the VZV-MSP genome, the main impression was a string similarity with VZV-Dumas except for the notable exceptions mentioned earlier.

EXAMPLE 3

Single Nucleotide Polymorphisms in Major Open Reading Frames of other Variola Zoster Viruses

Materials and Methods

Virus. VZV-MSP was isolated in Minnesota in late 1995. VZV-32 was isolated in Texas in the 1970s. VZV-Oka was isolated in Japan and attenuated in the 1970s. VZV-VSD was a wildtype virus collected in South Dakota in the 1980s. VZV-VIA was isolated from Iowa from a child with chickenpox in the 1990s. VZV-Iceland was isolated from Iceland from vesicle fluid of a child with chickenpox in the 1990s. VZV-Ellen was originally isolated in Georgia from a child with chickenpox in the 1960s and obtained from the American Type Culture Collection. VZV 80-2 was originally isolated in Pennsylvania from an adult with herpes zoster in the 1980s.

Propagation of viruses. All viral strains except VZV 80-2 virus were propagated in human melanoma cells (MWO strain). Transfer of infectivity was performed by inoculation of trypsin dispersed infected cells onto an uninfected monolayer at a 1:8 ratio. Each 25 cm² VZV-infected monolayer was incubated until cytopathology reached 80%. The monolayer was then washed thrice with 5 ml of 0.01 M phosphate buffered saline (PBS) of pH 7.4. Cells were dislodged by scraping into 0.5 ml PBS. Viral DNA was collected from the cells using the DNeasy Tissue Kit following the DNeasy Protocol for Cultured Animal Cells (Qiagen Inc.). Collected DNA was cleaned by plating on a Microcon 50 filter and washing twice with 0.5 ml of Nanopure water. (Amersham/THERMOLINE). Viral DNA was resuspended in 100 μl of Nanopure water. The VZV 80-2 viral genome DNA was present in two cloned restriction enzyme libraries prepared by Ecker et al., (Proc. Natl. Acad. Sci. USA, 79:156–160 (1982)).

PCR amplification and sequencing of viral DNA. PCR amplification was performed with primers flanking the region of interest (Table 1). The Expand High Fidelity PCR System was used in the PCR amplification procedure (Roche Molecular Biochemicals). This system includes Taq DNA and Pwo DNA polymerases, with the 3′–5′ proofreading activity of the Pwo DNA polymerase to increase the fidelity (Roche Molecular Biochemicals). Electrophoresis of each sample was carried out in a 1% agarose gel to determine concentration. The DNA sequencing reactions were performed using dye terminator cycle sequencing chemistry with AmpliTaq DNA polymerase, FS enzyme (PE Applied Biosystems, Foster City, Calif.). Reactions were run and subsequently analyzed with an Applied Biosystems Model 373A stretch fluorescent automated sequencer at the University of Iowa DNA Facility. Sequences were further analyzed using the program DNASIS V2.0 (Hitachi Software Engineering Co.) when region of a VZV genome which differed in sequence from that of the prototypic VZV Dumas was re-amplified in a second PCR step and subjected to a second sequencing analysis.
Polymorphisms in the VZV gE Gene

The VZV gE gene was of greatest interest because of the discovery of the gE mutant strain VZV-MSP. Surprisingly, six gE polymorphisms were found among the eight tested strains and isolates, four of which caused amino acid substitutions (FIG. 6). However, none of the tested strains contained the D150N mutation within the 3B3 epitope of VZV-MSP. VZV-Ellen, VZV-Iceland, and VZV 80-2 had three identical polymorphisms. One was a synonymous mutation within codon 220. Two non-synonymous mutations in these three strains caused amino acid substitutions within codons 40 (T→I) and 536 (L→I). The vaccine strain VZV-Oka also contained the mutation within codon 40, but lacked the other two mutations found within VZV-Ellen, VZV-Iceland, and VZV 80-2. VZV-VSD was the only strain tested which contained a polymorphism within the gE cytoplasmic domain of gE. Interestingly, this change within codon 603 (G→D) inserted an additional acidic amino acid adjacent to the acidic casein kinase II phosphorylation site of gE. VZV-32 and VZV-VIA were the only strains tested that did not contain gE substitutions when compared to the Dumas strain. Since the mutations previously found in VZV 80-2 were not observed in any other strain, VZV-MSP gE retained a unique sequence among all currently tested strains and isolates.

Polymorphisms in the VZV gI Gene

The discovery of several polymorphisms in the gE gene of the 8 strains was unexpected. Since VZV gE and gI proteins are commonly found in a complex in the infected cell culture, the gI gene was the next obvious candidate for further genetic analysis. Sequencing of ORF 67 led to the discovery of two changes from the published Dumas sequence (FIG. 7). VZV-32 had an A to C substitution at bp 15 of the ORF that resulted in a glutamine to histidine substitution. VZV-Oka also had a silent change of G to A at bp 546. The number of gI sequence variants was less than that seen with gE and may suggest that gl function requires a more rigid amino acid sequence.

Polymorphisms in the VZV gH Gene

Next to the VZV gE/gI complex, the gH/gI complex has been most extensively studied because of its role in cell-to-cell fusion. Overall, the eight strains contained nine polymorphisms; three of which caused amino acid substitutions (FIG. 8). Within, VZV-Ellen, VZV-Iceland, and VZV 80-2 were remarkably similar, with identical changes within codons 76 (R→K) and 700 (R→K) as well as silent substitutions within codons 13, 676 and 727. VZV-Ellen possessed a unique polymorphism within codon 418 that allowed differentiation from VZV-Iceland and VZV 80-2. VZV-32 and VZV-VIA both contained a silent change within codon 815 not present in any other tested strain. VZV-MSP contained only the P269H polymorphism shared by seven strains, including VZV-32.

Polymorphisms in the VZV gL Gene

In a manner similar to gE and gI, gl is invariably linked with the gH protein in VZV-infected cultures. For this reason, the gl ORF was another candidate gene for sequence analysis. The result was striking: only VZV-Oka gl gene differed from prototype Dumas gl gene (FIG. 9). The first change included the insertion of a methionine codon between amino acids 9 and 10. Secondly, there was a G to A substitution at bp 320 of VZV-Dumas that resulted in a glycine to aspartic acid change in the protein. The fact that the gl genes from the other strains were identical to the prototype gl gene may suggest, as with the gl protein, that gl function requires a protein that is restricted in its genetic variability.
tions. Substitutions of a purine for a pyrimidine and vice versa are transversions. Transversions are much less common than transitions in the human genome. When the number of transitions and transversions were counted for the sequenced VZV genes, 78% were transitions. Interestingly, all three substitutions in gB were transversions. This result was in contrast with the other genes. The gE gene had 1 transversion and 5 transitions. The gH gene had 3 transitions and 6 transitions. The gL gene had 1 transversion and 1 transition. The gL gene had 6 transitions. The ORF 47 gene had 2 transitions. The IE62 gene had 5 transversions and 33 transitions. Even though there were many polymorphisms in some IE62 genes, the fact that the IE62 gene of the VZV-MSP strain differed by only one transversion from VZV-Dumas should be noted.

The complete disclosure of all patents, patent applications, and publications, and electronically available material (e.g., GenBank amino acid and nucleotide sequence submissions) cited herein are incorporated by reference. The foregoing detailed description and examples have been given for clarity of understanding only. No unnecessary limitations are to be understood therefrom. The invention is not limited to the exact details shown and described, for variations obvious to one skilled in the art will be included within the invention defined by the claims.

All headings are for the convenience of the reader and should not be used to limit the meaning of the text that follows the heading, unless so specified.

<table>
<thead>
<tr>
<th>Sequence Listing</th>
<th>Free Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEQ ID NO:1-71</td>
<td>Oligonucleotide primer</td>
</tr>
<tr>
<td>SEQ ID NO:75</td>
<td>Portion of polypeptide encoded by VZV-MSP ORF68</td>
</tr>
</tbody>
</table>
<211> LENGTH: 35
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 5

ttgctttaggtcgacaagtagcgattgtggatag 35

<210> SEQ ID NO 6
<211> LENGTH: 37
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 6
cgaccgagg agctccccatg gggacagta attaaa 37

<210> SEQ ID NO 7
<211> LENGTH: 46
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 7
cgtcttagas ctagggtgc cccccggggaa tttgtaacag gctttt 46

<210> SEQ ID NO 8
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 8
ggcccccttc tacacctcgt ttcggtgg 28

<210> SEQ ID NO 9
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 9
cocctgtagc cgtaatgsgag acacatga 28

<210> SEQ ID NO 10
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 10
cctttgtaa tacgctgcc 20

<210> SEQ ID NO 11
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 11
cctttgtaa taccggccc 20
cgtacgatta gacccacctc 20

<210> SEQ ID NO 12
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 12
ggtatactac cactgacacg 20

<210> SEQ ID NO 13
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 13
gttggtgctg ggtggaagac 20

<210> SEQ ID NO 14
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 14
cacccgactc gaaatocccg 20

<210> SEQ ID NO 15
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 15
tcggtgaac taacggtgtg 20

<210> SEQ ID NO 16
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 16
gactacagt aatccacacg ccg 23

<210> SEQ ID NO 17
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 17
cqgactgag gqattatgac c 21

<210> SEQ ID NO 18
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 18

tagctgcac caacagcag 20

<210> SEQ ID NO 19
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 19

tgcaacacg ggaattcct 20

<210> SEQ ID NO 20
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 20

cgtcctctt acgagaatct cgcaccg 28

<210> SEQ ID NO 21
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 21

cgctttctt acatattccc cagtg 25

<210> SEQ ID NO 22
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 22

dactacgttccc caccacaacc ccttg 25

<210> SEQ ID NO 23
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 23

gagttcagc gcacagcagc acttg 24

<210> SEQ ID NO 24
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 24

cagctgatag agatcagtaga tgtcag 27
<210> SEQ ID NO 25
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 25

gctacagaga ggcaagct

<210> SEQ ID NO 26
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 26
ttgcatatc accagacga atctg

<210> SEQ ID NO 27
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 27
tagacaggt ggcactgccc ca tc

<210> SEQ ID NO 28
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 28
cggtgtatg tgacggaag taacagc

<210> SEQ ID NO 29
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 29
cccaasgtta ggtgtatt ta tcgcg

<210> SEQ ID NO 30
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 30
ctgctcctc ggtgcttg

<210> SEQ ID NO 31
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<table>
<thead>
<tr>
<th>SEQ ID NO</th>
<th>LENGTH</th>
<th>TYPE</th>
<th>ORGANISM</th>
<th>FEATURE</th>
<th>OTHER INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>20</td>
<td>DNA</td>
<td>Artificial Sequence</td>
<td></td>
<td>Oligonucleotide primer</td>
</tr>
<tr>
<td>33</td>
<td>19</td>
<td>DNA</td>
<td>Artificial Sequence</td>
<td></td>
<td>Oligonucleotide primer</td>
</tr>
<tr>
<td>34</td>
<td>19</td>
<td>DNA</td>
<td>Artificial Sequence</td>
<td></td>
<td>Oligonucleotide primer</td>
</tr>
<tr>
<td>35</td>
<td>20</td>
<td>DNA</td>
<td>Artificial Sequence</td>
<td></td>
<td>Oligonucleotide primer</td>
</tr>
<tr>
<td>36</td>
<td>22</td>
<td>DNA</td>
<td>Artificial Sequence</td>
<td></td>
<td>Oligonucleotide primer</td>
</tr>
<tr>
<td>37</td>
<td>19</td>
<td>DNA</td>
<td>Artificial Sequence</td>
<td></td>
<td>Oligonucleotide primer</td>
</tr>
</tbody>
</table>

SEQUENCE:

1. acataat cttcggg
2. tcgccccgt ggttagatac
3. gcgtgtagas gcgtgtagas
4. atgcgcggct cgatggtga
5. gccttgggg tcctgggta
6. gtcattgttt ttagactcg gg

FEATURE:

- **OTHER INFORMATION:** Oligonucleotide primer
- **ORGANISM:** Artificial Sequence
- **TYPE:** DNA
- **LENGTH:** 18
- **SEQ ID NO:** 18

CONTINUED
gaattgacc ccccgag
<210> SEQ ID NO 38
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer
<400> SEQUENCE: 38

<210> SEQ ID NO 39
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer
<400> SEQUENCE: 39

tagagtggtt gtatgcgccc

<210> SEQ ID NO 40
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer
<400> SEQUENCE: 40

caatttacag atatgcgccc

<210> SEQ ID NO 41
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer
<400> SEQUENCE: 41

ttcattctcg gqggqgtccta

<210> SEQ ID NO 42
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer
<400> SEQUENCE: 42

tocgtgatt cccgatctct

<210> SEQ ID NO 43
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer
<400> SEQUENCE: 43

caggcgcag qgcatacata aaat
<400> SEQUENCE: 44
aaacactagt ccatgtgcat gtccgcgc 27

<210> SEQ ID NO 45
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 45
gcttgccggt ttttttggt 19

<210> SEQ ID NO 46
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 46
goactgcct ttaaggtga 19

<210> SEQ ID NO 47
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 47
goactgaaa tgaacacttc gg 22

<210> SEQ ID NO 48
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 48
cggctcacag agctgctctt cgggttag 28

<210> SEQ ID NO 49
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 49
taatctttcc cctcatatca caacgcgt 28

<210> SEQ ID NO 50
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 50
ggctctca acataca 18

<210> SEQ ID NO 51
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 51

cgaacatcccc gctctgttgc 19

<210> SEQ ID NO 52
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 52
cgtgtagtc caacatcccc tggc 24

<210> SEQ ID NO 53
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 53
atctaatcccc tgtggtgtg aagtgacaag 30

<210> SEQ ID NO 54
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 54
tccagtcttc gtagctctct ctaggtggt g 31

<210> SEQ ID NO 55
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 55
gatgctgac gacacacccc 20

<210> SEQ ID NO 56
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 56
gttcagttg acgyattggc 20

<210> SEQ ID NO 57
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 57
```
ttgaacctc cttaacctc 20

<210> SEQ ID NO 58
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 58

atogacgtgc cgccgtgcc 20

<210> SEQ ID NO 59
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 59

cctcccgagc atogacgtc 20

<210> SEQ ID NO 60
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 60

caacacccgc atogacgtc cttggaaggc 30

<210> SEQ ID NO 61
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 61

tatgaacac ccagtcctcg cgccgtgcagtg 30

<210> SEQ ID NO 62
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 62

gcgcgaggtcctc ctcacccgagtct 25

<210> SEQ ID NO 63
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer

<400> SEQUENCE: 63

ttggaggtct aaggtccacg tcccg 25

<210> SEQ ID NO 64
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
```
FEATURE:
OTHER INFORMATION: Oligonucleotide primer

SEQUENCE: 64
tacagcagc agtccggac gggas

SEQ ID NO: 65
LENGTH: 25
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Oligonucleotide primer

SEQUENCE: 65
ttcgagggc tcaacgggac cggtg

SEQ ID NO: 66
LENGTH: 25
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Oligonucleotide primer

SEQUENCE: 66
gatcctcgc gcgtcaccct ccaca

SEQ ID NO: 67
LENGTH: 25
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Oligonucleotide primer

SEQUENCE: 67
caaagctac tgtaccccg aaacc

SEQ ID NO: 68
LENGTH: 25
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Oligonucleotide primer

SEQUENCE: 68
aactcatgct gggccgggaa ctgga

SEQ ID NO: 69
LENGTH: 25
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Oligonucleotide primer

SEQUENCE: 69
cgctgctaa acgctgtgta ccgqc

SEQ ID NO: 70
LENGTH: 25
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Oligonucleotide primer

SEQUENCE: 70
tgcocctcgc ccgtttcaca gaaga
aagctccag tcggtgta cc

Met Gly Thr Val Asn Lys Pro Val Val Gly Val Leu Met Gly Phe Gly
1 5 10 15
Ile Ile Thr Gly Thr Leu Arg Ile Thr Asn Pro Val Arg Ala Ser Val
20 25 30
Leu Arg Tyr Asp Asp Phe His Thr Asp Glu Asp Lys Leu Asp Thr Asn
35 40 45
Ser Val Tyr Glu Pro Tyr Tyr His Ser Asp His Ala Glu Ser Ser Trp
50 55 60
Val Asn Arg Gly Glu Ser Ser Arg Lys Ala Tyr Asp His Asn Ser Pro
65 70 75 80
Tyr Ile Trp Pro Arg Asn Asp Tyr Asp Gly Phe Leu Glu Asn Ala His
85 90 95
Glu His His Gly Val Tyr Asn Glu Gly Arg Gly Ile Asp Ser Gly Glu
100 105 110
Arg Leu Met Glu Pro Thr Glu Met Ser Ala Glu Asp Leu Gly Asp
115 120 125
Asp Thr Gly Ile His Val Ile Pro Thr Leu Asn Gly Asp Asp Arg His
130 135 140
Lys Ile Val Asn Val Asp Gln Arg Glu Tyr Gly Asp Val Phe Lys Gly
145 150 155 160
Asp Leu Asn Pro Lys Pro Gln Gly Gin Arg Leu Ile Glu Val Ser Val
165 170 175
Glu Glu Asn His Pro Phe Thr Leu Arg Ala Pro Ile Gln Arg Ile Tyr
180 185 190
Gly Val Arg Tyr Thr Glu Thr Trp Ser Phe Leu Pro Ser Leu Thr Cys
195 200 205
Thr Gly Asp Ala Ala Pro Ala Ile Gln His Ile Cys Leu Lys His Thr
210 215 220
Thr Cys Phe Gin Asp Val Val Val Asp Val Cys Ala Glu Asn Thr
225 230 235 240
Lys Glu Asp Gin Leu Ala Glu Ser Tyr Arg Phe Gin Gly Lys Lys
245 250 255
Glut Ala Gin Pro Trp Ile Val Val Asn Thr Ser Thr Leu Phe Asp
260 265 270
Glu Leu Glu Leu Asp Pro Pro Glu Ile Glu Pro Gly Val Leu Lys Val
275 280 285
Leu Arg Thr Glu Lys Gin Tyr Leu Gly Val Tyr Ile Trp Asn Met Arg
290 295 300
Gly Ser Asp Gly Thr Ser Thr Tyr Ala Thr Phe Leu Val Thr Trp Lys
305 310 315 320
Gly Asp Glu Lys Thr Arg Asn Pro Thr Pro Ala Val Thr Pro Gln Pro
125 320 335
Arg Gly Ala Glu Phe His Met Trp Asn Tyr His Ser His Val
340
<210> SEQ ID NO: 73
<211> LENGTH: 13
<212> TYPE: Peptide
<213> ORGANISM: VARICELLA ZOSTER
<400> SEQUENCE: 73
Val Asp Gin Arg Gin Tyr Gly Asp Val Phe Lys Gly Asp
1 5 10
<210> SEQ ID NO: 74
<211> LENGTH: 39
<212> TYPE: DNA
<213> ORGANISM: VARICELLA ZOSTER
<400> SEQUENCE: 74
gtgaccaacg tgaataacgg tgacgtgatt aaagagat
39
<210> SEQ ID NO: 75
<211> LENGTH: 39
<212> TYPE: DNA
<213> ORGANISM: VARICELLA ZOSTER
<400> SEQUENCE: 75
gtgaaccaacg tgaataacgg tgacgtgatt aaagagat
39
<210> SEQ ID NO: 76
<211> LENGTH: 124884
<212> TYPE: DNA
<213> ORGANISM: Varicella zoster
<400> SEQUENCE: 76
agcccacccc tctcgcgggc cccctcgagag aaaaaaaa aangcaccoc acctccoccc 60
ggatttgcgg ggcaccattg gggggattgt gatttttttg cgggacacc ccocccoccc 120
gcccttaccc aaaaaaccgg ctttcctgtg ccacccctcg tttactgctc ggtggccagc 180
cgtcgaacat tccccgcacac ctgggaccac cgggtcgatt cctacgcgtg ccocccagct 240
ggtgactgt ggaccaccoc accctctccct accccaactac gcggagggcg tggcagacgc 300
gccccccct tacasaacg ggcgagagtct ggtggctcct cccctctctt tccoacactg 360
gggagaaggg gccccaaaac accaacttga ttcgtcagac tgcgctattg atggaatcc 420
cagaacttcg tggcttttcc taagacttcg ccacgctcgt gtacccgctt tttacattct 480	ttgtactt tccacaccct ttcgcgctgt gttgacccatt gttgctgatt tcccgaggg 540
accccaaccc tcaacactac gccactttcg tccggaagg gcaggtattt atctcgttt 600
ggaogctgtgc gaagttggtat gccacacaag agcttatatt gtcaaccagc gcacgctgtc 660
cactcggact aacacaccac gtaacgcgct caaaactctt ttaaatcttt tcacggcttg 720
ggacgctttt tccgggtgta ctgggctttcg gcacacaaag aaggtgattc gaaccgctgg 780
tggcctcct tgaacacagc tctggccacgc gttccctctg taacggtcgt tttccgtatt 840
cataaccca gccttggagct cgccttacca ttcgacgacg cccctccagt cccatcact 900
cgatacgcg gagcatggcg atccacaaaa tatattatta aacaggtatt gttctacactt 960
gtacccgct atataatttt atggccgata ctcctcagct gataccgagc gtatattata 1020
agttagcata aatctctact gctatccaga tcaactcctgg ctactagctg tgttttgtta 3420
tccctagaa acacacccgc gaaccttcgt aattcccctc ttgatttttg gctactgaya 3490
tccagtcttt tcaactagtc tcatctaaat ggcgtcctga gtaactttgct acgtctccto 3540
coggtgctga gacggctta atagacgctg cggtaatgttg atagacgctg atacatatac 3600
cctttcctaa agctcctcgg cgcggccttt ctttgaataaaa taaactcttg taagacttgt 3680
cattggctgc atatccttt cttgtcgttgg tcaatgagcg aggcttggta ggcgcgtctc 3720
tctgtgctga caggggtcga ttcaggtgctt ttctttgaact ttaaggtgctta taagactcgg 3780
atgtgcttgc atgctcgtctg agtatgctgt gcatacctg atcaaaagctt cttctatcct 3840
gatggtggtta atcggttaaact caacacacca aagtttctgg gacgatgttg tggtggttt 3900
caacgttcttc tgccttcgttt tgggaatacc gttgattatata tggattatatg gcgaactgct 3960
ccacatacag aagtcgcacgc cggtgcgttgc cctcgctcag gcgttgagcga atacatcagt 4020
cattggccttc atgtgctttc ttcaactcgaag aatctgttgcg cctatagetgt gcgtttttat 4080
ttcatctgc cttcacaata gttacacagt ttgctgcttt tggagtttga gcgttttgc 4140
tgtgcttggac atatctgcaaat cccgttgcgg tcctccttcgt tccttgtattt gcgtttttct 4200
tagattttgc agtacccgcac ccccgctgctgt ttggttggctt tgaagatata agttatatag 4260
cgtgggtcc ttcattcttccc caaataagtc atccgctgctg cttttgtttag aatcatataa 4320
ataatacatgt cgtatcttgaat ataatcataat tttatcagca ggcgcgttcg 4380
tactgtagcgc ccaacttcgg tgcctataac gcttcattttc cccgtattgcatt ttgttattaa 4440
atgtgctacag ttcggtgcttt tgggatctaac atagatatac ctgctttattc gcgttttctt 4500
gcataacaac acccggcgcag aatcctgaat gtgtgtggttg taaaataaacg ccaatttgtttg 4560
atagacag cacccggtta aatcatacatat aatctcagatg gataactctg cgtatccactc 4620
cagaacatgt cattacataa accgttcatt tttatatataa aacatactag cttgtggtgtt 4680
aaatcacttg cctaatcttc cccgctctgc ggacacacca ctcataccacc tcccaccatt 4740
tgtagatatgg tccacaacag gcgtttgctga aatccacgttg gttatcttataa ataatgtata 4800
tgtggtgcc gcatttacct cccggtgtgc tcaagatggc ccacacatnac gcctccattgc 4860
tgaactgatct aatatactac ctcataacaa cccgtataaa cccgtataata tttatgtctgc 4920
gcataccaaa ccaagcgcttc gtaagttggtg tataaatagc cgaattgttg 4980
aggtgtagaac ttcagcatgt ttcatacatgt aatctatatcataa cccgcggcgtt 5040
gtatacata ccagctgcgg ccatcacaata cggctaggttg ttttaacaagct atatcataaa 5100
aagaggttgc tataagaac ccctacacaag cctgcacacc ttaacacagcg tgtttgttaga 5160
cacaactctc atgcctgcatg tcataccagc agttttaaat ccataaaatcc ccaagttgctc 5220
gtcagttgc cccataataa taaaattgct tctctttgtt cctaaactgct gcgtcgcctg 5280
tggagattgc ctaaggttgc aatggatgtt agatctcagcctgctttttt cttgtttatcgc 5340
aattgagtacag tcaagctcaggactgtagtgc aatcagctgct cgcgttgtatttgc 5400
ttgtcacaaa cattcgcttg ccagcaataa ccacaaacggt tgtgtaggtgc acactgcgcg 5460
agcataaaaaa cgcggggttcgc ctcgcttcgc tccgctgggtgc gcgttgagtcg gcgtgttgata 5520
cctttgtgt gcgcagattg ctttcagatgtt cctacaagcgtatctgc gcgttgtttct 5580
tgcgttattg aatctatagcg tcgtagctgc gcggggtcct ttttactataa ctcatacttc 5640
aatatacttc atatacttgc ttcagagacag ggcgtcctgt aatgtgctgc gcgcgtgttct 5700
tccctggctgc tctttttacg cttttgttgtc gattttagtc gcgggtgttc atatggttta 5760
agtttgata acctccagat gattgcaca acgtcctag atacataagc tatacgatat 8160
atatagcga ttaagggtct tcctcatacc taacgctta taataagggta taaaatcagt 8220
tggtgatttaa aacaaaccac aaaaataagc gccgaaccgg ggtcgtaaatt tccgattga 8280
aatcacaata ataatataaa aataactic gcgtctcata ctaacacaata attgctact 8340
tggctttct tatcggttga caaatcaaac acgtgcgggt ggtagaagga ttaagtcggt 8400
gactctcct ctccccatctg tacaagacag gtcctcaag tcggaggtc cacgtataact 8460
cacacacttc agaggttcttg tgccttacgc ccgctaagac aacacagcag agtgggact 8520
tgcaacccct tttgcggcaaa ataatnccag aactgcgttt ttgcgtgttt tatccatagt 8580
tcataactgtt gaaacagcag tcatactggc agacggctgttg tcgggctttc attggtagt 8640
tcgggataac aacgtcagcc ccactcttataa aagngctggtg tgaatncaac ccacccnccg 8700
gagcgccct gtcgccctct caagagccgt taacgctct gcattgtta cttgocggc 8760
tctcactgtgc agaacagcact ctcggtgattc ccgtagatac ccgtagctgc tgcgggccc 8820
ggcgctgggg gacgatctgctt gctccattct cctgacactg tgaagtttta aacacagcag 8880
atttactgtgg agataancoc gcgtctcagc ccgtagcgtg ttcnacactg gnaaacacaa 8940
aacgtctttc gtagtctgttg ttcggtgcac tttcctgtttt gcgggtgttt gcgggtggcg 9000
tggagctgtac atcogttagt actgcacgtgc aacactcgac gcgtaacggt gnaattggaag 9060
tgctagctgt gcgtagcttg tttgagaga ttcactcttg gctgctgttc aacactcag 9120
cogcttttgtc tgtttccac nacactgtga ttcogttagt gtaaggggata actcggtgttt 9180
atanatnccag ctcggcggcg cctccattct gtaatttataa cctccatctc 9240
tcagcactgtg gcgtgacctc aacacacagc aacggtcagc acgcgtcagc cccgtgacnm 9300
tcgccttcac cctccacctc aacagccgct acgtagctgg acgcgtcagc cccgtgacnm 9360
gacacactgc tgtctctggt gcataataat gcacattnnc ccacccacacag cctcctcgcattc 9420
atctttcatc ttgttcctat aataattncag atctgtgtgg ggcgtgtggtt ttacatttac 9480
tgcttgattg gnaacntccag atctcggttt tctcttagcg tigaccnccag tcccagcctg 9540
cococgtgcgtc gttggtgtggc ttaggtattgc acgggtttag taaatttacnc tctgaaaccc 9600
ggcagccac attcaccccg gcgtcagatagc gnaatntcnc tttcccttaa actcggtgttt 9660	ttactgtagc gttggtgtggt gcgtcatttt gcgtcagact gctcagcgc acgggtcattg 9720	ttcagtctgtg ccgtaggtga attcattgact ttctccttgca gngcagtgcgc gatcgttcagc 9780
ggccagtgcgt tcggcagcact gataactgcc tggcgggttc ttagcgctgct ccnnnnnac 9840	taagcgtttta atcgcttgag ttcggttaact cctgctttcc ttaacgtnaaa gnaatnnnnc 9900
atatttattc tcttttctttt aataatgtgtat taggcgttacn cttcatttac acatgtgctt 9960
tctggcgttg tggtagttac actggggtag tttgtttagg gnaacntccat atctgtttct 10020
gcagctaacg tatttccagc ttcggctttc gtcggctggtg aaaaattgca aatattcaga 10080
ataaaggtg ttttctataat ttcggtggag tttgtaagac gttgatttg acacgtctga 10140
aatatgggt gcaacgctttat cttggtctttgc tcggcagttc gtaatactgat 10200
aatcgtaaaa gtagaccttg ttaactgctg ggttaaaaac cggtaacttcc tcggctgtta 10260
tcacaatggct cctctataact cctctcttgc cccgctataa taattctgttc gggcagcaca 10320
aatgtgtgat ccagcagac gcgtattgtt tgcatttgac tttaaaacaag tgctggactca 10380	ttggagggcc ccgagcttac ccaacgcagct gttgatctgt ccggatcataa cccgcttgtg 10440
aatcttattc ccagatgtggtc ttcggcgct ttcgtggttt gcggaggtttc ggttgatttt 10500
cgaacctctt tctcgcttaa cccgcatggc agcgtatotg cacatcagg tggactttct 10560
atataasag tatactctta accaacgacc ggaattttg gcagtcgttg caatacctgat aatctccgctg ggaacacca ctaaaaccc 10620
gttttttgag cttggagatag aattacgctc aatctttatg ttaaaaatgct 10690
caaaatcct ccttctgcc agacacagct gcagttttaga atctgatctg gcttctttct 10740
tgctctgcc atcgagttgg ttcttccgag cttctggatg gacaaacctc gacaccaca 10800
ttcctcaag aatttttgtt gggggtgttg ttgaacgatt ttttacgctg 10860
ttttatcgtt ttacgctata cggacagact gtaaaccgcc tttttcataa 10920
aagagggggcg gctggtatag cgggcccctc gtttaaccc cgggtgctgct 10980
ctctacgcct tataaggtta accaagaaa gacttttctc gaagcgctac ggtttgtgctg 11040
ggaaagttg gcgtgagact gcaaaaggc ggcacatgcc gccacagcgag gcacagtg 11100
gggctgggag ctggggcctg tccctagcag cttgaggtgc cttctccacc 11160
agttgtgctg cttgatggtg aacatgcgca cggagtttac gcttgtgctg 11220
gaccctgcc gtaacaacc caaaccgctg cacagcgac gcaaatcctg tgggaactg 11280
cgctgtaaca gctggagcct cttgatggag cagtttggag cattaggacat 11340
tgatagagac ttaaccgctc gttgtgctg cttgagttgc cttgagttgc 11400
ggttaacgc atgttacgag ttgcagcgtg cggaggttgctg ggccacagtc 11460
cagagggcag cccttcctct ccaaatcagc accaaaaacc gcacaacgcg ccaggtgggctc 11520
tocacgac gttcttttcg tgggaggtg gctggaggttg gccttttctct 11580
gacggccac aagcggcggc aagcggcag tggctgatc gcacacaacc atacaagcag 11640
atttcctct cccgctagct gtgtatagag gcagttgctg gcactagtctt ctgtaaataa 11700
aataccgag cgaattttag tgaagacgg aatagggcgt cttgattagc aacatccagc 11760
taatcagact ctcattgac gctggtgtaa cagctggctt ctatcgttctg 11820
tgcgagtcct gctttgtag tggatacgg aacatgatag gcctggcttt cggagttgctg 11880
ggctgtctct gcagcagcct gctttgtag tggatacgg aacatgatag gcctggcttt 11940
ttcggtatgc tcatctgtcg taaaacagc atatccagc atatacctg ttggctttct 12000
ataactatgtg atatacctg ccatgtgctg ccttctgctg ggtggtttct 12060
acacagcttc tctcgtgact ccaataaccc cagccccacc gcggcctgtt gttgtctt 12120
ggagcggtc tatttaacta aacgattttact ttatatagttg cttggtatg 12180
aacccacgct gcacagcttt ccagctgcgc gttggttcctt ctatttctgctg 12240
ttttgatag cttggtgattctt cttggtgattctt cttggtgattctt cttggtgattctt 12300
taacacctc ccacagtctct tcttttctt atcttttctt atcttttctt atcttttctt 12360
ctaacgaagaag ccagctcaac gctcctgcc ctttattcctg cagctcaac gctcctgcc 12420
aagtttcaac ggttggttag ctttattcctg cagctcaac gctcctgcc ctttattcctg 12480
atgttatttt ccacagtctct tcttttctt atcttttctt atcttttctt atcttttctt 12540
agsaagctt atataagtt gggagttttgc gcgtgtatag gcgtgtatag gcgtgtatag 12600
aaggggtttg cacagctcag gctggtgcgt ctttattcctg cagctcaac gctcctgcc 12660
cgagccaaa ccagctcaac gctcctgcc ctttattcctg cagctcaac gctcctgcc 12720
cagagcggc ccagctcaac gctcctgcc ctttattcctg cagctcaac gctcctgcc 12780
tcagcctt ccagctcaac gctcctgcc ctttattcctg cagctcaac gctcctgcc 12840
cgtttcctgt acctaccttt atatttaacc gtacagcgtg aattttccct gcgtttgtag

gcccctcact ctggcaccac ggagcgttct gggttttaaa agttaaccctg gaccgaagt

ggcgtcaac cgctgtggtt ttctctctgt taatgccccc accgcaaatg aggactcttg gtattaaga

gggaacccc ttaaccgctg tcgcctgagg gaastaatt accgcggcgg agaactggygg

tccgcttctgt ttaggattggt tcgggggtaa gacaacaact ctctgtgttt ttaacaacc

ttacattcgcc ttcattctga acgcgtcgggt ggtttttccttt ccccaacaat taaagctgaag

ttagacgcct atgcggtcacc acattctccaa gacccgagac atgtaagac ggacatctgt

tacgcaagag ttggtgaana tagaactactg ggtgatcga agtgaagctat gttttttagct

cctacgcctt cctgccagat cctgccgggg gcacaccaac gcccaccecc ggtggggttt

ttacggtctt aaccgtcatt ggggtagagg gtgaatattg attatcaaaa cggcncgcgc

tttttttattt ttaaacaactgc cgcgtattgg tajttctctg atgacctctta aagttcctcaca

tataanaaga gcoccaaacag gtgtgtcagat atggatctcc ggcaccccttg ggttttttccc

gaggcgtttt gttgttgcttt gtataaattgtc tgcagctgagg tccatttact tggaggcactt

cgcgcagaca ggcgtatacg tctaataccca aacgctcccc ccgcgacaca caccgaaacc

gttattgcgc aaccaacttg tataacaacc cccacccagag aagttcctcact tcaaaaaaact

tagttgcggt tcgaacacta ctgaactcgg agatgtgtga ggcacaccgt tctagcaact

cggtatattt tccgggatc gcctcccagtc attcatcata taattgtcacc gacacanata

cctaccctc cagacacgaa aacgcctatag tatatttaac ggcaggggna gtaattaggga

aatcacaacat cattacgcgc gcgatcgcacc aacgacgagc cggcaccggg ggaagacgccc

gaggaacgag cggcgacagac ggggagggag cgggagggag agggcgggag ggggagacgc
	tggccgagca ggagggcgag gggagggag aggagggagaa gggaggtcgg gggagacgag

gqagcgacgq gqagggcgag ggagggcgag gqagggcgag gqagggcgag gqagggcgag

gagggagag gqagggcgag gqagggcgag gqagggcgag gqagggcgag gqagggcgag

gtqaggtta tttacgcctta gcaacgaaa taaagttaag ctcgcagctct cgcacctgaca

tagatgtgga gctcgggtga tcacnnaccacct tattttatttt aacacctggt gggtatcctg

ttcacccac ctcgaacggat taagggggaga ttagtcttgg ttagtcttgg ttagtcttgg

gcgacttcgt cctggccagt tttcctctctg ttttctctctg ttttctctctg ttttctctctg

ggatgggtattc agatgagcat tatttttttt ggctgggacat ttgagatggc aacccgagcc

ttcctcaatc gcacagcttttt gcaatcagtt ttttttttttt ttttttttttt ttttttttttt

caatctctt tgaacaatgt ttaagttgga atgtatttattt gatagagcgg gctttcaagtta

taacacacatc ataggcggcg cttggggtttt cctcggcctg acccattttt atgcggcagcc

aatctgtttt acaacacacttctggtttccttggcgtgc ttttctccagtt

gacacgcatc tttgctctcc agatattattt ccataacgac agtgcatttt tctataagca

ctttcacagt agaraggtgta gatttttttt tcagagccag aacctttttttt agaagcagac

gattttttttt gggcagtaac acaatatttt tggctggggga tccaggtttc ttaaagaccc

atcgtccggtt attacacaac gcacacgagc cagactactc ccaagaagcag cagctcttttt

tgctcagctg ggttctccc tggcggcttt tttggggtt ttttctctctg

ggctcagac cagatgagcatt taaagctatc cttttctctctg ttttctctctg

gtcacatttga acctgcgcag ttttttttttt ttttttttttt ttttttttttt.ttttttttttt
ttacccccac ggaacgggaa atgttacgct atctttttac gttgtaggtc actctttggct 15300
gaggaggtt gaactgagat tctgcagcga ctgtttgtgtg cttttatat 15360
occttgggc ttcatctcgct cgcttggaat cttgctctca tttctctata cccgccctag 15420
gtcgctcttct tctgtcttta tcagcttttt accttggtggac tctctctctt 15480
gatgcctttt gcgccctttt cggcagctt taaccggata tggccggtt tgcagcagcccc 15540
cacaccatct ctggttggag tttgggagtt gttgtattat gcctctttt ccttattttt 15600
tacgcagcct ccgcccgggt tcttttatttt taccagcagt ttggctgtgctt ccatgactc 15660
tttgcgtgtg ttcctccggt gctggctggt acgcggggtag tcacagtattt tagggttccttt ccccgagcg 15720
gctttagaa tcgctctattct actctttatg tgtccagcagat tcctctttttt cttcccaaaa 15780
cctaaaacct ctttgggaac gccgacgtgt atgcatcctg aacccttttg gttggtggcctc 15840
cacgcagcct cgtccagcac ggttgaaccct gccatatatt tgcctgtgatg 15900
cctttgccttt gcctttctgt gccctgttctt gttgcctcct tgcgctctga 15960
cctacgccga cacacgtctt ctcacagagg ctttttattt cttgggatt 16020
tagcctgtgattc ctttcaccctttt gccatatttt tgcctctctct ctcttctttctt 16080
aacagctttctt ccacaagcag gccaaagcttt gcgctctctt ctcttactttt cctttctttc 16140
aatagtttgt tgttgtgtggt gttggttggtc gttttggtggt gcgttggtgctt ttcctttaa 16200
tggcccccttt tctctctttt gctctgtattt cccagcctttt cccagcctttt cccagcctttt 16260
taccacatat tggcctttttt ttatctttgct ctcatcctcctt tgcacagac 16320
tccgagcttg aagacagtctt cttccctcgtt tgtccctctt cccacgtttcttt ctcttctttcctt 16380
tctttttctt cttttttttt ccagctttgttt cccggtttttt cccggtttttt cccggtttttt 16440
cgacccgctt tttcattttt ctagctctttt ctctttttt ccaagcagagt cccggtttttt cccggtttttt 16500
accacatat atcctttttt ggtgttggtt ttcctttttt ttcctttttt ttcctttttt 16560
cgagccttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 16620
tggcgcgttt ttatgtttttt ttatgtttttt ttatgtttttt ttatgtttttt ttatgtttttt 16680
agagcgcttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 16740
tgtttttttt cccagctttttt cccacgtttttt cccacgtttttt cccacgtttttt 16800
tt
-continued

cgatactgtc ctcgatcgc cgatttacct tgtataacgc cttggtatct cctatggaac 17640
sagtggtgaa atgtggttt gttgtgtttt aaggggaat ttttatctcg acgcagtttt 17700
tgatgtagtc cacataattt atacagaaac acgtagatac cggatatcag 17760
taagacgcgt accttgcgct ctctagctgc tgggtgcagcg tagtctggtcg 17820
aaaaaacacac cctgtgcgcag cagctgcttg aacggttcgt tgcggttcgt ccacgctgcc 17880
tgcgttacgg accgttgatt aggccggatt tgggtgcagcg tagtctggtcg 17940
aatgtagtgg caaagacgtg atattaagtca catgaaacc cgaagccttct taaatgtctc 18000
cgatactgtc ctcgatcgc cgatttacct tgtataacgc cttggtatct cctatggaac 18060
sgatactgtc ctcgatcgc cgatttacct tgtataacgc cttggtatct cctatggaac 18120
ctttaccc acaggtgctg ccgtgtgttg taaccaacc gttacgtttt ggaaattatcc 18180
gctacttagt ctcataaactacagcctg tgaaggtgggt cacactgtg ggcttttcg 18240
gctacttagt ctcataaactacagcctg tgaaggtgggt cacactgtg ggcttttcg 18300
ctctgtttga aataataagcg gtttacgttc gccggttattt gggttataata 18360
aggaattact ctttattact tccttttaat acacagttgt ctttattact gccttttatt 18420
taagttatat accgttacct gccttttatt gccggttattt gggtttataata 18480
cgctagtgg gcaacctggcg ttaataacgc taatatttttaa atttttggttc 18540
ggaagggcg acggagcacg atcggagcct atcgtttttc ctttttagact ccagcagttgg 18600
atggcataaa gatattactc ttatattact caagcgttga tttttggttc 18660
agagttatgc atagttatgc ctcgtttttgc gggagttttgc ttttttgggtg 18720
taacaactag gcataataaa cagctgcttg aacggttggc aaccattcct gtttttttgc 18780
gaccatcgc gccttttttc gccgttttgc gccgttttgc gccgttttgc 18840
ataaagactg ttaataacgc taatattttga aataataagcg gtttacgttc gccggttattt gggttataata 18900
atacacttg gaaaacacgc gagacgagct gattacgttc aatcctgcgt aatcctgcgt 18960
ataatcctac atgtagatga cctttttttc aatcctgcgt aatcctgcgt 19020
gtaaatagc atagttatgc ctcgtttttgc gggagttttgc ttttttgggtg 19080
acgattgttg atagttatgc ctcgtttttgc gggagttttgc ttttttgggtg 19140
agatcattag ttaataacgc taatatttttaa atttttggttc 19200
aagtctgtgg acgtggttcc cccttattct ttatattact caagcgttgg aaccattcct gtttttttgc 19260
cgataataaa gatattactc ttatattact caagcgttgg aaccattcct gtttttttgc 19320
ccttatttaa ggaagtttgt ccttaattgc tttttttact tgtctagcgt aagaggtgtg 19380
ttgtgttggtg atagttatgc ctcgtttttgc gggagttttgc ttttttgggtg 19440
cgatactgtc atagttatgc ctcgtttttgc gggagttttgc ttttttgggtg 19500
cgccttttttc aatcctgcgt aatcctgcgt aatcctgcgt 19560
taataacgc gaaaacacgc gagacgagct gattacgttc aatcctgcgt aatcctgcgt 19620
atagttatgc ctcgtttttgc gggagttttgc ttttttgggtg 19680
taataacgc gaaaacacgc gagacgagct gattacgttc aatcctgcgt aatcctgcgt 19740
cgccttttttc aatcctgcgt aatcctgcgt aatcctgcgt 19800
ataataacgc gaaaacacgc gagacgagct gattacgttc aatcctgcgt aatcctgcgt 19860
tataatg acgcacgcac cgaacgcctc aacgacgatc atagttatgc ctcgtttttgc gggagttttgc ttttttgggtg 19920
tataatg acgcacgcac cgaacgcctc aacgacgatc atagttatgc ctcgtttttgc gggagttttgc ttttttgggtg 19980
-continued

gctatctct ggtattgctc ggttataaa ttttcccga ttgtaaccna cctctgaaagtc 20040
caccaacc agtacccagt gggggtttaa tactttgtaa cggcattgta aggtggtgct 20100
gttgaggcg ttaagaattg atcccagca acgttaacta ttggacgata atacggtgta 20160
actgttaac tgctgtcctag tatagccttc ttggttcttg ttttaaccgc acccggacaa 20220
tacgctccct ccggtgctagg atccatagat aaattttgta cggaaaaacct gacagcttgt 20280
ttaaatgctg attctactata attttctctgtt gcctggttata attctcccgg gtctgtttatt 20340
aagtttcaat ggcgcactgttt gctataatac atccogcggta atcttggcctt ggtcttaacc 20400
gctttgcga tgtgaagcggtg cggatctata agtggacgct taaaaccnca ttcattatatga 20460
aggtcgggga gtagtaacgca cttccacctct gtttattcttg aacccctccggt aatcanaaga 20520
atatgtccat atgttttttg tgtcgtcctaa aaggccgcct gtgtctccgt cgttgaacgc 20580
atgtaaccg ggtgtatatgaa ttggttggagat attgctttac ccgccggaacc ggtgtgaacg 20640
catttgatat ttctcatataa aaaaagctgtg tgtgaatttg ggtgttgggc tgtggagatcg 20700
gggtctcgag aagctccgga ggtggtcccg acgctgggat gccgcttttg tgtagagccgc 20760
gaagggcggc ccggcgcgggg ttcggtccttt ccggcagcgg cgggagcggc cggagccggc 20820
ggtcggggt tgtcctgctag ggcggcgggt gcgggagcgg cggagccggc cttcgcgggaa 20880
ggggccgag tgccgggcgc gggggcgtgc ggggctgcgg gccggcgggg ctggggcggg 20940
aagggatc tgggctttc ggaaagcggcg ggtgggagtt gacgggggc gtcggttcggt tataacgcgct 21000
ggggggct ccggtgtata taatccacgg tctggtgcttg agatctccagct 21060

gtaattggc tccacggtat cgttaaaaat aatattatct gtctcgcgtt cttctctgttt 21120

ttttgcgtg atctccacgtt cccctaaatat aacagtttac caacccacc cgggaatcta 21180

aatagtggaa acgttttttt gcagacatgg aataataaacc aggttatttg caacttttac 21240
aacactttct atcggtgatc ggtgctatat atcaccgata gatacgctag attttattata 21300
atatatatac acacgtgata taacatagat atatgagatg caataaaacc gtaataaggt 21360

ttaaccgta gttctctcatt ccgataatcc gctccaccgc acccagctgt gcgtgctttaga 21420

tattatatag ctccogcctaa aaccogccaa aatgtgtaag ttatcccgct acccaggagt 21480

gtttgtatt ataaccattc cccaggtttt tttttttttttttt gatatanaacc ggcnaaaaacc 21540

tgcaaccgaa atgtogtaata atctcctctg atgaacggcg taaggttaac ttttttaata 21600

ttgataataa attttatttt gactttgcgc aacatattgg gtaacactta 21660

tataaaacc gataataattt atatatgttg gaatccggcgacc atcataattatccttgtaacc 21720
cgggactttt ccgggacttc accacccttc cgggctctat tttgtgtata cccaccggca 21780
aacactttct atcggtgctaat cctatagctt taaaaaggtcgttttaaata 21840
ttggcaaac gcggctgggg gctccacattt gacccctagt gtaaaataccttaactacat 21900

coaataaaaa ccataaatgctactc acatcactac atatataacc tacgtggttag taacatcccc 21960

aacccgggct ccacacactaa aacaaatccaa tattcagcgcg cggccggtggc gttggtaacc 22020

aagtctaagta tgttatacag cagcggcacc gctgggctcga taatgctggga tattggaataat 22080
ccccataaat ccataataag agatccgctg gattttgggc aacccacacc cctaatcaca 22140
goaaacaca caccgacccag ccggcctata ccggtgggaa atttctgata tgggtgctgtaa 22200

aacttcggcc atggtgggca taaccccaaa cgcgagcctg aacccctact aagttgagttt 22260

aaggccagg ggg gagcactggtt atattgataa attaccccg ccgctgtttagg 22320
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>agtcocacga gnaacaaacc cgatctgag gttattgcaac agaatttaca ttatatgaggg</td>
<td>22380</td>
</tr>
<tr>
<td>ttccogacac atotcctggat tgattgaacgc cggatttanct ctotcttana ccacaccaggg</td>
<td>22440</td>
</tr>
<tr>
<td>ttttatctgc gacacgccgt ttcacacatac acgccagtct cttaaagttta ataattaaca</td>
<td>22500</td>
</tr>
<tr>
<td>acacatatgct atgttttcct cttctggtaca ccacagtttag tattgtaatt atatgcaaaa</td>
<td>22560</td>
</tr>
<tr>
<td>gttgatctaa ttttacgtta cattactcg gaaaccacct gttataactga gataatatacc</td>
<td>22620</td>
</tr>
<tr>
<td>ggctctctgc agggcttgcg gcggagacgt gacaactatctt ggaatctgctg atagctccttc</td>
<td>22680</td>
</tr>
<tr>
<td>ggatctggtg ttcggggagcg ttcaccccccct tttatatccc ggtatactttt ctctctcttct</td>
<td>22740</td>
</tr>
<tr>
<td>ttttaataca atttttccct gttgcatctc cttccacagtt tcaatgcttc</td>
<td>22800</td>
</tr>
<tr>
<td>caaataatttc cagcagagtt aatttttttt taagttccctt ggaacttacag acggtgtccat</td>
<td>22860</td>
</tr>
<tr>
<td>aaaaatag ataagagccct gccgacgctg ttgctacacaat cccaccttag gggagcttag</td>
<td>22920</td>
</tr>
<tr>
<td>tgaagccagct ataaaaaatc ataataacag ttttacccacgcgc gttataacctg atatc</td>
<td>22980</td>
</tr>
<tr>
<td>ggcgaagagc gacacccctcag tgcctttcc aatctaacat caacacgctc acatgcttcg</td>
<td>23040</td>
</tr>
<tr>
<td>tcacacac aacattttta cccatatccct gcggagccagt gggagcttagg atattatgtt</td>
<td>23100</td>
</tr>
<tr>
<td>aagccagtcc ctctctctctg ttttacctta ccgaagataa tatactggata aactttaacc</td>
<td>23160</td>
</tr>
<tr>
<td>ccgtctctgc ctgtcatact cccctctcct cctataagaag ttgagctgcttc</td>
<td>23220</td>
</tr>
<tr>
<td>tatttagtt ctgcttctaa ggggaggatt gcgggcttgc gttattatgc cttatatctag</td>
<td>23280</td>
</tr>
<tr>
<td>gattggaagcg gcagagcactc cccctcctt ggttattgctg ccctgatgta ccctcagcaggg</td>
<td>23340</td>
</tr>
<tr>
<td>acacatattac ctctccctcct ggcggaggcct cctagcctgct cccctgagtt tcctgctctgg</td>
<td>23400</td>
</tr>
<tr>
<td>tcttattcct cagcagagtt ggttattgctg ccctgatgta ccctcagcaggg</td>
<td>23460</td>
</tr>
<tr>
<td>gatctttgct atgcggagct cccctcctcct ggttattgctg ccctgatgta ccctcagcaggg</td>
<td>23520</td>
</tr>
<tr>
<td>cccacactct gcgggcatct cccctcctcct ggttattgctg ccctgatgta ccctcagcaggg</td>
<td>23580</td>
</tr>
<tr>
<td>acgtgtgct ctctccctcct ggcggaggcct cctagcctgct cccctgagtt tcctgctctgg</td>
<td>23640</td>
</tr>
<tr>
<td>tagctctctc cttgcttctc cccctcctcct ggttattgctg ccctgatgta ccctcagcaggg</td>
<td>23700</td>
</tr>
<tr>
<td>ttcocacataa cccctcctcct ggcggaggcct cctagcctgct cccctgaggt tcctgctctgg</td>
<td>23760</td>
</tr>
<tr>
<td>ccacatcctc atgcgcttgtc gcgggaggcct cctagcctgct cccctgaggt tcctgctctgg</td>
<td>23820</td>
</tr>
<tr>
<td>cggctctctc cccctcctcct ggttattgctg ccctgatgta ccctcagcaggg</td>
<td>23880</td>
</tr>
<tr>
<td>ggtctccatt cggctctctc cccctcctcct ggttattgctg ccctgatgta ccctcagcaggg</td>
<td>23940</td>
</tr>
<tr>
<td>ttttctctcc cggctctctc cccctcctcct ggttattgctg ccctgatgta ccctcagcaggg</td>
<td>24000</td>
</tr>
<tr>
<td>agaatatatg atggatctct gtcgctctctc cccctcctcct ggttattgctg ccctgatgta ccctcagcaggg</td>
<td>24060</td>
</tr>
<tr>
<td>ctgatccatt caagacagct ttcagcgtct cgctgtgctt ggcttccataa ggttattgctg ccctgatgta ccctcagcaggg</td>
<td>24120</td>
</tr>
<tr>
<td>gagcatatgct atgcgcttctc cccctcctcct ggttattgctg ccctgatgta ccctcagcaggg</td>
<td>24180</td>
</tr>
<tr>
<td>tctatctctc cccctcctcct ggttattgctg ccctgatgta ccctcagcaggg</td>
<td>24240</td>
</tr>
<tr>
<td>gggctgtccag ttcagcgtct cgctgtgctt ggcttccataa ggttattgctg ccctgatgta ccctcagcaggg</td>
<td>24300</td>
</tr>
<tr>
<td>cggtgctctctc cccctcctcct ggttattgctg ccctgatgta ccctcagcaggg</td>
<td>24360</td>
</tr>
<tr>
<td>attacacatc cccctcctcct ggttattgctg ccctgatgta ccctcagcaggg</td>
<td>24420</td>
</tr>
<tr>
<td>acaaacgct cccctcctcct ggttattgctg ccctgatgta ccctcagcaggg</td>
<td>24480</td>
</tr>
<tr>
<td>ggcgctctctc cccctcctcct ggttattgctg ccctgatgta ccctcagcaggg</td>
<td>24540</td>
</tr>
<tr>
<td>atgcgctctctc cccctcctcct ggttattgctg ccctgatgta ccctcagcaggg</td>
<td>24600</td>
</tr>
<tr>
<td>cccctcctcct ggttattgctg ccctgatgta ccctcagcaggg</td>
<td>24660</td>
</tr>
<tr>
<td>ttcgtctctctc cccctcctcct ggttattgctg ccctgatgta ccctcagcaggg</td>
<td>24720</td>
</tr>
</tbody>
</table>
contgatta tatacacaat tgcgtgcaag tctttattaga tggagaggggt atgcatacgt 24780
cagggcggt gcaacctgag ccgacacagc atgcacacat tattctgatat ccgctatagt 24840
ggttgcct gtatacaacat tatactctatt acttcttcag gctgtgata tttgtttaga 24900
tgcaatcct atgttgcgcc cagttctagct atgcgcgatt tgggttaact atttagaat 24960
tacatacctt gaaatttttg ttctcctgt tgcttgctag acccattaag actacaatga 25020
cacatacctaat cctgctttga aagttattca ggtacccggc ctgaatgtc cacatacct 25080
gggacaactca aacgccctcc cacacttacga cctgtgagga ctggccagag ttttctaaag 25140
tttactcga gcaacctggg gtaaaacaga aacaggtatt tctccttcga cactatgatc 25200	gaacgcacg ggcagcagcg tgcacccagag tgggctttta aacccctgctgc ccccccctcc 25260
tcccccctctc gtaattttgg aagcgctgtt tgggtgcaact atacaagctcg tggtaatccc 25320
taggcgggc gggcgtccaa agtgtaagaa acgtaaaaat ataatgcana atacgcagca 25390
cctatctag gataataaca ccttatataa tcacatataag ggjgaaaaaag ggtgtgcgca 25440
tatacgcatt attttatcata gttttacttcc ttctccatac cccataacaag ctgtattaaac 25500
aaaattgttg ggataataaa cacatacagc cggatcgaat gttcatgtt tttttttttct 25560
cgatatacaca tattatataa cctgtatatccc tctgttgcgga taagctcctctg tcttttttct 25620
aaaaaaaaaaaaatattttttttttt ccctcttctacc cccatacactg gaaatgcagt ggtgtgagac 25680	ggagagttta aatagttttct gtactattaa cgggtgtaaaa aagcgtcgttc cggtgaatctt 25740
cgaagattgg aataagtttt acccctatt caagccggct tccctgcgat gggatttttaa 25800
aaagcacaac tccctttttc cgggctccaa aacagtctgt cgtattctgg gttcatgttt 25860
	ttt
cont'd

cctatagcg ccaatatatc tctgaaggt ctcaaatgtt ccctaaaat cccctaatcc 27120

ggaaaccaag ccttgaactc cccctaaaat cctttttttt ccctaaaaat 27190

cgtggaag ccccaactct tccacatctt acccttttgg tttcttcttc 27240

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 27300

cctattgac atgtgagata cccctaatctt gtttcttttg ttaaattcct 27360

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 27420

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 27480

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 27540

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 27600

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 27660

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 27720

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 27780

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 27840

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 27900

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 27960

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 28020

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 28080

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 28140

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 28200

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 28260

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 28320

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 28380

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 28440

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 28500

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 28560

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 28620

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 28680

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 28740

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 28800

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 28860

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 28920

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 28980

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 29040

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 29100

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 29160

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 29220

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 29280

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 29340

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 29400

cctttatatga atgtgagata cccctaatctt gtttcttttg ttaaattcct 29460
gaagtcctca acactcttcgt tgccgtctgct gtgtatatac aaaaaccaag aacacatgct 29520
tccagcctgc cgcaagaga aatactttt ggctaacgcc ccaaaaatgc aggcaaggg 29580
tgctggtctg gcacccggag cttggaagtttt tgcctgctag tcagcttttct tcgggaactt 29640
tgagcccgag ggtgatatcg ccataaatct cctggatagct atattccgac gcggaaacc 29700
aaaaccttat aatccagacg gaaacattct gacccgacgc catgagacgtt aacacatcgcg 29760
aaaaccttat gacgagagtg ctcctacgcag tcctccttcc cggcgaacaa atttgcgtctc 29820
tggtgcgctc cggccgctgt tttacctctgct atctctcgct cggccgctgt cggatgaaac 29880
ttaatcgact tccatctcgt ctctgccccca ccctctctcc acagcttccaa ggcagcttgc 29940
agccattgaa ttcgctttcgc aagccctcttt aagccgcttgg ggtaaaccctt ccagctgttg 30000
taaagttact tggcttttcga aaatatcccg cagctttgacg atgtggacag ccagctttgacg 30060
cagcatgtaccgcc cggaaaaatcg ggctttttgc ctcctttgatg agtttcgttg 30120
tggccgttcg ttcctctttcc ttcctttcct ttcctttcc cggccgctgg tttgtgtgg 30180
ntagcttcgct ccctgttgcct ttcctttcct ttcctttcct ttcctttcct ttcctttcct 30240
tgacggttcg cccctgttgcct ttcctttcct ttcctttcct ttcctttcct ttcctttcct 30300
agcgagccgc agtgcttaac ccctctctct aagccttccaa gacgagccttg ctctgccccca 30360
atatgagccg gcccttccttt ctcctttcct ctcctttcct ctcctttcct ctcctttcct 30420
cacatttcgct gctgcatctgct cacaatcacc cacaatcacc cacaatcacc cacaatcacc 30480
agggcttgaaga cagccctcttt ctcctttcct ctcctttcct ctcctttcct ctcctttcct 30540
atgcttgaaga cagccctcttt ctcctttcct ctcctttcct ctcctttcct ctcctttcct 30600
aatatatcggg cagccctcttt ctcctttcct ctcctttcct ctcctttcct ctcctttcct 30660
catcgctttt tccttctttt ctcctttcct ctcctttcct ctcctttcct ctcctttcct 30720
atatgagccg gcccttccttt ctcctttcct ctcctttcct ctcctttcct ctcctttcct 30780
atatatatcggg cagccctcttt ctcctttcct ctcctttcct ctcctttcct ctcctttcct 30840
gacgagccgc agtgcttaac ccctctctct aagccttccaa gacgagccttg ctctgccccca 30900
atcctcgct ccctctctct aagccttccaa ctcctttcct ctcctttcct ctcctttcct 30960
ctctctctct aagccttccaa ctcctttcct ctcctttcct ctcctttcct ctcctttcct 31020
agggcttgaaga cagccctcttt ctcctttcct ctcctttcct ctcctttcct ctcctttcct 31080
tataatatcggg cagccctcttt ctcctttcct ctcctttcct ctcctttcct ctcctttcct 31140
cgctctgcgct cgggaagaga cgggaagaga cgggaagaga cgggaagaga cgggaagaga 31200
tatatatcggg cagccctcttt ctcctttcct ctcctttcct ctcctttcct ctcctttcct 31260
cgagcttcgct cgggttcgct cgggttcgct cgggttcgct cgggttcgct cgggttcgct 31320
atctctctct ctcctttcct ctcctttcct ctcctttcct ctcctttcct ctcctttcct 31380
tgaagggctg ttcctttcct ctcctttcct ctcctttcct ctcctttcct ctcctttcct 31440
ctctctctct ctcctttcct ctcctttcct ctcctttcct ctcctttcct ctcctttcct 31500
cgctctgcgct cgggaagaga cgggaagaga cgggaagaga cgggaagaga cgggaagaga 31560
tgcctctctct ctcctttcct ctcctttcct ctcctttcct ctcctttcct ctcctttcct 31620
cgctctgcgct cgggaagaga cgggaagaga cgggaagaga cgggaagaga cgggaagaga 31680
gctctctct ctcctttcct ctcctttcct ctcctttcct ctcctttcct ctcctttcct 31740
ctctctctct ctcctttcct ctcctttcct ctcctttcct ctcctttcct ctcctttcct 31800
gaatgactgt aacgaaaccc accctgagcatt tttatggaaa ggtctagcct atgactatgc 31860
cagagtgttt aataaaaccc cttgcgaact cggctttatt accaaatcata cccaaatgac 31920
taagctgctt tatctttcctt ccacaccacag cggctttatt taccaggaac cttcgctaccag 31980
dacgacata cccacacact tacagctatc tagatctgcc gctttgtatg gttgaggtgc 32040
cataacacatt aagagcagaa cctactaactt cttgcagttt cttctataa cttacaagga 32100
cagtaacgac gcaacaaagc cggatattac cggctttagaa tgttccacgg tgttccccgg 32160
ggacgctcgg gcaacatatt ttcgctgttt tgttccacgg acccttatttt gaaatatacg 32220
agagacacgg catgataactt tttcatagaa tttccacagg aagagcttga gacacacagt 32280
ataattacag gcaacatattt caaatctcag tgcctttattt ccaacacagga gacacactg 32340
ccatgacgca gacgcaactca accgcttctt accatacgt aggtacctg gtcagttgata 32400
cctccagttt ggtcgtggttt atgcagcttcc ctatgtggc tgtaggcctgg tgtacaggt 32460
tgtgagcttt ctagaatcata ggaacactag aagagcatgg atctctact ccatacagctt 32520
tgtagctttt tgtttggttct tttattttat cccacagctt gacgctgctag 32580
cctttggcgc accatagctt ttgctttttg atacagggg gataacagca gctctgtctct 32640
ttttccagtt tgttctgtttt gccctccgac ccacaggttt cgtatgagct 32700
cctaaacc acatgtctata acaaatattg acactttcttc atgcatacag cccacagcag 32760
ttttcatagaa tcaagtctttt cattagtctg ccattataga cgaatcccg cggcttttagg 32820
gcagtgttt gcacagtctt ccacacaggtt cgcctctctt gtttcagccc cggctttctt 32880
ttcatgatgt gcctttttct ccaacagctg atccagttc atccagttc cggcttttga 32940
gcgtagata accacctgcag gctctgtttt gaaaatttac ttcacagcag gttgtgtttt 33000
tctcttttt gtaacatgg gtaaaatatttt tttctctgct tttttctct tttctctct 33060
ttttcatagaa ttcctttgttt tttctttctt tttttctct tttttctct ttctctctct 33120
gtcctactag gcagcttccg acacggctt gctgtctttg ccctgctgtt gctgtctttg 33180
gagagctttt gttctctcctt atttacctag gcacacacag cccacagcag 33240
ttctcgagag ggcttctggt tgtctctgttt gctgtctttt gctgtctttt 33300
ccacatgatg tttttctctt cccacagctg atccagttc atccagttc cggcttttga 33360
tttctctttt ccaacagctg atccagttc atccagttc cggcttttga 33420
tttctctttt ccaacagctg atccagttc atccagttc cggcttttga 33480
tttctctttt ccaacagctg atccagttc atccagttc cggcttttga 33540
tttctctttt ccaacagctg atccagttc atccagttc cggcttttga 33600
ccacatgatg tttttctctt cccacagctg atccagttc atccagttc cggcttttga 33660
tttctctttt ccaacagctg atccagttc atccagttc cggcttttga 33720
ccacatgatg tttttctctt cccacagctg atccagttc atccagttc cggcttttga 33780
ccacatgatg tttttctctt cccacagctg atccagttc atccagttc cggcttttga 33840
ccacatgatg tttttctctt cccacagctg atccagttc atccagttc cggcttttga 33900
ccacatgatg tttttctctt cccacagctg atccagttc atccagttc cggcttttga 33960
ccacatgatg tttttctctt cccacagctg atccagttc atccagttc cggcttttga 34020
ccacatgatg tttttctctt cccacagctg atccagttc atccagttc cggcttttga 34080
ccacatgatg tttttctctt cccacagctg atccagttc atccagttc cggcttttga 34140
ccacatgatg tttttctctt cccacagctg atccagttc atccagttc cggcttttga 34200
-continued

cggtcctcgt atcgtggtta tcgcagtcg ggcaagctea aacgccagt taattataca 36600
gacgcaggt tgcgtgacaa tcacgacat tcacgatgg gcaagcgcac 36660
ggcattctgg ggaagcagag ttctgttgtc tcacgatgg aacgccggg gtagacaaag 36720
cgcagccga cgtatgacaa taatatagcg ttgagcgtgc gctatctgaa ataaactgag 36780
agtcctttgag atcagccatt gtaaagttt gttaaatcag ataaatgaaa 36840
atagcttcac atcagcattc tcggtttataa cccctctgtg taacaagag 36900
ctgcttacag tgtatcagcag tattcagac agaacagac agaacagac 36960
gtcggaacgg cgcagatcat aaaaaatggt ggcggtatgg tcggctggta aaccggttgg 37020
tggtctcaggt ggtcagctaa ggtgctggcc cgggacctaa ggtgctcgga 37080
aggtctgagg atcagcagc acccagcttc tgtggcagcg gttgacagtc 37140
ttcgctgga ttctggagag tcgatcatcc acaatcagag cattttagaa cctccccaaa 37200
acacgcgtac atcgatctgta gggacctgg gaggctttgg tacgcttgct gtaaagattg 37260
tgcgctacat gtaattgtag tagactatcat gttgctgtcttt gttgctggtc gttgacagtc 37320
tctgctgact cgcagctgac agctgatctg atctgacgac agacactacg 37380
ctcgtttgag ggttctgctg gtaattgtag atctgacgac gttgctggtc gttgacagtc 37440
tgtgtctgctc ggttattataa aatcagcagc atatttcacc gttacanccag 37500
agctgatcact atcagcagc acaatcagac ggcggtatgg acacgtcact 37560
gacacgcgtac atcagcagc acaatcagac cgcagacggg cgggacctag 37620
ttcacccagc acacccgtgc cccacggtgtc cagctgctg agtgctgctg 37680
tgaaatcag ccoccccccag ggtattctgtg ggcagctcag ctcctctccg gtaaagattg 37740
atatttgcac accaaggcag atcagcagc acacgac gacagacgat 37800
cgcagacgt cgcagatcat aaaaaatggt ggcggtatgg tcggctggta aaccggttgg 37860
gttattataa aatcagcagc atatttcacc gttacanccag 37920
acacgcgtac atcagcagc acaatcagac ggcggtatgg acacgtcact 37980
aggtctgagg atcagcagc acccagcttc tgtggcagcg gttgacagtc 38040
ccgctggtac acacgatcat cggagtttgc cggacgctg cgcagatcat 38100
acacgcgtac atcagcagc acaatcagac ggcggtatgg acacgtcact 38160
ttcacccagc acacccgtgc cccacggtgtc cagctgctg agtgctgctg 38220
acacgcgtac atcagcagc acaatcagac ggcggtatgg acacgtcact 38280
acacgcgtac atcagcagc acaatcagac ggcggtatgg acacgtcact 38340
acacgcgtac atcagcagc acaatcagac ggcggtatgg acacgtcact 38400
acacgcgtac atcagcagc acaatcagac ggcggtatgg acacgtcact 38460
acacgcgtac atcagcagc acaatcagac ggcggtatgg acacgtcact 38520
acacgcgtac atcagcagc acaatcagac ggcggtatgg acacgtcact 38580
acacgcgtac atcagcagc acaatcagac ggcggtatgg acacgtcact 38640
acacgcgtac atcagcagc acaatcagac ggcggtatgg acacgtcact 38700
acacgcgtac atcagcagc acaatcagac ggcggtatgg acacgtcact 38760
acacgcgtac atcagcagc acaatcagac ggcggtatgg acacgtcact 38820
acacgcgtac atcagcagc acaatcagac ggcggtatgg acacgtcact 38880
acacgcgtac atcagcagc acaatcagac ggcggtatgg acacgtcact 38940
cocatacact aegtygtcgt atagacgyta cogycococct gactactcttat aaagataggg 39000
tgataaact ttagcgtta cgaactaact tagctctct ctacgacgca agataaaaag 39060
gtagaggtac ctggagcgact gcaagggcata ctttaaaaag agaaccgggg gatagyttgg 39120
cacggggcga cagctacgact acttcccgag atagatataa ggcaccccgag cagcaggggct 39180
cattctggtgc atcgggttct ctcgacccag aacttattttt tttgtctctgc gaaacgaaaaa 39240
acagcttcga aaaaaaaaaca cggagacgtta aacgcgttgtt ggttatgggt tgtgaaatgac 39300
acgactgctt ggaagacgacgc acgtttgtct ttaagacgtttt atacagctact acacatgctt 39360
agagagaca cagcttttctt cgtatgttat tantaagtcgct ctagcactt taacactttgc 39420
ctatagtacat taatataattc acacatgctt ctagctttcag ttaggatgctt 39480
tagatagcact ttatgctcag agatatttcccc cgcgttcctc aacgccgattt cttgctccata 39540
tccccgagc tgcgcggaag atgctgggtgac cagcttttct ctaactcttaa ggaagagcctt 39600
cagctttttttt ggggagaggc atgtatatag ggaagacgaga tttctatagtat 39660
cacgttttattt tgtttacactt atctttttttc gtagtgctatc acacatgcagctt 39720
atgagagatg ctataacact atcaggggtatt atcgctttttt aatgtgagttgc atgtcaggggt 39780
gatatttttt gcccggtgacttt ttgcggtgtctt caggcagactt ttgatagcagctt 39840
ctatcgtcgt ggcgatagcct ttagctcactg ttagcttcct ctagagtagctt ttagataact 39900
ccggtttttct cgtctctttc accttttttt cgcggcagcct ccggagatggt gtaataacac 39960
acagagagac acagagagacg cggctatagc atcagagctttt aacccaaaca tgcagacgcc 40020
acagagagacgt tcatagagcc aagctattttt atctttttttg aacaaacctc atactctctg 40080
tacgggagatcc ttagagtgact ttggagatgctct cagcagcctt cggctttttttt tgggttttttttt 40140
tacgcgtttt atacgtcatt ttcgtgact cttgagagcgtct caggcagcctt cggctttttttt 40200
tgtagctactt ccagcagcctt ctcgatgctct caggcagcctt cggctttttttt tgggttttttttt 40260
tctgagcgc gcctttttttt cggctatagtc ttagctcactg ttagcttcct ctagagtagctt 40320
atcggcctgcc ctgtagctactg ttagctcactg ttagcttcct ctagagtagctt ttagataact 40380
ccaaacaagct ctacagaggtt ggggagatgtc tagctttttc gatgtcttttc ggaaaatgct 40440
ctactattct ggcgctttttt cggccagcctt cggccagcctt cggccagcctt cggccagcctt 40500
ctctctctcct cggccagcctt cggccagcctt cggccagcctt cggccagcctt cggccagcctt 40560
ctactctctctct cggccagcctt cggccagcctt cggccagcctt cggccagcctt cggccagcctt 40620
tcagctccac tcaacagcctt aaaaaaaaaca aagataggg ggagcctttttt tgggttttttttt 40680
tcagctctctctct cggccagcctt cggccagcctt cggccagcctt cggccagcctt cggccagcctt 40740
tcagctctctctct cggccagcctt cggccagcctt cggccagcctt cggccagcctt cggccagcctt 40800
tcagctctctctct cggccagcctt cggccagcctt cggccagcctt cggccagcctt cggccagcctt 40860
tgtagctctc ggttctttttt tgggtttttttt gatgtcttttt cggccagcctt cggccagcctt 40920
ctctctctctct cggccagcctt cggccagcctt cggccagcctt cggccagcctt cggccagcctt 40980
ctctctctctct cggccagcctt cggccagcctt cggccagcctt cggccagcctt cggccagcctt 41040
tcagctctctctct cggccagcctt cggccagcctt cggccagcctt cggccagcctt cggccagcctt 41100
tcagctctctctct cggccagcctt cggccagcctt cggccagcctt cggccagcctt cggccagcctt 41160
tcagctctctctct cggccagcctt cggccagcctt cggccagcctt cggccagcctt cggccagcctt 41220
tcagctctctctct cggccagcctt cggccagcctt cggccagcctt cggccagcctt cggccagcctt 41280
agactctttt ccctctgtgt cccgagatgc cattttactc gcnoaatatt cccgggtattg 41340
cgccccaaag ccocccaaaac ctcgacaaaa cggattttata cccaccccgag ccctattta 41400
agtattctgg tcaagttgtg aagaaggctca aatgtaaaaaa aatccgctgct cggcccgccc 41460
agccgagcgc gcggcgcgcag ccggcgcgcac gcgcgcgcgc ccgcgcgcgc ccgcgcgcgc 41520
tagaggggg ccacacacaa atgttacaac aaacacagaa aacccaaaac gttaaaaaac 41580
ccctctgca cccatatttt cccctttgatt tgcgaagcag atcgaatattc gcttatttga 41640
taacatcacc aacaaccacc tcacactctcc aaacggtttg taaaggtatt aaccccaac 41700
atcaccacc tggagtattgg anaaatatcct cccacacaaa cccacccgta cccacccggt 41760
tcggtaaacc aatacttgag attttecoca tttccagacata ttaatccagga 41820
ccttggacga aataaatcatc ccacacacaa accggccatc caatgccacc cgaatgtata 41880
accccacc aagtatccaa ccgtaaaata accaaaccac ttctgggttt gacacccgacg 41940
ccgtgtgcgg ccacacacac cttattgcac cttacactac acatatctcc cgcacacacag 42000
atctacatc cctgattaat cctggctttg cttatcacc atctcactac cgcacacacag 42060
acataatc ctaggtatcc atgaaccttt ctgacgcgta tagtgttgag agtggaaattt 42120
ctcgacct gtttggctgc gatgtcggtg ctctgggtgtc gacggtgttg 42180
atgtgatg tgaatgcctgc ggcttgccgt agttcgggcg gacggctttg gggaatttgg 42240
cacttgtaag ccagccatcg ccgggttaga tgcgtatgc agttcgggcg gacggctttg 42300
atggttacat gatattctc tgcgtatgaa tgcgtatgc agttcgggcg gacggctttg 42360
gacgcataat atatgttgg ccaattttgt tggctttgcttg atatttttt 42420
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 42480
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 42540
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 42600
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 42660
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 42720
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 42780
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 42840
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 42900
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 42960
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 43020
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 43080
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 43140
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 43200
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 43260
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 43320
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 43380
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 43440
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 43500
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 43560
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 43620
atgttgatg cccacacaat cattcatacc ggttgccatt gttatattttg tggctttttgt 43680
-continued

tcaoagtgcac ctctcgcoc ccgctctgctt gcggcgcac aaaaacccc tggacacgc 43740
actcagaccc cctgcttggtg aaaaaaattt tctcccat tcgacgct cggcatttc 43800
ggcatttattattgatc ccttacctgcat acagcttgctg cttgtgtgat tttcgtacc 43960
acgcttcgta ggggctactgc atcgtgctgctt acactggtcat ctctctgtt 43920
cactggttct catcgtcgtt ccgctctgctg cttttcgtgctg ccctctgat 43900
ccctctgtgctctgtgctc ctctgctgtgct ttttctctcttctctgtgctc 44040
ccctctgctctgtgctc ctctgctgtgct ttttctctcttctctgtgctc 44100
tgagatccgct cctgctgctt ctttttccc ctctgctgtgct ttttctctct 44160
atatatcttg gaaatgggca actgctcttg ctaagagcct acggcctgctc 44220
gtcgctcttg ccaccccttg acatactgact ccactgctgctg cttgtgtgct 44280
tttctgactt tttcgtttgct ccgggaacc tttttggtt ccggccggggtc 44340
tttcgtttgct ccgggaacc tttttggtt ccggccggggtc 44400
agctctggct cggtctttctt tttttggtt ccggccggggtc 44460
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 44520
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 44580
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 44640
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 44700
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 44760
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 44820
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 44880
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 44940
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 45000
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 45060
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 45120
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 45180
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 45240
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 45300
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 45360
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 45420
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 45480
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 45540
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 45600
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 45660
ttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 45720
nttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 45780
nttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 45840
nttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 45900
nttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 45960
nttttctttctt ttttctttctt ttttttcttt ttttttcttt ttttttcttt 46020
catcctcaca ccgccgataa ggaagatgttg gatgatatata aagcccaact ggtgacacaa 46080
aacggttgg aagctcggtg atctggttggc ctggtgacat tggcgtacat attaanaacc 46140
taccagattt ttccacgcaaa ccaacgcggcc aatgaggcat ttaacggaag tgggagactt 46200
atgccgtgac gcacggtcata atcgctgtgc tcccggaaca acacccatcc gcgatattgc 46260
taggccttat aataggctgt ctcggagagcg gctctgagagt ctgctgacg ccagacgcg 46320
atcgcgctg caaaccacct gggaaaaact tgttcgaaca ggcggttcgtc tggcagcoca 46380
atatataata tacattgcaaa gttcoccocccc agaagaacta gttacgcttga gaggcttaat 46440
cgctccatatt aataacgcaaa cccctgtcacc otcocggttt aacgtggggtc agacagtgcc 46500
ggtaaatgtc ctggctcttat cgggaggttg ttatatttta gtgtctggag gtatattgctc 46560
gatcagcgt gatctggagg cacggcgcct gatcagcgtt gatcagcgtt gatcagcgtt 46620
agcatatgtt cagacgtgtt aacacatata cgcataattgt gatctgattgtg ctgctcatttt 46680
ggcgttcttc aagcgcggcc acatcagcag acpgcgctgt gcacccataac tggctgagtct 46740
atgctccacat cccctgtcacc otcocggttt aacgtggggtc agacagtgcc 46800
tttacgagcta cttttttttt cgggaggttg ttatatttta gtgtctggag gtatattgctc 46860
tccgggaga tctgctcact tccataacag aatcctggtgt ccatatcag cgggaggttg 46920
agggataaa atagctgcoc acgttttggca gacaacatct ttcgctgtgg tttgctgacaa 46980
cocacaaact ccaacgacgt cctgctggcc aatcctggtgt ccatatcag cgggaggttg 47040
aatgctgacac cttacaccct aatgctgacac cttcgtggaa tacaagacgt cttcgtggaa 47100
atttgctacat ccctcccagtc cccctccccatt ccatatcag cgggaggttg 47160
caacgcggcc gttataacaa aacgcgttcct gcgctgacag cgttctgacat tttaacgtta 47220
aacacgcttg ttcgctgact aacacgcttg ttcgctgact aacacgcttg 47280
ccaaacaacc cttcctgctt cctcataacag ccccctccccatt ccatatcag cgggaggttg 47340
atgctacata ccaacgcttg ttcgctgact aacacgcttg 47400
ataacgtacc gttgttgcttt ccccacacgcct ttcgctgact cccctccccccct aacacgcttg 47460
cgtgacac ccacataccct ttcgctgacac cccctccccatt ccatatcag cgggaggttg 47520
taagggtgc gttgcttacag gtttgggtct cacactcaaa tttatatact 47580
aotgcgttagg gacggccacg caagtttatag tagggctggt gttgctgact aacgcttgcc 47640
gctataaca aatcctggtgt cccctccccatt ccatatcag cgggaggttg 47700
attacgctg caacgcggcc ccctcctgact cccctccccatt ccatatcag cgggaggttg 47760
acacgcacag acgcacagc acgcacagc acgcacagc acgcacagc acgcacagc 47820
adaagtgcgc ggcgctcact cctgatataat tatttaataac ccagctgtact 47880
ccctccata aacocctttcc ggtcgtataa aacacgcttg cccccctccccct ttcgctgact 47940
aanaatttag ttaacagcttc ttcgctgact cccctccccatt ccatatcag cgggaggttg 48000
aadattaata ctgctcctt ttagttataa ccacacgacgt cccctccccatt ccatatcag cgggaggttg 48060
aagcgttgataa ccacacgacgt cccctccccatt ccatatcag cgggaggttg 48120
agagacgc acgtccct tgcgttgtcgt tgcgttgtcgt tgcgttgtcgt tgcgttgtcgt 48180
tttaataatat tattataatat tattataatat tattataatat tattataatat tattataatat 48240
goacggccag ttaacagcttg ccaacacgtc ccatacctgact cccctccccatt ccatatcag cgggaggttg 48300
cttacacac ccatacctgact cccctccccatt ccatatcag cgggaggttg 48360
cttacacac ccatacctgact cccctccccatt ccatatcag cgggaggttg 48420
ccacgcacg tttctgccac gttagagcgc acsaaasaas gacgttttcc tcctaatcgtta 48400
aaggtggcgt aacctgagtt atccaacagt ttcagctctt caaattttaa gtttagcgtg 48540
gttaaaactg attgatggg ctgcaattata ctggatata aacttgcana atccaaatacg 48660
acacgcgtt cgataaaaaa tcccgtatgaa ggtcaaaaa cccctgtcct ttattactct 48860
acacggcgat cctgtagctg aacgggtgga gaacgcctag ctgcttctac cttctctctc 49070
tcacaatcgc ccagcaaggg atacaactcc tttatctcag actaatgggt gttcccccga 48780
ttcggttataa ttaaactctcg agcagacgcc agttactata aacggtgtagt aaactccacc 48940
tgcgttccgt gtaaatagc cttgyttaaa gtaaaactag ctaaccttgg acacgcgggt 48900
aaccngtcg atgtacttact tttaaanacac ggttcccoca ccacgacgcg gtttgtaata 48960
caatttcg ccaaaacttc ttagtctatc gctggctact gctaaacttc cggagtcctc 49020
ttgagggcgtcatcctttcgc atcactcttt gcgagcttgcag ccacatcaga tttcttaa 49090
taacggcag aagtttgataata ctctaggcga aagctactata tattactaaga tttgagcgg 49140
atgtagttt cccctgcttg tcctgatagct ccgatgttgg ccaaatccact tttctttaata 49200
aaccggcacc gcgctcttgc ggctaaactc ctaacccagcga ctatataaact 49260
tttctcact aacagcggc atccaaatta caccggttta acaccgtgga aacggcaggga 49320
gacgacgttt ctcaagttggt aacactatgg ctactattata atcactactc ataacactcc 49380
agcacgggct gtcgcgggtan cccacgcttc tttctttttt gtgtctcaatagc 49440
taacagacgo acaagttctg aacaccaactg cttctcttaa cagcgcctgg aacgcgggag 49500
atgtagagct taccagatcct cccagcagtt gttctcctgc gcacgcggag 49560
atccgctc ataatgattc gttgctacta atcagatcata cccagcagtt gttctcctgc 49620
ggtcacttttg tctgggtggc tttgctccct cttgagcggc cagcgcctgg 49740
agcgcggcct taaaacaactac aaccaacgc ggtttctcc tttgagcttgc gcagctattt 49800
atatatasten gacccggatc aacacttcag cttgctgattc gtttctcctc gatcagcttc 49920
accctggtg gtcggacgct tttcatcctgc ccagcgttgcgc gagcctcctt gttctcactc 49980
gtcatcataa gcataacgttt ccctcctaact gttctctttg ttttcatagaa 50040
tctggttttacaacggtt gtaaaactgctgc cttgctgattc gtttctcctt gttctcactc 50100
gttcatcactc cttgctgattc gtttctcctt gttctcactc 50160
acgtttttaa caaacgccg gattcagtaa aaatcctacg cccctcggtt 50220
caaggtgctaac ttttactggc aactctggcag cttgggtggc tttcatcctgc ccagcggcct 50280
taccgcgattgc tttctcttcc gacccaacgc ggctttccct gttctcactc 50340
caatatctt cccctgggttg cctgctgtgtg gaaacacgc gaaatcctctt ctttcccttc 50400
cttcttactttc ggtctctgtaa tgttaaccctgg ctttcccttc gttctcactc 50460
tcacttcgct gttcttcttc ctttcccttc gttcttcttc gttcttcttc 50520
gtcaacttctc gtttcatcactc cttgctcctc cttgctcctc gttctcactc 50580
caaatcgtg ttttcttttct gtttctccttc gttctcactc 50640
cttcttactttc ggtctctgtaa tgttaaccctgg ctttcccttc gttctcactc 50700
cttcttactttc ggtctctgtaa tgttaaccctgg ctttcccttc gttctcactc 50760
tttacaagcct ctttctttaa tgtatcaga gactgggttt tgytgaggca tttgacctcg 50820
cocaacacc cccattattta cgaagtacc acacaaatgg aacaactaca gaagaccttg 50890
aactgaccga ggggaccct gggtaagtt tgtctggaac gggtgagaag tttggctctg 50940
gagaannatt cattttttgg cgcacgcgag acaagacttg attggtgcttt atacaccttg 51000
atggagataa taccagccca aaaaacattt ccacaagccg tgggagcctt atggggacca 51060
cgcactaccag gttggccagcg acgtgatatt accctaaacc ttcactccagc ttttcttat 51120
ccacccgttt tgttttttta ccagggccaa cacagtttta ccaagtcocg ggcoccaaat 51180
ccccaccccg gtcgagggcag ggtcgggggtct ttcnaagcgtg ccaaaaaacc 51240
cgttggagcg gttgtggttga gacgacccgg gccgagatga tggattacag 51300
cocgaaanata ccataatata cttggtggttc acgcaatgtg ttaaggaagc cgtatttttg 51360
tgcaacaggt tgttctgctaaa cggtgacttc gatattgttc atattaaccac tgggagtttt 51420
ataccttatcc cttttctccc gtctggcggag ctttaaacat cgtttgtgta ttcggtgaccc 51480
gacccctaac acacccatacc cagctttcctt gcagaggttt tgttatcccc acacccctac 51540
tataaccccg ggttgccgaa ttttaatacc gacttggtta tgtctgctcc cggcagttgcc 51600
tgtcgcgcaac gaaatttttg tccgtggcgg gcagggagcc cccactcccgc ttgtagaa 51660
aacaaggggg ggccagttacct ccccocctcag attacactca ctggatttccac gttctttctc 51720
agttgacacc ctcacccgcag ttggcgacgt gcgaactagt ccacaccacg acacaaaccct 51780
agcccaaggg gggggttgtt ccagcgttatttt cggcgcgtgaa cacaacocct 51840
cacccgaagag ctaatcttca accgtaattc tgcagaaaaa cccacacag cctcacaagct 51900
tggcaccgcgt tgagggcctc tgtgcggggtc acacggctgt ccggttcac 51960
aaccgctgg ggccgctggtg cttgtgcttg atggttttcgac ggcoccaact cgggtgtctct 52020
cttaagtgag cggagagaga cgggtgagcc gcagccggaa ggtggatgttggcttaa 52080
cttaactcag ggtttgtgtaa ctccaagctcg acacccggtc caagggagcc 52140
gacccagcag gtcgctgatt tccctctctcc gccgtattta cgggttagatt 52200
tattttggac ccacgctgag ctttgccgcc caagcgttgg tgtttctatttc 52260
agccagtcgg aacagtgttgc gttacaggg ggctttttcag atgcgtttttc atttctagc 52320
ggaacctttg aactccgtaat cctttctgttg tttggaacacc aacacagcgg gcggtatgcg 52380
gtcacaccag cctgacactg acctagcaca ccggcagcgc gattgggaaca agccacccgt 52440
cacccatttag ggtgttttttg aacatgcaac gcacggtcga ttctgcagga 52500
aactctgca ctaattttatat ccctgaaat ccccccttcc ccagcaggtc acacacagct 52560
aactccaggg acacacttag gcgtcactca gacgctttgg tattcgaatt acacccagag 52620
cgctgctgcc atgggctttc cccagctttt cctggggaac tattcttcat ccattggatt 52680
cacccctag cgctcgcttt cctgcagcagc gttgatgac cgggacactt 52740
caatttaga aagttttgtg tgaacacccg gcattataaa tcaagctgag ggccaggaag 52800
gcccacaaatt ctaagttttg aacgttacta ctcatactgag gacattttttt tccactttca 52860
aattttttttag ttaaaagcaac acacccgact gttggcacaag acttagcatt acacacagtt 52920
cattgtaa tgtcagcacaag gcgcgcgact cggagccataattc accaaacct 52980
cttggcgcc gocggcagtac atcgtcgtgcc aatggggggtt cttttactac agcctactta 53040
aocagcaacat tagggagaggct cccagcttgg ccagacggg acacaagcggc 53100
cccgccagcc gtcaccttga ggcaggtctta ggcgcgttac gcagctggaggt ctacgctgtt 53160
aaacatacga aaatgcgagc aacctcttctg attttttttaa cttgccccct 55560
gtgtctagta cccacagagc aagcatcaatt ctgggtatcc tgcataaacc agtaagagac 55620
cocaaacaatg ttgtaaggtg tttttgtgttt tataaagcga cttgaaaaac 55680
aocagaaaatc tacaacgatc aaggctaggt cgggctgttt tttttaaacc cocaacacat 55740
tgtgataagcc gtttttcttgg aacattcgac atctggcatt attttttgtt 55800
gcacacgctg atcttccaaa cagcagctct aaaaaccct gtttattggcc 55960
atcatctctctgtgctctct ctgcgctcaa ttcttaaccc cagctagtag aacacagccg 55920
catgacccacttcttagac aaggtggggt gttggggcgc gaaacgcttt ttttcttaag gccacacacg 56040
ataagggaa aaacagtctga tccaaacgaa aataacgccc tgggnnaaga aacacggtatt 56100
atcttaaacc ttgctctaat gcgacgctgc aaccttattag tggacacacat 56160
gcagagagt gaaaatccgta ctcggggtgtac aagccttttg aggcggcttg cacattcaatt 56220
ttttgttagg gcacaaagggct ttttggttgg gacacctcaaa tttttaagcag gcacacacg 56280
cagcctgatt taacacactg cggacccactg aagcggcttt tgtgacacatag cagacacacat 56340
ggaataacct gcaagagatg cgcagttggt aggttggttt agcagctctt cacaacagat 56400
tttttaggtt ggtgaaacggc ccaagttaatt atcagatcag aacacgctttt gcacacacag 56460
tcaacacgcc ctttatatatc aacccctgaact ttttcggcct ttaanaagag 56520
aatcagcataa tttttttctt ggtcgctttg cccttggttttt ggtctctctgg cccaaaactt 56580
gtttgctctg gtggataaacc ttggtaagcttt cagacacacag gcacacacat 56640
atatagaggg gcctgtggtt gcaacacccaa cttaacactc ttttttcttt ttggggtcag 56700
tgggctggttg ccttgctgtg canaacctagc aagggctaggg cgggctgtttg ttcacacaca 56760
agtttggg cagctctgctt cagacacagac aacagctagctt cacaacagat 56820
gtggctctctg gcttatttag ccaacgcttg aacagagcttt cgcagctattt cacaacacag 56880
totacagcag aagcatttggcc cttctctcttc tttttttctt cacaacactt gcacccacgctttt 56940
caacacaccgc cgggtcttccaa ctcacacgttt tgggtttttg cgggttgcttt ttggggtcag 57000
atctcttgatc tttggcttgc gcggtgttttc cggcttttgc ataaggttgtt 57060
aacaaggtag ccacacaccac caacagtatc aacccagtct ggcctctctgg gcgggtgctttt 57120
tgaaaccga aacacagctt cgtggaaacc cacaacacac cggggtttcct 57180
cggcggccgc ccaacagctt cccctatcct aagctgagaaa ccaacatcctggtttgtc 57240
tttttcttt ggaaacacttg ttttaagcttt aagcattttt cggcgtttttt 57300
agctagcataa ctaacctgctt ctttctttacct aacagagcttt cgcagctttttc 57360
cgagcgtttg tttatcaccag atctggatttt gccctatcttt ttttttttttt cggggtttttt 57420
agagagcgag cagacacctgta cttcgggtatt cggggtttttt cggggtttttt 57480
aatcacaact aagttgacgc ctttttaagg cgtgtttattct ctcacaatttttg cacggtttttt 57540
cgttttcaca aatcaccctc cccggtgtttc cgtcattggg cgggtttttt cggggtttttt 57600
gttgacgcgg caccctgttgc cgggtttttt cggggtttttt 57660
agttggatgtt cttcaccacact tagattagcagcatgagg cccaatctgtct 57720
atgatagagc ttttcacactc ttgatgggtt cctaaagaggg cgggtttttt cggggtttttt 57780
aatgatagagc ttttcacactc ttgatgggtt cctaaagaggg cgggtttttt cggggtttttt 57840
agtagtggg acacatgtttt ccaagtctt ctcacacacag gcacacagctttt 57900
gaagccaaac ccagacaggg tttggtcagct tggtaagcttg ccggaggtcg tagggagttag
57960
tcgcctagat ttacacacca atccccggct ttacacatgaa ccaccccttct caacccgttttat
58020
agcgtaaccc aacagctttta acctttaacc aacacacttct aacggcggtc taacagggc
58080
agcggcggct atttatcaca ggctctttct aaccgttatc aagcccttcttt caaatcagaat
58140
cgggcatcct cacoatctcc ttgcccaggg ggggtatttt gttggttttt acacccgtct
58200
gagccatcc tctggcgtgt cctatctcca agatntggttc cgtaaaca ttaactactct
58260
acccacacaa ccocccgcct gaaataccag atccgacgac agctggcgcg ttgagtggc
58320
tggcactaga acaataacca ccaacattgc ggtggaatct ggtatgctcc agtttacata
58380
tggccacatt ccagcaagatg ttaactgaaa atgtggaacgt atctcctcct cgtggtgc
58440
gotaccaaat ccggcaggcc cccctttggg gagctctttcg caacataacat ccacggcggt
58500
agcgagcaca attttgtgct acgcttttaa acggtttatc ctctggcagc ttaactccgt
58560
ctactntgtt ccagaagttgt gttatgcagc aocctattta cttcnnncct cttcaggygt
58620
atctggatgt actcactggt gttatgcgc cccttattatc taataatgtta gttatnattg
58680
gtccggagcg tggagggccc agcttgtgaa acataacagc ttaattatgt ccagatct
58740
gttaacacaa ttcgctgttg atccacagcg atattttctta tgtgctcttc actatcgata
58800
ttgaggtgat tatccttcatc ttcgctgaaa cccagcctcc gatcngg从事 tggatntgac
58860
ttacagrtat ttaacctctca acccttattaa agatntagag tcctntgccc tcggagatata
58920
tacaagagac cccggtgctgg atacaggtat ctcnattacc aacccgacaa
58980
toaacctct ccctnatttg ttcnttacat agacnnntttg ctgctatcgt atacggcgc
59040
ggccactacct cgcagctttct cccagccttt cccagttgcg cccagcgccgtgc
59100
tgacnnttcg gttctctgggg ccacnnncgc ggtgctttcc ccagctnnnc cggagttgcag
59160
ggctttttac ccncctnatttg cctggagtgc cggntttttg cggntttttg cggntttttg
59220
agcggccttt ttggctcacc gtnntgtgct tacaaccataa acacccgcga tgaagcgg
59280
ataccacat ccacanccgg gttataacaa atcccggcca ggaattgttc ctttcngcgc
59340
gaaacccaa ccctcctcag aacatntggc gaacntcaca aacntcgaac
59400
gtctntagat agcggttttg atccgctata ccctnnncct gtgtntgac
59460
tatcagcctca tntcctntnc ttcnnttacg cggacgcttc tttacctnta
59520
tagcggccc ttaaccttcct gttctttccc ccagnttcgg ggtgctttg
59580
cctgntttgg cccacagctc ttaaccttcc gttttttttt cggagttntg tttntaattg
59640
ttaaacacatg tntgcttacc cttttccatt gtnntccatn tacnntcgcag gggnttattt
59700
atccgctacca tntttccttt cccagctcctc tccaaccctt cccatntcgg
59760
nttatntggc atctnnttcag atccntntgc tcnntcnttc gcgcctntctc
59820
cgtccacnnt cggntcttctc agcttntntc aacctntntc cccgccggtt
59880
atgaacatag tttcncctcc ccnnntnttc cccnntnttc cccntntntc
59940
ntgnttgctg gggagccttc aocctntntg cttgncnttc gaaacnttttc cggccttttc
60000
ggcggccttc aocctntntgc tttcntnttc gcgcctntntc
60060
tgagacctcc tnttntnttc gttcnnncct cgcctntntc ttcntntntc
60120
aaaacnttct ggcgccccttc tttaccnntc ccnnntnttc cccntntntc
60180
atctccacac ccnnntnttc tttcnnntntc ccnnntnttc cccntntntc
60240
gttgtttaa caagacaacg atttaaaaaa aaaaaaaaac caaacaagcc ttatatgaaat 60300
gtcatactt tatttattgga tttaacacgc ccccocctcc tctgattttg aaaccatatcg 60360
ggtcaagctg ccgtgtgagcc ctgtatataaa ggggcttgg gacacggccc tactacattt 60420
acatcttggc caacgtatatg tgtatttggg gtcttttggtt tatatttgaga ttagcataa 60480
cocacaaact cttgtaagctt tttaataaaaa atctaatattg gacagcctcc ttgatctctgt 60540
gtcatatttg tgtgttacgg ccaacgcttc tgtgtcctctttt tattgtattt tagctcgaata 60600
aactcctgtgt gcagttttgct caacacccca gcacgctctgt cgtctgcagc attgaacaact 60660
ctgtgtctgc tgtgacaaaa tgttggagaa acacgaacgc tgtatcgtgt tatataacgtt 60720
ggtctaaagg ccaaatatat atttggagga aatctcctgt caaccttgagc ctccctacata 60780
taaaagaca ccacatccct ttgctcactg cttctgaaat ccgcgttttgc tggacgaacgg 60840
acatgcttttg gtctggagaa attaacacac ggggtgcga atgcacaaaa ccgctctggg 60900
gcaattcgcc tccaacataat ggcatttggc atttocaaaa gttgggctgg tgttatccccc 60960
ggaacacccgt aagcctcccag gacagctggc gacggcccag ctcatacacc ctatttgggt 61020
ggaaagcg aggggctgag agatcctact gcggcagacg tatacctgccc gttatttggga 61080
gtccacattg atacgctgcgt atttttctag tgcgctgtca ctgcggctga atataacgcg 61140
atggtagtatg attacaatcct ccotcctggtt ggaagcgcgg acgggagctg tggtygagata 61200
ctttcctggt tgaacgcga tgcgtgcctt ctctacaaaa cagcgttaca 61260
ttttaattct gcacatcctgc ttctattttttt ccccacaacc caagcagaga 61320
tgctatttttg ggcggcggcg tggcctatttc gtcggattttt cccgccgctttt ttggtatatta 61380
aacaactcct caactcaatct ggttatttctg gcaagctcag acggctggtc ggcgttataa 61440
taaatctgac cttacatctg ggcttccggt ctagcctttc ccacacgctct ccacatctct 61500
ttaaaaaaacgcag cggcggtggtt aatatacaca ccggtcggtt tttatactgtata 61560
aataacccatatca atacatttac ccactcagtag cttatcaccac gggcactata ccctcctta 61620
cttcccgtc agatccaaacc gcaagtggcga catggcatgct gtcgtatattt ctcataaaacc 61680
aacaagttgc caacagccctt ccttaacacaa cctaaaaga atctggtaaaa aaaaaattcag 61740
tatgttatg cgctggcctt ccaagctttt gacagcggag ctggatgttaac aaaaacaatg 61800
attataagct atacgcagcc tccttttagg gctataacag aatcttctatt ttccaaaaaaa 61860
ttcggatttgg cgcgtttcag cggccaccca ttgtagttgg ggcgttttcacctcactctata 61920
aAAAAAAAAAA cagacgtgtcc caaataacact cagcgtttt 61980
cggctga cttatttttg gattttagcc gtagggttcg ccagggcttcatg agcaatcctct 62040
ggggaataac cttataccttg ctgctctttt gtaataacgc cattaaaccc ccgacacgt 62100
aacttcctcct gccctctcgct gctacgttcac gcggcactta taacacccccc ccgacgcgga 62160
tgtatttgaata ctaaagctgtg gacgaatac cagcaacagg ccaaaa attttgcttt 62220
gagatcaaa gtcacgccg cggctgtacc ggggagctgct gcacacgtcttcttctggtaatg 62280
cgtgtcctc gccctcttcggtggtgtt ctaatactgcc ccagcggcttg cgttattctt 62340
tgtaactttatg cgtataacag cggctctttg gttctttttg aatagttttt ccgggtgtt 62400
catacttcct ctagctcagtc ccgctctttt cttaccagga gatatcaataa 62460
ttggttctct ctttcccttc ccacaactaa ggttggttag tggcgctaaa ccagagcaca 62520
ctataccgg aaggatcact gtcacgtctg tggctccttt tatacagtag cggcggttaa 62580
tatagcttc acataaaaaat tgaagatttt tattacgcgct ttaaacacactt ctcacacacc 62640
gagacgcct tttcggaat ttacggaac caaactcgcg gtttaaatgg agacgttccc 65040
cctgaagagccccagccct cagcgctcaat tttcagagcct gtttaagttc tccgcatyca 65100
attatatgcagggaaatttc ggtatggatg gacccagata cctctgatat cgtacaaatg 65160
aatatgcagcgttataaat tatgctacaac gagcgcaccat ccacgcgcctcc acatatatgt 65220
atatctctgt ctacgattctc atggggacaat atggcaccag ccaggcttatt attttgttattt 65280
ctcattgcctcgctgacag ccccgtgacc aatcgttgtat tttgaacgcct ttcaactcccc 65340
agctctctct ctacgatgac caacgggccc agacgagggat agagcccttaa ttctcgcggct 65400
gttattggtcgagagtttac atatatattg atttatatatn caattatat atttattacc 65460
aacaacgtgc acgcggggtg gacaacctct ctcattttttt attatttattt tatagatgctaatctggttt 65520
ctatattacta atatatcggg acatagcttc ggttttttcactttggtttt cagtttgggt 65580
acgaaccatc cccatcctt ctacgatcag acacgtggtttt aagtgcccttt 65640
tttgggatgg gacccagactttt caggttttct cactttgtttt ggtaccgcc 65700
ccccatgc cccatcccgct ggggcaccaac attaatttct actcgggaccatg ttttagcggg 65760
gcaccactgc cctccgtgcct attgtcggta cttcagatag ctcatcggcttc 65820
acacacacgc caaatatttcc actcgttctct actcgggcttc atatttattttg atacatattg 65880
tattatggg gttgattgta ttttttttttt tttttttttttt tattttttttttt 65940
tttatatgcc ctccttaacc atatacctaatc acagccgacac caggtggtgac 66000
gttgagggcagc gacccagactttt cactgtttttct cagttttgtct cagttttgtct 66060
agtactgcg cttcctttttt tccgcggttt ccgcggtttt 66120
acacacgcg cccatcctt ctacgatcag acacgtggtttt aagtgcccttt 66180
tattatggg gttgattgta ttttttttttt tttttttttttt tattttttttttt 66240
tttatatgcc ctccttaacc atatacctaatc acagccgacac caggtggtgac 66300
acacacgcg cccatcctt ctacgatcag acacgtggtttt aagtgcccttt 66360
tttatatgcc ctccttaacc atatacctaatc acagccgacac caggtggtgac 66420
tttatatgcc ctccttaacc atatacctaatc acagccgacac caggtggtgac 66480
acacacgcg cccatcctt ctacgatcag acacgtggtttt aagtgcccttt 66540
tttatatgcc ctccttaacc atatacctaatc acagccgacac caggtggtgac 66600
acacacgcg cccatcctt ctacgatcag acacgtggtttt aagtgcccttt 66660
acacacgcg cccatcctt ctacgatcag acacgtggtttt aagtgcccttt 66720
acacacgcg cccatcctt ctacgatcag acacgtggtttt aagtgcccttt 66780
acacacgcg cccatcctt ctacgatcag acacgtggtttt aagtgcccttt 66840
acacacgcg cccatcctt ctacgatcag acacgtggtttt aagtgcccttt 66900
acacacgcg cccatcctt ctacgatcag acacgtggtttt aagtgcccttt 66960
acacacgcg cccatcctt ctacgatcag acacgtggtttt aagtgcccttt 67020
acacacgcg cccatcctt ctacgatcag acacgtggtttt aagtgcccttt 67080
acacacgcg cccatcctt ctacgatcag acacgtggtttt aagtgcccttt 67140
acacacgcg cccatcctt ctacgatcag acacgtggtttt aagtgcccttt 67200
acacacgcg cccatcctt ctacgatcag acacgtggtttt aagtgcccttt 67260
acacacgcg cccatcctt ctacgatcag acacgtggtttt aagtgcccttt 67320
acacacgcg cccatcctt ctacgatcag acacgtggtttt aagtgcccttt 67380
-continued

acCCCCCTT GTTGTGACT CAGTACAG TCCGTACG CTTGACGT GAAGCTAG CTAAGCTT 67440
TGAGACTT CAGTTGAGA TGGTTGAGA CAGTTGAGA CTTGAGCT 67500
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 67560
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 67620
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 67680
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 67740
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 67800
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 67860
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 67920
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 67980
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 68040
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 68100
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 68160
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 68220
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 68280
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 68340
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 68400
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 68460
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 68520
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 68580
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 68640
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 68700
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 68760
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 68820
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 68880
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 68940
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 69000
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 69060
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 69120
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 69180
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 69240
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 69300
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 69360
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 69420
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 69480
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 69540
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 69600
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 69660
TTGAGCTG GTTGTATGT CAGTTGAGA CAGTTGAGA CTTGAGCT 69720
cacoctgaat aacacttcga ctacgccttg caaccttctt gttaacctca acetacgcat 69780
aacoctcag gaaaacctgg ttcggttgctg tacctcatca aagccatctg tgcattata 69840
ggctgctggt ctgtaacacta tatttctttt atctcgcccc gccactacaccc 69900
cacttctgg aacgcttcgg ggggacacag gacaaaaatc gcttctccat ggtcccttcc 69960
tccacaccc aagcttccgca aaaccttcgc cagataccgc cctcactgcc tgcagataa 70020
gcgtcgcgta tccaaaaacc cggactatat atggctgatg aggcc cacccgtttc tcttcccctgt 70080
ggcgtgac tcacccggag aacagatcgg ttcaccgggtc cgaacccgcy 70140
acnacagtt gcacacttgggt ctactggctgc ttcgggtgac gcycagctgtg aattaacacca 70200
tccoccgct atataaatcgc actgctgtgc acgcgtgctt acataaacggc ttcagcgcgg 70260
atagatacg ggtgacagtat atggactatc cacttcataaag cgtctatatg aacactatac 70320
tgcacatggctg cgttgcgtgat gccaacaacta ggtcccccag gcacactgaa 70380
aatctataa ctacaactca cattcataac aacctgcgtgt ctaactcgctg catataagc 70440
ataccaccc tccataactc cactacactc aagcttccgct aagcttccgta ggctgagatc 70500
tcacaactg gtaagaggggt attaaaagct cgtctacagc ggtctacatc 70560
tcactatac cagactctgc ctataaccccttcgatctg ctaataagc 70620
cagccgtggatt cttaaaaaac ccacccacgc cccgctgctc aagctgtggatt aagctggttgc 70680
agcgctgcttg tcacccggag gcacacacta ggttatataat cagctgatct 70740
tcactacagt atataaatcgc ggttactttt cgcactcgcgtg gatctacaag cttctatatta 70800
agcgtcctgc gcgtctgacat aacacccgtct gcttccacaccc aacactggtc 70860
attactatc atacgcctgg gtcgcagcctg actattcttt ctactatatc 70920
ttatctata atacgcctgg gtcgcagcctg gttctatttttctt ttttttttctccctccttttctt 70980
caacctgcc ctcactggctg gtcctatctct ccacgcctgcc 71040
acccctctc ccacgcctgcc aacctgcggtgg aggtcagttc tcgactacg cy 71100
cttcgattata cgcgtgtgctg ggtccttcctg ggtacacgac ccactggtcc 71160
sgactctggc aagcgaggtt atatatattttttctaat cagctgcctt cgcactgcgtc 71220
tggatgtcgc ggcttaccgg tgcacagcgtg atcttgggcgt gcacactgcgtg 71280
ttcggggcct gatctgtctat ctaattgcctg agctatcgcgt 71340
ctatttctgt ttccctcttc ttcacacacta gcacacacta gtaatttctacta 71400
ttcgggatc atataaatcgc cccgctgctc aagcttccgct aagcttccgta 71460
ctataatac ctctccctgg tttttttttt ccacccacgc ctcataactg ctgatctgac 71520
tgcacatggctg cgttccaccccttcgct ctcagctgcc gcacactgac 71580
pgactgttgc cgttacatcacta ccacagcttgtc cgttccaccccttcgct gcacactgta 71640
ttgcactcgc acatctacgct cgttacatcacc gcctttttttt ccacccacgc 71700
agcttgcgcgt atactctgtgctt actatatttttttt cgcactgcgtggc tcgactacg 71760
acccactata ccacccacgc cttctctctttt ccacccacgc cgcactgcgtggc 71820
ctcataatac ccacccacgc ccacccacgc gacactaactg ctgatctgggc 71880
ccatcgcctg cgggtcttcct gcacagcttgtc ccacacgcctgc ggggatcactg 71940
ggtcgcgc aacgcttttgattgtctgcgactcctctgcg ggtgtttttttt ccacccacgc 72000
gtacactata ccacagcttggtg ctgggtcttcct gcacagcttgtc ccacccacgc 72060
coactacgc gcgttataactgcgctgc ttccaccccttcgct gcacactgta 72120
tocactott ctgcttcttat tgcgagaaa gcccagcggta toctgtgcttt caaacatata 72180
taacctcaca cccgagccgc atccatactg tggctgacgc gcggcagcct tcctggacct 72240
caaaagtga gcgtagcgcg attatgttttt tatgggagca cagccgaggg aacgttagct 72300
gctctctgg atacgtctgg atatggtttt gcctgaccca ctatcgtgta gctgtatcgc 72360
aataactcat acaacactct gggaggggca gttgagtctt gttggttata caaacgcaac 72420
cttgagag ccaactacct agggagattt aacattggac gccgacccgc cggagcttcc 72480
agtaacactat ggcgcacaggg ttctacaaggg gacacacatgt gtaacccggg tgtgatgag 72540
aagacgcgtg ccgcaagattg atgatgtgac cccgactaccct ttatgtatna cccgacccat 72600
cacgtaaata atacacatata taccacccctaca acaactattc gatcnaagca cagctgggct 72660
tcgcgttac caacgcgttcc tgtgcgctttt ggttattttt ggaagaagct gcgcctttttc 72720
agaagcatt caacggcggg ttcatcaagag tcgctctgctt gtcactaccc t Tatatt 72780
tatatgtactt acgttatctca tgcacataggt agtcttctcg gcacacatca tggacgata 72840
tccgacgac ggcggcagtt ttcctccgct atccgacag ctcgacgctc attttcccac 72900
ccacgggtatt ttttcttttata atataagggt gattttctca cccgtgaccc ttccgtgtagc 72960
aatgtttaac atctgcgcaac gttctctgtct tgtctgtcag gcacccacttct tggccttccg 73020
ccacacactt tataagctgct agctttttttg ttgcgtgctat gtcgcccaggt gccacagag 73080
ccacctagt gtcccaatggt ggagttttag gcacacgctg gcgattagta gcgctctata 73140
cocctattg gccacacaat aattaactatt tctatncgatt tattgctcg caacccgcgc 73200
tataatttt gatgtactaca cccgccgcggg ttctcctttt ccgcggcgcgg gcgacgacctt 73260
tccgacgtcc cagggcgtcc cggagcgcct gcacccacacct cgcgggcttt 73320
caagacagaa atcccggtgc ctctatgcoc ctttctatgt cgtcgtctgc gcacaaaccac 73380
acgcttgtct gacgcgattt caattgcaccc gcagccaccc tgaagccagta cggacgtat 73440
tggaagcag gcataccaca ctatttttata cagtcgagag gtagttttct atagacacca 73500
agagaacctt cgtgctgctg tgcgtctggt acacgcgcttg atccgctggg attccgacaa 73560
atcacacagg gtcgagcttg taataatttt toaatgtgcttt gatagaatta atcatacttg 73620
cggaacagg caggttcttg aacgctgtt tattatattcc cgaggttttt ccgacagctt 73680
aagagaacta ccggagacactt tataacggatt cacaacacaa gcaggggaga taaaacggga 73740
 gcacgcgtga gcgatcagcct aatcctttact gcagtagcag ctatattctct atagat 73800
 ggagtctgtg atcgagatatt accgtgatag cgcagccgag cgcagacacc ccttcagcgc 73860
 ttgaacgggg cagacgccgc ccacgacccct tcaattcttgag atagatcggc ggcgtaacttt 73920
 caacgcgtgt cgtcggtgat tcacacgcgg gcacgctttt cgcggagaca cgcgtagatgc 73980
 tatcctctctt cgtcgcttt tccccgcggct ccgctttttt cgtcgtggttc tttttttttt 74040
 tatgctct cttcgatctttt cccgcggttt ctgggtttcag gtnagctttct gttgatgctg 74100
 ccagttaccc gcgtctttcct tgcggtaattt gcgtcggatt gcggaggggct cgcgttgct 74160
 gatccacgag cacagctccc tggcgagtcag gtagtgagttt ggttatagtcrtt cgcgtggat 74220
 gagggggct ttcgacgctt cacccctactt cgtgtagttt gtaggtgttc ttcacattgca 74280
 acaacgacag ctcggtgtggt tctggtgtggt gctttgctttg ctttctctct ctatcgacca 74340
 tggcgcacggac ccacgacgatgc ccacgacaat caccagacta ttagacgggg cgcggatcct 74400
 tggcgcacggtc atagcggatt gataggagagt cgcgacgatgc tttagatcgtt 74460
ttatcaccct ccgcgttacc cctcgttgcg atgtcggaa ctattggcct catctccgtg 74520
attgcaaat gtaggcgctg ttggggcnaa atgtgctacc ocaaatctctt ctittctggg 74590
agccaaacgc ccaacgacact gcctgcctac cgtgtaagcg atagtaacgc 74640
ggttttaaat acottieaat atttctctct tggagggtact ttaatgtttata ccaatatcaca 74700
tttatatcaat ccatacgagca cgggttttca gccggattat gctttcaag cttgctgcca 74760
ggcgtcctcc ggcacgacgct aaccctttata tcggcagcgt gccttctgact cgtactcttggt 74820
cggacacac ccagttacacc atcacggtcg tattgggagg gtaaaccttta ccotaacccca 74890
accacagacgc cccgggaccctgcc cgaggtgcag gtataacgc cgtagtctgca cagcacgccct 74940
ggatgtactc ttacaggtaha tggcgtaccag tcggccaaaat cttttttttc caacagggg 75000
agtggcaatgc tttatcaat gcgggctcag acggggccgtg ctggccagaat ccacccggg 75060
tgcattaact ccccaacgcag coccaaccttt ctgggycggtg ctaacgctcc ttcagcggc 75120
aggaggtgca cgcgggaccctccc ctcctctgtg tcagttgtgc gcacctgcccg ttcgcaac 75180
cotacatctt tggagacagt ctgatcagtc tagagtggtga gacattggna ggttagatatat 75240
gggtgacgcc gcacgcctacgt gcacgctaata aatgtttagt ccocacccgt ccgacgtgtcg 75300
tttacatgc cgcgggaccctccc tccacccctg gcacccgcac ccacacaccc cagcgtgacc 75360
gotacatacc ggaacatcaga acocctacgc gtcgctccc atocacgacg cttgctttbaa 75420
gttttttcaca ccggcggatctg ttaacactaa cttcggctgc tgcagatgctg 75480
ccacccgatcg cgcggacgaac ccagcaacgta caactcctgc ctcggcgg 75540
cgtgctcaag ggaacacaccc gggtgctgggct cttgctttttc caagggacact acaacccct 75600
acgctacagc gcggtgccctt gttcagccgc ggcgtacagc agagacgccg ggcagacatg 75660
agttatgct ttcagccatg ttcagccatg aatcgtggcc ctccgtctcc ggtctccact 75720
tocogatcaact caaacacagcc ccaacagccca caaagccggag tggagaggcc 75780
tggttacact cattcgagct gcggagccgc gcctggccag tcagttttata cgcgttctca 75840
aacacccagc cttcgtgctc gttggttact gctgagacct cgagagacct cccggcgg 75900
ccggcgcgaa catccgagaa atgtggagga acaattattta actccatactc acctggtcct 75960
cgggctgcttc gttgtgtatac gcgcgtgcgct cattactacat cacctgcgggc acaccaagctc 76020
acgctacagc gcggtgccctt gttcagccgc ggcgtacagc agagacgccg ggcagacatg 76080
cggggtgagc gcgttgctggtgct gcgtctctacct ccacccggag gcggttctttg 76140
aaacatact cccccgctgac ctctgttgaat ggtctacactt cttgctttct cttcgtctt 76200
ctcgggtcgg cagcactaat ctgctgggagct cttggagag tcagatctgt ctcttactta 76260
aacacccagc cttcgtgctc gttggttact gctgagacct cgagagacct cccggcgg 76320
cgggctgcttc gttgtgtatac gcgcgtgcgct cattactacat cacctgcgggc acaccaagctc 76380
ttctcctactg gtaacgttga caccatctgc caaatcgtt gttcgttctttc 76440
gggctttttt ttaaaatact aagtttttttc caaaagcagcgtt ggtctgcagg 76500
 ttatgggagaata ggagggcagc tttctgcgttcc cctcgtttct cttcgtctt 76560
tttataacac gcggcgttgcg cgggtctgcg aagcggacagct atggatgtgg 76620
cggggtgagc gcgttgctggtgct gcgtctctacct ccacccggag gcggttctttg 76680
tttgatagcg aagcttactct catcgtgcttg gccgcggcgg ccggtgctgcg 76740
 ttttggtcgg cagcactaat ctgctgggagct cttggagag tcagatctgt ctcttactta 76800
gggctttttt ttaaaatact aagtttttttc caaaagcagcgtt ggtctgcagg 76860
--continued

ggctaaaca cgaaatcgg tatactgaa atgccaatct acacggacat attaagtga 76920
acacgaag atcactgacc tgcctccggt gcgccctaac cggtgtaagg ttttgggtct 76980
agacctcccta aacactctct tgcaggttag caaatgttct acataacaac 77040
tocacggtg ctacacctaa cttaaccttg aggatacaca gtgcctgtga ggtattata 77100
tttccgagtt ttaaactgttt aacaaatatt gcataaggcc ggcgtttttg ttttttgtat 77160
aaaaaagaag ggtgacgcc gcatacctcg ggaggtatgyg attgataana cagtaacact 77220
ggcgacaga atcagcaatt ttccttttcc aggcatcagaa acttgggttgct tatacrocac 77280
gatatgcca ctgcaaatg ctcggtgtcg ttttcctota tagaacaagt tgcgtttttg 77340
aatgtatgg ggtgttaaacc ggttattgct gcctnactatt gcggactacca acggccctac 77400
tocagtgaag acgtgcagct taagctctaa agaaaaaagt gcctcactaat aaataataac 77460
ccatcctgt ttaaactcagu acacactcgc acacactac gcagctgtcg tgtgtttggc 77520
gtaaatcgac ggtcctgatc aacctcaaca acctgcaata atatgacacg attgcaacgc 77580
gttgacgcg ctagataaatt aacacttca ggccccggttg tttttaatgga ggcgtgtgca 77640
aaccacacac cccacacttg cttcttcgag gcctcctaca tttctctgcag gagaacctcg 77700
gcataacata acgtggatag gcctcttgct gcctcctaca ttgcgtgata aacgctgatta 77760
tttaataact aaccacaacac acctgtgacca acgtgatagct gcctataaact gccgtgtgta 77820
tgtgctgatc ctaatgttac aacctccatc acgtgcaata atcgccttcg taatgtatac 77880
aaaaacctct tactgttctg ttcctttttc gttgtgaa ccaaaatcact ttacactagt 77940
gtttgatctt aaatacgcag ttaagtttgt ttccactcag atgcagataa atgactgatca 78000
toccaacatc gacaagataga aacctgtgcc ggtgactacg gacagatctgt aagatgtatat 78060
agttacocca ccaattttaga aacgtagtca taataatcctactgcaaa aattgtggtta 78120
taactcata tttttctctt cccctgatca ccaccattaa cggctgatata tggagccgca 78180
tttgccaaatt gcacaacacc atgcacccctt gcataaggat cccacaaacc gcataccatac 78240
cgttgtgata cttaccccgcc gtcgttatgc gcggcagatc atgccccgct tactgataat 78300
aaagaacacc gcacaacccct taaggttgaa gcatatcatac catacacagca 78360
atgcagcacg ttttgcagcg tttccgctgcc gttgactcct gatcggcttt actccactct 78420
tataataacaa accaaccacc cattgtttgc acaagctctct cttgaccagc ataatccttg 78480
ggagttgatg tttatctttg cttgctctct gttgctctct atgcattctact 78540
cgttgactcg atccagtaata atactggaaca ccgagaagacc cgttatattt gtttattctga 78600
tcgccactta attcgcacag gacaggtttt tttgctgtgt gcacccggygg tcttttttatt 78660
acgctggcat ctgggctctt gcctcactaac gcgttgagttt gggccatattt 78720
atgacgccg ctaatttggyg ccgcccattt gctctaccaac acgcctccttg gggccatatt 78780
tggaacctgt ctatcctaat tcgctctgtg tcgaagacata atctctgtgag gtttgggtga 78840
ctccctctgt gaccaacaaaa tacentggaaat taccggagat cccttttgcac atatatcttg 78900
gggctgatag atggactaat ccagggccacc gcgtgacacgc ttcagttccc gcgttgacgtg 78960
tggttctgat ccaactgtgac cggccacacc agccgtcaact tccacaacgcc atgctgacatc 79020
taaagctgcc ttgctgtgg ccgctgtgca gccgataaaa ggagatatta ccggagggaa 79080
aaccacttgg tccgccagct tccccacctt cctaatgctct ccagctgcttt 79140
gacagaaacc acaagtttta tggagaatttg gccatctgtg tatgaccatag tgcgtggg 79200
ggacaacg caaggatttc gateatcagc gagctaaaac
agatacggc ggcagtcttt atgctacctt gtaaccagcg tccctccgcg cagctgctgac
attactcg ggtctcaagt caaacccac gtcgagcact tttgacttac
aggttcaag ttttgttgtta ACTGTTGTATG AGTTAACTAC
agtacactt cctctactct cttctgttgta ATGCTTTTGAC
agttcatt gtttagcttt tcctcctca ACCATCATGC ATTCTCA ACACTGGATC
agggcgaa aggatttgca gatcaaaac ATCTCACACG AGATGTT
actgtattt gctggtgagac ccaccacgca ggaggaggtgtgtg
atggagaggg caaatattgc gttctctgaa gctgctggg gctgtctggtc
ctctatcagc ccctcctct ggtttcctag cggaccttc
aagatgatt ggttttgcttt cttctccttcttgacttact acctaatca
agccagagc ctcgcaaccg gccggatct catcgtcttcttgacttact
atcgtagta atggataa attgactctgccgg cttgcccaaaa ttttcggtaa aggggaccg
atgactgag ggctgagag cgtggtgtgct gctggtgtgct gctggtgtgct gctggtgtgct
actggtgag cgtggtgtgct gctggtgtgct gctggtgtgct gctggtgtgct gctggtgtgct
atgactgag ggtggtggtgct gctggtgtgct gctggtgtgct gctggtgtgct gctggtgtgct
actggtgag ggtggtggtgct gctggtgtgct gctggtgtgct gctggtg
antagttcgc ccttttacct gatccacgta aatggcccc aaccaacggc ccagggaga 01660
cctgtacc tcaacacegg gtctccgttgt cttgcgtata tcgacgctat aacaaccattt 01720
actctcctta aaoetgccaa ttactaagc tattatcggt acagaanaacc atgtttttccc 01780
atgtctcagt gttccaaaac aacaacagta cttggttttt aagttttctta aacaacagtc 01840
agaacaacct ggctgctttaa aacagctgac cagaaagcag tcaacctgctg ggctagattc 01900
gcccaactag accgagaaaa taanatcgct ggtagccagt agygatcatatt ttggaaacag 01960
ttcacaagttt gccttttactc tcgataagat tcggaagcag ccctttgctgg gttgcgtctg 02020
acctcaacac ctcttaatac ttcaaaagaag ttttccacaa aagctacgaa accggttgt 02080
aaagctgacac aatagccaga caattccgga cagagaaacc gcaagcaatg tgtctcatac 02140
aacgctatc gcattccgac gggcggtcgt tccctccggt gcatacttcc aaaaacgtgac 02200
actatgcga gcttttttta attcggtgtt cagctgttcc tttagcgtgc atgagcaatgg 02260
tttcaaaact acatcgggggg taaacgtgacct cctggtgatt gcatgagaa cgaatcagat 02320
tgccgctaga gcaagctgag aaactatcct ccaactatctg cagatgcgtcc 02380
aattcagctg gtcagccggc gggctgactt atagcactat tcaagaaacgg 02440
gataggggt gcgtttccac gaggacctttt cccggttggag cagctgagaag 02500
cgctccagc agggcattccc aagaaaagtt cgtacttttc atgctatggct 02560
acagccgata ctgttacttta aagctaatcag tgcctatattc cagcgttccc 02620
acttcatttc gcacgaaacag cagatctcaag gctactcttg aacgtatata 02680
ctataactt ttgaggcgcg cctctctca ctctcttgct gtcagccccc aacctgcacct 02740
acgcttccaa tagtgcttac gcgtctcacta aagttggcgt gcacaccccc gggcttgctt 02800
taaagaacgc cagcctagat ctaactcagc ggggtgagac tgtacacagat ccgacaatttg 02860
tgtactgtct actgtcgca aaaaagccgcc gcaagcagtt taataaaccgg ttcggactcg 02920
caagoagcctg atcgctactg gaaccagagaa ttctgtgatg acaatccacgc gttggagaa 02980
aaacacagta tcacaagatt ttaaaactaa acaagacgta cacagacccac gttttttttc 03040
ggctgcttga taaaacagag gacgataata cgtatctatat agaacaagctg gaagacgagg 03100
taggacgacg cagaacaacc gaatacttga ctggttccgg aagaagacgc gaaacgctgac 03160
ttcacaagct gatgctgcag ccacaccccc ccacactccaa ttaacatctaa ctggagaccc 03220
tttctgttcc caacacccaa caagcggaga taacacccaa gcacacgcc cagctaccca 03280
agaacaagaa tcacaacaccc caacacccag aatgtttaat ttaataaact cccatcctgag 03340
aactcgaacgt ccaaacatg acaatcagac gaaacgttcat ttattatataa 03400
ggctgcttgc aacatcctaa acaagaaaag gagctgtttc ttcacaactt 03460
caacaacccc ccaaggtgcttt ttgatatttc ccaaatcctc cccgctatggt tcccaacttt 03520
cacgctaat gcacacgatt gtctttttca aatacagact cggatgacgc ccaggttggc 03580
ggagctggga acatgagctgg gtctctactt atcacaattg tcaaaaactag ctgtaaaaac 03640
cagctgcttg cgtatcttttg atagagatg aataacagcc altattcagc gttggagtttc 03700
tataacagc ggagctggga tagttttttct tagcttatg tggagtcttg ggttttgctt 03760
aaoaacaaca cagcactatg ttggagttca cggatgacag aatggagtcg aacagtcctgc 03820
cctctcaca cggtgcaacta tacgtactcc atcagacccaa aacattccgg atgttttttt 03880
agcttgggtaga gctgtttttta tcagaaagtc ggctgcaacc acotagagttg 03940
-continued

gaaatgtygg accatssccc ttaacgtcgca caacattttgc tctgctggaaa taacacagc 84000
agtatactga gctatagcct taagctacctta tacctttcata tctgctggat 84060
atttgagtgt ggaatccact cccacccgga gcagctacata gccttcccagggatgtcact 84120
gcagattca ttcggtttgct 5tgtcttgacta tyggaacacc caaccccccct gcagttctgt 84190
tgattatat attggacccg gcttactaata attacagca cctctcccccagctggattgaa 84240
aattgctgct ctttcttatt accggcttta gacaggtttta ggtatagctagtac 84300
ttttcccggg ccaacccggcct cttcactacag tcggactccg cattatcact actacagctca 84360
taatattacac ccgtcttttg ccgtctgatct gctcggctat cggatgtgct cggacagcata 84420
tatataccc cttgacattccc cggagacctttattatatcttcttttac acgccccgaga 84480
gctgaccac ccgtatttccc gaaattccttt acgccccgata ttcagccccagc agccagccg 84540
ccctgggata ccccttttcca agggattttgag attttttagg acctttttgag atccctttttc ccgacagcagt 84600
acgacacttgt ttatcagctct tctgctgcccc gcaatcataa gaatgacttc cgcttccacc 84660
ccctgattatg tttctttatg ctcttttgtgctgatc 84780
ccctgaccac cttttttattg cccctgctttt acgtcctttg cggacagcgtttcgctgcggcagc 84940
acgacaggagt ttatatttttct cgcgacatga cccattcctt gcctattcgg agcttgctggag 84990
tccacacat tattgacactc cccaccccagc agctttttcttctctttgcgc 84990
cccaccccagc gctgacatac cgtcttttttgcgc 84990
tccacacatc cctaggccgac gcgtctggaa gcctggctgct cccatactctt ccctccacac 85020
attatactg cttcttttact tataagctctg acgcctgttt gtagcgccagc tcaatcgcact 85080
tcggacacttc ctttttttttttttcttttttttcttttttttttttttctt
-continued

acttgaac tgtggagat gtaacagagg acgcccataa atcacacca acgccccac 86400
gagtggacg tgtacacca acacgaaacc cttcgggaac gactgccact tcaccaagtc 86460
caaaaaagta accctgata accctgata aagttctaa taaaacaact aactctgtgt 86520
tgttactgtg gaaagtgtttc ttatattgct cgggttttac aacgaaacc cagctacc 86580
cacoacctgc ttatagctcg ctgataacag ctctctctcg cggctctgcatt agatagctga 86640
gtataattca tagacgtaag ctagcccttg tgtatggttaa ttgctgccg gagaaattctc 86700
atgtgcagct tttacttttc gtaagtataac cggtaacccgc cgggttaactc ttatctgagc 86760
acgtaaaac acctgagcgt tgtctgagct atacatcata gcacgctctca atctggaag 86820
caacgacg acgcagaaac cggcagagca agcagacgtt cggcagatg tgggaattaa 86880
cgtgcagac tgtgcagact taagttttcg aatatactgt gcacagaggt gcgctctgca 86940
tocacagtgt gaacagagcc agcagagctc gctctcgagata gctttgcacg caacaggttc 87000
atgacacaac attactctgt atactataag aatacacaact gcaatagtac taataataga 87060
cagccacgac gaaacctgact acacgagctc gctctcgagata gctttgcacg caacaggttc 87120
cagccacaat gatactacta ggtacaactg cgcgctacac gcacgctctca aatcatcaag 87180
cagctgccg gtagccgccc cagggcataa taacaacag cttcggctgc gtaaaatgtc 87240
aacgcttttc atgctgtttc gcttcatact tttggtttttc cctgacacat gctgaattat 87300
tacctcgttc gcacaatgtc caagattataa tgctttgcccc acgcagactct gtttgatacg 87360
tantattata acacgagctg ttataaacac cattacacaa agacccacaa aaggtgttgtt 87420
ggctttttc acactgagct caacgcagcc gtttgccgg ccacgctggct ttattctttc 87480
tgcttgatg acttcgagct cttctcgattg ttaaacacaact ggcagttgag cctgacacat 87540
cgtgtgtatt gtaataagtaa caacgtgatt tggctccaa aacaaaaaaag gggcttggtg 87600
tocacacgct ttccgagacc atacccacccact ctctatggtt ggtatataa actctataatc 87660
aacttgagtc gataaacaac aacgagttcc ggttatatttc aacagggagcc aatataacgt 87720
ggcttgagtc aataacggtc aacaaaagaa cttcaccatacg acctatagcctt aatgtaagctta 87780
attaaggtgt ttctcttgctc gatactcaggt cttcgggctc gttcgtcagtt tcgtaagctg 87840
cgagcttttc tccaacagcc gcttcatctt ttctgcttcc aatctctccc aacacgaggg 87900
gcagaggtc goggttgtac gcttcagttt cgcaatgtgc acagctggct ccgctttttg 87960
tctgtgttcg taggtttcct aacccaccccct gggttttttgctttcgacgt actttgttgt 88020
tctgatatgta atataaaacact tcttgattgc ccacaaagtc ggctgtttgg 88080
cctctgtggc tctctgtaaa caacgcctct gtttgagggg cttcacaarcc gtttacaaagc 88140
agatataagg gactcttctgg ttcctctggg cctctctctt ccacgtgccgt tgaattcagcc 88200
gtttataagtg gacgctgtttc ctgctttgtg cgttattatttat cttcagcaga aatatttattt 88260
ggtttttttc gggttttttgcaggtttttt ctagtttttttaaattttttgt 88440
cggctctgc acggtttttc ttccttctgtc gttcaggtgcctt ctctctctgt 88500
tttctcttg aagtgtcttg gcttattctgg cttttttttttt ctctctcttt 88560
cgggaaggt tgtgacacgt gccggtgatat gggagctgac acggttttgc gattctattaa 88620
aacgcttttc acacgagagg atagaagatc cataacacaa tcatctgaaa attttttttgt 88680
cgaactgca ctaagttac aatgtgagca taacatcgtg atatatcact caactttact 88740
gtttcgag ctaatttgcg agtggccag ccaattccta gctcattcct taaaatat 88800
ctaaacggc cccctatgta aagtaaagaa atgaacatc atggcagctt ctgctactag 88860
tacgtggcg aagttgggtg tgaagtggcg caatgcctag ttcgtatagca tggcttggta 89020
cataaacagg gcaggtctat gtagcagttct taccagcctgt tagggccgtg 89890
aagtttagt ccaatacttt aagtttgctag cttgcgttct ggcctaaagg ccagagtgcg 89040
acccctgtgg tgcggcagct tcttaaactct taccaggccg aactaaaattc atctgtctcc 89100
tacacaccu caaataaactg ccacacgctg cttgctctctt gcgcacagct tgcacacgt 89160
atttacggc tcgaaaccgc ctccttttctc aagtttttaa caatcacttc cttcggagac 89220
atgctcttct ttggcttggag cctgtagcat tataactttc caaactccttt tcggctcctta 89280
ocaaatttctg gtcggtattgc ctggcattgct tcctattacc gcggtctttc cgggtttctt 89340
ttggtccttt atatcagactc tcagcatact gcgtaacgct gtcgctccct gacgtctggct 89400
tottagacgc gacatagcag cgtgtctaa tcggcctggccc cttcgagct 89460
tacactactgc gctggtacag aaaaaaaaaattc tgaaggctgca atataaaccg 89520
taagactttc gactagatcc aacagctatt ccgagcagtt atggggttgttg 89580
atggggggttc gtttacgagc taactaagcg cttggaacag ttctgtcatt ttcacaaat 89640
atcagccagc taagcatttcc gttgctcccag cgtcccttgcc atcacgctgg acacgctgct 89700
cgagcaatt ttaacgcgctg cacacggc cactttaggg ggcagttgcag tcgtgcttttc 89760
ctatttgaga cagatcagct cttgcaacctg ccagctgctta cacagttttc 89820
ggagccgcg cattttttactttctcgcttc aacaggggggt cggctgtggct cacatatattt 89880
ttcggattag ctgtaaccg ttcggtcctg gtaagctttc ttaaccgcgt 89940
aacacgcca ttcttctagg gatgcgaattc tcagcctatttc gcctaaacattc 90000
ccgatatac atgctactat ttcggtatcc ttggacaaca ttttccgctg ccggcatttc 90060
aaaattactc cagagacttttc gcgggtggatg tctgtgagaa aocacctaaa aaaaaagatcct 90120
acatatagtt atacgtctttc cttgtataag tgcgttaaatc acgtaaacgt 90180
gtacaactcg ttaagacgcag gcggctttctgc ctggtagtaa atacagtttg 90240
ccaggtttcg gcacagcgc gtttttttttttc gcagatcctttg gcagactgtg 90300
cgaacagtg ctatacatag cgtcattcag acgctccggct cgcggactaaa 90360
cgggctgtcttgattttcctg cttttatata gcggttatctg gtaatagacg cagcagatgg 90420
gggtatatt ataaactatc cctcgtctca aacacaggggt cctctacatg atacagtaac 90480
caaacacagc tctagcatgc aacgcagatt acctctgttt cggaaagcgg aacatatttct 90540
goacagcagc tccatccca ctgccactgg cctggcaagat taaaacatttaca 90600
gttgtatcact tattttttag aacaacacta cttggtgaat acctcctgcc tttcggagaa 90660
attacagtgca acacacagaggt tttatcgcgc tgctggcagc atggggggttc ttttgcttgg 90720
ogaatcttgg ctagttcttc cagggggtgcct cttgggtctag gcacgagcctg ccggcccctt 90780
gaacacagtc gcacagcgac cacttttttgtg tgttctacgt gcacagtccct ggcctaaattt 90840
cggcggaggt taggtttata atcgcccttg tctgctatt accgtgagctg tggattacag 90900
aacaagtcgt ttttatccttgg aacacagaggt tgggtattctg aatggtatgcttgtc 90960
atatagcagtctaggggtgataatcgttgcttgct 91020
tgtaacgcagc aacacacagc tctagcgcag aagacggcag atcctatcagctt 91080
aaccgtgaca cccagcaaac aacaacttta gacgytgagg taattaccc aaaggytac 91140
atacgtgga atantaagtc tagttttgcc cccctcttag agcggagagg ccaaaacctcc 91200
gattggttta acctggagaa acgcggttgg gtttttagtg gcattcgccg aattggtgtta 91260
aggygctctc taqqcytgta ttttgtactt ttaaccacgg atcccagctt tacattccc 91320
ctttcaaatc tagcaatatc tagcctcttgg tagcgccggg cgttgggaaa acgcggttgg 91380
gtcgctcagc tttgtgtgta tttgggcccc gaacctcaat cgaaggttga agacagagac 91440
tacttttgta ctqttgcatt tccggagtgg accccttctt cggaccaaac tccagaagtc 91500
gaaatcctac gcagcgytac ggagagtacg atggaggttg ggccgtaacc 91560
ggtattcagc ctttcaataa tcagcccccc tggggacagc atcocccttt actccgccg 91620
gtcagcagtc ttaattggcag aaaccttccaa gatctctggac atctcagatgc aactgctact 91680
tgggcaggg gcgggaattc taccctttca aaccagcttg tacaactaca agatctgtgg 91740
atggcnaaggt ttgaattcct cggcattttttt ccocacagtt actgtccagat gttcccacatg 91800
catttttgtg taaccacactc ctgcctgcttg aagacagtgc gggaaagtgg tgcoccaaaa 91860
ccocgtgggg tggctttttt tggggctgta cggcagcagc ttcggagtat atcacaagct 91920
attatattta taccagacta attagctttt tcggcgcacc aaccggcctt gggacagggc 91980
tttgctatag tattaatatcac aaccagttgg taatttggtta tttttcagga ttctacagc 92040
cgcacagcttg gccagcggtct tggcgcacaatt ctcagctttg cacoctgccgc 92100
agccctcga cgggattttc acccagttttc ctttgctttg accggcagcc 92160
cogtactcc gggtgagggt tggctgaccg ctgcctgtaa cctggtgtcc caccggagc 92220
tggcgcgcgg attttttttc aaccagcctt coggttttag tgcgcgctgc gcggcgaggt 92280
cagggcgctt gaggattttc tccagcgctc catcgctgcg aaaaaaacct 92340
cggacgagcg taccaggcgg tttaatttgcc gagcagttgc tatacactat aagctggcgg 92400
cagtggtcgg aggtcgccag aaaaaacactc gtctatttct tttgacagcttttgtagctg 92460
cgtttatcgc cgcttcttcgg ccgaaaatcc cggccagaaca aagctgctg 92520
gaatctttag tcaacacagc agacatcgac aagatggact ataaaaacg acagataatt 92580
atggcggtag atccgagacc caccgaccc cctctccttg tttactcggag attgctaca 92640
tttggcgcct gattttcggc tattgctgct gttctactt caccagacagc 92700
ttttatga tattaacca ctctttatagt gcttatatgg atttttccag tctcatattc 92760
aatattactg agcatccgctt tccttctcat aaccctatgt ttatctgaca aaaaaaacg 92820
cgcacacag caacccctttt aaaaaggtt ttattttatct tcaacctcgt ggtaatttt 92880
tatacttctttc aaacttttca atatttttct gttctactt cattgctgtt aacccaaa 92940
aatatactc cttttctatc tcgaactctc gtanaggccc atttttccat cccggggtta 93000
cctcgacac accaatggc caggggggggt tccgctgagg cagctccaaa cggtaaccca 93060
cccacacatg atatatgcctttattaactc tgggggcgcgt tccagcgctg gggttcagta 93120
actataataa gcttatagc gcagctaacg gggtttttttt aaaaaggttg tttataccag 93180
catatattg agttttcatc accataataa cccttcctaa aacacagaaa cggcgattttt 93240
cgaaacgctt cattgtgcac tcacagctgt taagatataa acagaattgt aacaaacagc 93300
atgagcgcgg ccggagggcc ccaaggctct ccgactact taaaataaca cataagggtaa 93360
aatcagagc attacgcccc ggaactaagc tccgctagata gattacctg cggcgggagc 93420
aaccttatct cggggtgata ctcattccag tataatatgaa acaagtcttt gtaggtgcta 95080
7ttggtgtae ttcattctaa gcccgtggtca atagaaacag aacgtctaat ctttttttct 95940
ttcattcagc aacgtttata aaacaagaca gtatatttcgc catttaaaa ccaagagtaaa 96000
agctattcct tctgtgagca gtttttttcct caaaaatgta attaataccag aacgtgggaa 96060
ttggtttgatc gactagttat atttaaactct caccctatag cagctgattc aaccctatct 96120
cctcagcatt cgagcaactct cagcattac agtccaaana gcaggttgtc tcgggtttgat 96180
tttgttttatt aggataatctg aacgcaagac gctgagctgga atacgagaga atagagttc 96240
cctctcgatt tatttaatata ggggaataagc cggctcogaa aaaaacagtt attaaacaaac 96300
gtattaccag cgttatattc cggcattaca cggctcagct agggtgtgtct ccacaaatgt 96360
tcatcctttaa aatatcgcgtt ctctagcttc aacatcaccatt ttctgtgatt 96420
tgtggttgoccus gaaagactaca ttcagattcct gcgtgggtgat cagctgattctagt 96480
gacccctct tacattaggg aacgtcaaaa aagagattat gttatcaaat gyyaagtttt 96540
aatctgattaca cacaaccaag ccgggtcgacg gtgcgctcggg ggacatcggc 96600
atttaaaaacc cttgctgcgaattgcctgtt attaaattaa gatttaaatc cttcggcatt cagtctgcgg 96660
aacgcttctt atcgctcagcg gttctccctcg ctgctttatc cggcaggcaagg tattggttat 96720
tgtagaaca gattgtgtagc ggcgtccata ttcaggggcc ttggtttactgt tggtgtgacct 96780
tttgatgtgcatataa aacgcaagagct gtatcatatta caataacgct cggcagagtg tattagttgg 96840
cgtcctgttcg cccccaccaac cttgcagctt agacatctat ttctccatatt acatatctgcag 96900
ttcaccaagc acttttttacc cattatact ctctgttcata atctggcacta aaaccttttcg 96960
ttatatactt aacatcttcac taactttgggc aacatattt attaaacaacct gttttagcct 97020
gaaagtatttt aaaaaactgt ttagtaacgg cttccattta cgaagocaac 97080
tgctgcgtct tctggtgccct tcttttcttatt taatattgcc cttctgacctt 97140
ttcagcatg acgctctagt attccttccgt taagaggttg agcggcattct tgaattga 97200
acgcggcatg ttaaaactca cgaanaagtga ccattttttct gttttggctc taccgattta 97260	taacattcag cggcttggtact cattttgata atacgogaaa ttaacgggaac aacgcggact 97320	ttctttgtgaa cattttcag cggctgcgggt cctcattttta cccacaccgg ggctggttgg 97380
agatcagac atggggcagaca tttaaatcagc aacacactaca acagcgcact atagttgta 97440
cogtacagac acttattttc gttcatttaag tctggtgattgt ctttcaccaacct gcacaagtaa 97500
gttatttttc gttatccgtag tgcatctca acogttttgca aaggtttttaa ggcagtatctgcct 97560
tttttgatgg gtcctcgggag agacatccat cgtsatggat cttctgggttt tcggcaccct 97620
aaccttaaccg ggtttcaatca tttttttttttt aattaaaaaccc tatactcgcc 97680	taagctatac ttagctattaa aacgcttgagc tgcatttacc ctgtgattct gtgttttgac 97740
aaacaagcc ctttaaaacc aagcagcggt tattggggg ggtgctggggt ttgactcgtga 97800
ttggcagaat tgttttgtcgg atataaaccct cttctttaccaa aacgcaacgg gtggacaggt 97860
aacgcggcaca atacggtgacc acgctgttga tatttatttt tgcacattttt aagcagzttgt 97920	tattcatttt gcataactcc gtagctgatt cttctcattcaca aacatccoga atagagacatca 97980
tggctacttt cattttttac gatggccatta aggtgattt gtttttttt tttcattttttttttta 98040	ttgcacgtac agtttcacca cggcctttttc tttgtgatatt tataatacttttaa catttaaaac 98100
cggactggag ctttattgcag gaaatgttcg gcggggggtgttttatttttttatagcttttt 98160
-continued

agatacgatat acccttctgy ggtataactt tgcaccccttg ccagcctttt tagauggaact 98220
gacccgaaac aagcttaccc gcgaacactc oganatgtaa ttagttcctc acgtaacctc 98220
tagcttcat cggatcaca aagctggtgc gtcctgatga aagctacgct ttagctgatt 98340	
tacgatgtc ataaggcctg cagaaattgc acctggcaaac acgttgagct atggccttag 98400
tcttaaata gcaagcaca tcggagctgc acctggtaat agtttagaga agttagtata 98460
tcggttctcta ggcgcctaaa tgcggttctgt gttgctactgt gcggtaaagt 98520
tcctctctag gctcttaaaa tgaacctaa acctctacgg gaaagcatag aaaaatcaco 98580
gaaatattac gtcacacatt ttcgctctct acgtgataccac acgtcatacc aatgtgtatt 98640
aagctttgtc taanacccac cctccggtgtc ggcggctctc ttctcttagg tttgtcttac 98700
atacaacccgc ccagccagtt tcggaacccc caacagcgtt tattttatgt actgtcaactg 98760
gggttagggc ggttgtttcac tgcgcttttac cggctacagt ccaacattca tcgagcattg 98820
cgcggctgttc aagctagagt cgctgccaga cgcggctgttc atgcctagct cgtacgcagt 98880
tgttagtagt ctcttcacac accatactac tgcacgctac aacactagac cggttttatct 98940
tcctttcata atagcattc acgacccggtt ttcttccttc acagacacaa aaccacccag 99000
cattggtgatt ctctccctctgc gttcggaccc acacttctac gtagctatga 99060
atgtggtggtgc ggtcaatatgc gtaataaccg aagtagcatc atctactgtgct atctcaattg 99120
ttatataagc tttacaaggtt aacagacctg actagctgac acaccaacca accacccago 99180
accagtatct atogcaaggg cgccgccttg aacacacagt tttctcttca caacacccgg 99240
catttttcttc atacgcagac gacgcttctc cgtaaatatt ccgaacggc gcaacacgct 99300
aaagacacgt tcaagcctaa cttatttcac aacgcttacctgct catttcacag cgtataacgc 99360
aacaaaacta tttatatcta accgctttta atttgcagac aacactactctg ttaacgctga 99420
tgacgcaagt aagttggtgtg cgcgcgtccta cggcttattat acataacccga tttacgctgt 99480
tcttggcgatt ctaaacatct acccgcttagt gctcgataa cggctttggtt gttgtccgoac 99540
aanatctct cgggttaaaaa cttccgctat gtcacccggg cggacgtctgc gtoacattc 99600
aacacacttc gtcctttcag tgcctgaccc gtttatcttaa gcattattgc gttgtccctg 99660
caagatcttctt ctttataagtta aacagactac actaacggcc ataacactgtc acaacacgct 99720
tgttacacac gcagcggttt ttcgctctctg tgcgctttttg aagctgctttg 99780
tgcgcaaatct ctcgctcat aagctggttt ggcgccttctc gacgccggg gtaaagggcct 99840
cacaaaactt tgcaggtttct taaaagitga tattttttac aattaaggct 99900
gttttttttg cgtggacggo ctctgacacac atgccgcttg gtttgccacgc cgcggcttg 99960	tactcctagc gtttttctaa gcaagctgtgc agggacgcat gcgtttttgg 100000
gtacttcaca ttagagttc caatgtgcac gttctctgcttag tcttttattct gtcgcctc 100020
aggttcctca atagagttgac caatgtgcaag aatgctattt gccttttttg 100080	ttttcataa cgcaggctttg gatatttttt gttgacctaa gttttttttt 100140
tgttaaattgc tggcagcggc gtctgcgctgttttta taatgagtta ggcatggcagtc 100200
cggcagacgt cggatccgac gccagcaaccg aacaactttt cgggtgtcag aggagggcna 100260
tcgcagacag atatagctag gcagagagtt gcgtttgctag gtttatatgtc acaacacttc 100320
atcttggttg ccagctctga ctatttcagc aagaccaaac tgcgaatctg caccaatttc 100380
cgaaagacca caggcacacg tgcacgagtg cgcgctgtgtg ttcggcagag acatgatcgg 100440
gaatgtgttc cggattgtctg ctcgctcata aaccacccag aatccgctttg 100500
cgtttcttcc atattctctg tagacgctctc tgcagctgagc gcccagcctg taatcctata 100560
tcgcacag ggctcctcc cagcactctg acgctggtat tcggcaatna ccccccotgc 100620
tggcccaac tcgcaccgca tctgccatag gcggggctga ctttggtggt tgttccatg 100680
agggcgcgaa aatatatatt tgaacataac ggtggtatga tgcaagctt ttaactaaac 100740
gtgcggccat gttcatgctc cgccggtagc tattgcctt gcatactat ctaacgcgca 100800
atgcctcggg gtcggcgaac ttgcggacat gcccacttac gcgcgtggag tgggaattt 100860
ttttcgctct aaattanacg acgatgtgat tctaaanacaat tacctttcgct ccgggttctc 100920
ttgagttctg cccgaacacc gcctactacc tggccggaa tgttacactt gtggaaatct 100980
toaagcgtat ccaagtcgca agagacgggg ggtagacgtttc cgctgcgtct ataaggtgac 101040
agttatatca cctgctactg tggggtgtc agcttacacc gcaacagggc cccgcggtgt 101100
cgcctgggg tttttcgtgt aacgcggtagc gcccaacactc aatgtcttct tgaatccgct 101160
agttctactc ctctggtgata cggttggcgg ccaccggttag gcgtcccgaga ccatctcatt 101220
ttcgggtgata tttgttgaggt atggagtatt gtctccatct acacgcgga cggcctcaca 101280
caasactccg caagtctggc ctgttctgcc ttcaccaccg acagatttgt gcagccctcc 101340
taagttgagc tagagttttgg ctcagctagc ctatttggtt cccttttacc aacgttataac 101400
cttcctgag gcacatttgc ttttaaccac gatttcgctc gagcggcttcg tggggttga 101460
ttcgaggtt gcgcgcattgc ccagcgcctcc atataccact gacacgcagc ggcttcattt 101520
aacanactg atacgcatct ggcgtttgagc ctttaaaaaac acgcgtgtct cgtttctgagc 101580
atgaacagac tcggcaactg tgtatatttt taaaaaacat tcttcgctga acctttattg 101640
tgcacgcag cgcgttggtg ttttccccta ctcagcttgc gtcgatctct ttgaaaaact 101700
tgcacgctct aatgttaaga cggcaagcttg tttgttttat tatacagtcttg gcgttttattg 101760
taaaagcttg gtcggatata ctattttctc ataaaaaggggg atotaataat gatooagcct 101820
aggggaggcc gccacacgac attttccctgc aggctttggc tctatgtatt atacccctca 101880
tccacactgc cgttatataac tttaagcttcc cccgttatct gataataatc cttttctttac 101940
caagctctag gccccacagcg tttttattat atatccttgc gcgcggctta cggacatatc 102000
ccagcctttc cttaaagggg cggcaggaat cttttgggag ctggcgcacgc gttttwc 102060
ggcattacc cttggcagc agatggttct gcgtatccgc tggcttatga aaccttttaa 102120
agctatcacc aaccatatcc gttggtgcttg cttttggaggg cgtgcgaacc gcggcattat 102180
ccgctctg ttcagttgtac ttgacgtaac gttgcgaca cccggcctct ctgttttac 102240
tatttcgac gctttttgcct cggctgtgct caaaaacat ccaaatatcata ctaatctcc 102300
cttgatcaca ctctgttccct catctgcttc aaatacctag ccaataggct 102360
tgtcaatctcct atataaccaaa atacaattc agcagtgctt gcctctgtcgc 102420
actatgccg tgggcatttc aacggggtac gttgcaatct cccaaaacce cgggcgcttt 102480
agcctgagga caataactat cttatttt gtcggtgatat ttgcttggaa atatcctatc 102540
tattccctgc cagagtcttg tttgccattc cttcggactc ccggccccct ctggtccttt 102600
stattaactt taatgtaga aagcataaaca cccggcctgt gtttttgctc gttgctaatcc 102660
catttcacg ttttgctccttgctgctctt ctttggctaa tattttgtttat 102720
ttgatcctgct aagatgcttg aataaaaaac ggttagaagt atagcgctact atotaacctg 102780
ttggtattagc cggggcaagc cggcactca cagatgcttg tggtttttgtt 102840
attgatttg ccagagagcgg gttgccggtt ctcgacagcag aggatggtt gccatggcag 102900
tcgtgtaacg acctaccaac gggcagattt tacacotggt ggctcagata taccaacct 102960
tcagaccaaat agcaacactg aggtatatttt aanaagctag tttatgtcga aatatttaca 103020
tacagtgtgt antaacsagg acgttggagt tntggagcst tctcccccctctccacaaca 103080
actaggagtct cttcatccttg tttgggaatac cttaccacgc tttaccagga gacgtttttt 103140
tgttaaagt gttctagagta cctgatccttg atcaggagtt ggggagggta ttggggctcc 103200
cctggagg ggcagctttgc cgggttttcac ttccccccta tggcagatca gcctcagagtt 103260
toaagctct tgtaagcgtg cgttaaacct ctcgagcagt atgaattaca cggcagttag 103320
cacccctgc gcttcgcggt ttactccccg gtaacacaag aanaagctgt acttttgggg 103380
gttatattac caatcagggta tcctttcat cgcacagag gcgtcctccg gttgagytgg 103440
ttttatcctg caaattgtaa cctgttaa attggatagc gttatcttttc cagttcagag 103500
ttctagagtgt tggagctggt gcattgctac atcagttttc cagacacac tttttttgta 103560
caaacgcctg tggagcatac tgaanaagag acacagagga tttttttttt ccaagctctat 103620
cacccgctta attcctttta cttgatattct ttcggtgtct ccacatttcg cagcttctgg 103680
gttcatacg tccagagagt gctcatcttta gagctgaagc ttaagctggc atgaacacag 103740
ggcccctgc ggctcccctt gttctcccttg ccggtctcgg cagaccagct tttttttttg 103800
tcgtaacgc ttcctaaacc cccccacagtt cttgagccag agcgttagtc tgcoccccgg 103860
tcgccggggt cttcgagact ttcagccag cttaccacgctggctgtggcc gttacacag 103920
caagggcgtc tttataaat acctctctaa aaaaaagtgg ggtctagact gtttttttttta 103980
ccagcggctc gattgggtgg gttcgggggt gttctttttt cggcagttttt cagcttttggt 104040
atctcgagt ggtctcttcg ggtctggact gaggccagcg agggttgggt gtgtgatggg 104100
gtctcagct gcctttggtg gttctctttg ccagcagctg cttgggagg cttggggag 104160
gttggcagag aatatatgacc ttcgcgtttta cggcttggat ggtctttttt cattctctcg 104220
cagaaaact atcgctgcgg gattggtggt ctttcattat cttggcattc gttctctctttt 104280
catcttttgcc cagcttcgaaaa gcggcagcgg aggacagctg aggcttttggt 104340
agttcttgc gcagcataca acaacggaga agcgtggcag caacagctcg gttttctccga 104400
gttctcctg gggctggcgt ggttacctat gaggctggtc gggctgtcgg 104460
taccgcgcgc taattgctga tccagggctc tttttctgtc taacgctga tttttttttt 104520
caaacgctga gcagacacgc ctgcgtgctc aatattctg tttggcgcgc taatttttttt 104580
taattggac ctagaaaacc ccccccctcac atctcctttc cccctttttt tttttttttt 104640
caacctaaaag gttgggttac aagtgttgatt gggagtggag cagcagccca acaacgggg 104700
aagttgatttg atgatatact gggcgcggta tccagcagag ctgatcctttt gttcgcctct 104760
ctatttagat aacagcatg cgcagacat ctcctcccct cctgctaatg cctcgaatcat 104820
aagttgatg ccaccacaaat aagctgtgctt ggggtgttgg gcagccttta 104880
tccattagag ggtctcagaaa aatactggag taggyttact ggaagcctcc cgcattgctg 104940
cccccaacag ctggcgggga ggtggtgcttc tttttttttt ctcctcagag cggcagccga 105000
gggccagt ctcctcctcc ggggctcccag cgggccccggc aacaaggggg gggggtttttt 105060
tgggggggg gttggagcgc cccgcgcgcgc gcggccagcg aacacatctttt 105120
ttcataaaac ccggcccttt tttatttaca acaacacgtc cgaggcgcgc tggcgctcag 105180
ggagaaaaag gggcagctgct ttcaccccaag cttgaggggt ggtctcccag cccggcctc 105240
cccccaaca cgtcctgtgc cttcagagcag cggcagggag aacaacgtc ccacccacgtc 105300
gccgccgcc aaccaccccg ggcctctgcc accacacccg ggcaccacccg aaccagctgc 105360
acccaaaaag atgaccacccg tgcctccccg tcgcctccccg cccctccctc gcgtctccccg 105420
gcttctacc aaccacccct ccaactgtcc agccacaaag cgtgctctct gtctctctcg 105480
gtgcgcgct ctgccccccc ctgcgttcct gcgcgtgctt cccgctccccgtg ccgtgctgc 105540
aacagaccgc gcctgctccc ctcctccccc ccacagcgtct ccgccgccgc cccacacaggc 105600
gccacactta cctcggcagt cgggggagg ggtccgctgg cctcggctgc ccagccatcc 105660
agccgccgg cgccgccccg ccaagccgctg aggctgctgct aggctgctgct 105720
tccgagcgg gcctggccgca ccaccaccct ccgccgagtc ggcctctgcc ggcctgccg 105780
cggccgcc cccctgctccc tcctctccggg agannaccccg ggccaccgcgg gcaccacccg 105940
cccctgctt ttgctgctcg gcctgctctgc gcctgctctgc ccacctccgc gcctgctctgc 105950
agcccaacac ccagcaggtc tccggccttg tctctggcag ccgctccccc gcggccaccgc 105960
acacgctgctt atccaggggc ccagccgggg acgcggctct tcggccggcc ggcgctgccg 106020
agctgctgtt gcgcctgctgc acgcgggccc ccaccacggc gcgtctgctgc ccgctgcggc 106030
tgtgccaaac ccgctgctgt acgcctccca ccctctgctgc gcgcctgctgc gcgcctgccg 106140
aacacgagcc ggccgagcct cccccgctcc gcctgctgcgt gcctgctgcgt gcctgctgcg 106200
gctgctgctt gcggccgccg cccctgcctgc acgcctgctgc gcgcctgctgc gcgcctgccg 106260
cggccgccg cccctgcctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 106320
aacacgagcc cccctgcctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 106440
acacagctgt gcgcctgctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 106500
ccacagctgt gcgcctgctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 106560
ctctctctcc cccccggccc cccctgccgct gcgcctgctgc gcgcctgctgc gcgcctgccg 106620
ccacagctgt gcgcctgctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 106680
aacacgagcc cccctgcctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 106740
aacacgagcc cccctgcctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 106800
acacagctgt gcgcctgctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 106860
acacagctgt gcgcctgctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 106920
acacagctgt gcgcctgctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 106980
acacagctgt gcgcctgctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 107040
acacagctgt gcgcctgctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 107100
acacagctgt gcgcctgctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 107160
acacagctgt gcgcctgctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 107220
acacagctgt gcgcctgctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 107280
acacagctgt gcgcctgctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 107340
acacagctgt gcgcctgctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 107400
acacagctgt gcgcctgctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 107460
acacagctgt gcgcctgctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 107520
acacagctgt gcgcctgctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 107580
acacagctgt gcgcctgctgc acgcctgctgc gcgcctgctgc gcgcctgccg gcgcctgccg 107640
acccgccagt gctctctctg gttcagccgg agcgtccaaa ccgcacccctg 107700
tggtggggc ggctgacaga tcctggggaa ggcttgccgt cgggcatcat ggcgcggggc 107760
gacccggcggg aatattacct ggttctggtg ccggcggagg gaaaatgaatt cttgctctgg 107820
cggcgctgtt ccccgccacag acgtttggtc tttaaatccgc tggacatggg acgcgctgtg 107880
gacgatattc cgggttgagatt attttggttg cgtcaccacc ctcacaattta aagcgtgatca 107940
ttcacaggtt cggggaaggg ggctgctgcct ggtcagccgc tggacactgt tttttctaccct 108000
ccacccaggc cggcggcggg ttcatccgct ttcctcctcg aagacgtacg ccacgagcagag 108060
gagaggagc aagagccaan acactccaga ctctttggct ttctttctcc gaggcgtgctca 108120
tcccaacctg ggtctgctcgg tgggagctct cccgcggcgg gcaaaaaacgc tctaggttttg 108180
ccccgccgc aaccgcctac gcggcggagt ttgcttccggc ggctttcgggtg tttttcgggg 108240
cgggtataat cggcggcgtgc gctttggcgg ctttggcgag gcgcggttcg 108300
gagagcgagc tgtcatcagt cccacccggg cggcgagcag ccagccggcgg 108360
cccgtaaa cttcactactt ccagatttct ttcctgccct ttccttcctcg agggcggcggtg 108420
tggttttttt ggagaaaaacct tcctggcccct cggcagtcag ctcgacgacgct tcctctctcg 108480
cccgggtctt tccggagact gacagaggggg tgggtaagttt gggagaaccc 108540
cgggtggtag ttcctccgtc ggtgctgcg ggtttagagc gctgtcctgc gggttgtactg 108600
tcccgctgggg cgtctccacag cggagacgcc gggtataaac gcggaggaga tcgggaggaac 108660
gcgaggggct tgtctccggc cggcgcgggag gcgtctaggt gcgtcttgggg 108720
agtcgtgtgg tgcggcagcct agtcgctgtcg ccctggtcttc gtcgcggcggc 108780
cggcgcggcg cagaaagtggg gtgcaggggc tgcaggcgg cagccagatt 108840
acgcgtgctt cgcgcggcgt ttcagggctc ttccttgtaat gtttcttgctg ccacatttcc 108900
gtctctctcg tgttggagtc cccgataacag ggggaattgg aaagcgtcttc gtttctctctc 108960
ccacccgatat cggcggcggcg cccggcggcgc gcgtccacag gcggcgtgtaa cttcnnntg 109020
tccgagcct cccgcaaggg ggatttggga cccagctgcc tttaaaaagt ttgcttccggcc 109080
ggtgctgtgg ggggtttagag gcgtctgctg ccctggtcttc gtcgcggcggc 109140
ggttatattt gagcgtcagc gcgcttccca aagcgtttag gcgcctttc ggcggctgtc 109200
ttcgcttgggg tgtggtggagt ccacagtaca tttaaaaagt ttgcttccggcc 109260
cattattccc cccccggtggt tccgctgtaa aaccttccct agtcgatcag gctgtgtaa 109320
ttcgctgtaa ctcggggtgg gaaagcgccttt gacactatag tgcaaatagg gcgtggctgg 109380
ttcgctgtaa ttcgctgtaa ctcggggtgg gaaagcgccttt gacactatag tgcaaatagg gcgtggctgg 109440
ttcgctgtaa ttcgctgtaa ctcggggtgg gaaagcgccttt gacactatag tgcaaatagg gcgtggctgg 109500
ttcgctgtaa ttcgctgtaa ctcggggtgg gaaagcgccttt gacactatag tgcaaatagg gcgtggctgg 109560
ttcgctgtaa ttcgctgtaa ctcggggtgg gaaagcgccttt gacactatag tgcaaatagg gcgtggctgg 109620
ttcgctgtaa ttcgctgtaa ctcggggtgg gaaagcgccttt gacactatag tgcaaatagg gcgtggctgg 109680
ttcgctgtaa ttcgctgtaa ctcggggtgg gaaagcgccttt gacactatag tgcaaatagg gcgtggctgg 109740
ttcgctgtaa ttcgctgtaa ctcggggtgg gaaagcgccttt gacactatag tgcaaatagg gcgtggctgg 109800
ttcgctgtaa ttcgctgtaa ctcggggtgg gaaagcgccttt gacactatag tgcaaatagg gcgtggctgg 109860
ttcgctgtaa ttcgctgtaa ctcggggtgg gaaagcgccttt gacactatag tgcaaatagg gcgtggctgg 109920
ttcgctgtaa ttcgctgtaa ctcggggtgg gaaagcgccttt gacactatag tgcaaatagg gcgtggctgg 109980
ttcgctgtaa ttcgctgtaa ctcggggtgg gaaagcgccttt gacactatag tgcaaatagg gcgtggctgg 110040
ggtyaaaag gggggggttt aasatgggcct tcogctatgtc tcggtgttac gccaatctcgc 110100
tacacttcttt cgggttggtc tcgactccgc cgttttttcgc ttctatgggt ttctcatgtt 110160
ttgccagtgtc ccacccacgct ttcggcacttt ttttcttatat atatatatat atatatatat 110220
atatatacag aacagacaggt gtttcccttgtc tcgctgtatc tgcggtgcag tcggtttttc 110280
atgggtggtgc ggcggggtttt tcacacacactatatccttcc aacatggagcc gcaggtttttc 110340	
	
taaaatcgtat ttcgcgtatc aaaaacaac ccacagggggcc ccoccccttttt ttttgcgttttc 110400
taaagccaa cccatcgaac gccgccctcgcc cccatctggcc cccatctgtt cacccacgaa 110460
tagcttatt cagatgtata cccgttgctgg ggatgttcttt ggtttgtcgag gttttctcgcg 110520
ttcattaaag gcacgtcgcgt agtgggttttt aagggaaaaagg gtttacgcag cccacacagc 110580
atggttttcc ccctcagcgc ccctcgggtcgc gactgctgcgc gttgtatccag cgggtgtgtg 110640

gttgttttcc cgcagcggagc gatgtctcgcc ggtgtcttttc cttttttttt gggtggtttttttt 110700
acgtgctgag gcgggagc ttccttttttt ccacagccgtg tacaccccggt tcgggtgtggt 110760
gttgacacag ttcgcgtggtttt ttttttttttt gtttttttttt ctttttttttt ttctggtgttttt 110820
gacccgctat gtccgctgcgc ctcttttttttt ttttttttttt gtttttttttt ttttttttttt 110880
tcttcaccct gcctgtgctgc ccgttttttttt ttttttttttt ttttttttttt ttttttttttt 110940
tcctgctct ctttcttttt ctttcttttt ctttcttttt ctttcttttt ctttcttttt ctttcttttt 110940
gaggggagc atgggcttttt tctggttggtttttttttt gtttttttttttt ttcttctttttttttt 111000
acggggagc ggtgtggtgtgtg cgtttccttttt tcgttttttttt tttttttttttttttttttt 111060
gggggggttt ttctttccttttt tt
gtcatgcac ataacaagsc aatattat agctaataac agaatattt acgagatatat 112440
attatatgt gatatttccc aatctgacac gaaatttcat atcgcttttc atttttgta 112500
toatactaat aaccctttc acgcaagcagctgcggattgta tggctcttgat agtttctaaa 112560
tttggttgg ctgcggggtt tacaccgcct tcaccagctga ggcogcagcc ctccacccctc 112620
taggtctgtt ctgcgggcat agaattac atgtaaagc cagcggagct gttacaaggt 112680
gttaaaaat ccaccttta atatatttcat acatcogcn atctagtta atctattaat ctaatcata 112740
gtcatgcac ataacaagsc aatattat agctaataac agaatattt acgagatatat 112800
taaagtttag ttaaatattt atatataaaa acatgttgac atatatataa atctataaggaa 112860
catacaaac cattatttga aagtatttac acacccccc cttttctcta ttactacctc 112920
cotcattaa atcggataca tttaaaggt gtctgttgat atatatgtag cagttcttgg 112980
acacacgggt ttgtttcttc taacactatc aaccattcg ggcgtattaa atcataaatga 113040
acagcttttg caacacagac accttttggtc gacagnacaac gtcttcgcgg gacactcaca 113100
catacgcgtc acatattatt ccaactattg gtttttataac acagtttttt ccagttgasa 113160
tgtcggccg cctagaact cggagagcct catctactagt atatgcctgg atataacagt 113220
ttttatata atgttatggt gcacagaaaa cgcgttcggct gaaagtcgctct 113280
cagaagcag cgtggaact ataacaaggg gatttgataataaaaacagttataccacag 113340
ggcgaagaag tttctctgggt gctgtatagg acataaaaac atgtgcaact ggtgcttatta 113400
acaggggtca acctactagga aagcgcagcc aggaacgcgt ttgaaaaagag ctcaccacao 113460
cacccgtctc ctcactaatc gacggtttga ctgatacaac aacgtcagtg cttataatac 113520
acagttacc aacagatatt tacgtctatc tagcggcaca gctcaactcct cccataatcg 113580
acatttattg aacgccga cttattattc gccttataaa gtacatttcat aatsaagata 113640
ttattcacc tgaataaaaa atcgaatata cacttaaaat ccaacagggt attgattcttg 113700
tgggagata ctgacagccgc tggcccctcg taggtatttt stuatttgct 113760
ggctgaaac aacgcaccaac actctctgttct atgccatcgt tagagatcota tattgcacttg 113820
cgtggcttat atggtctgcgc gggattgtat atttttagat gctagcagaa cagactcctg 113880
tatttagaa agacgatttta taggcataat ggctcatttg gctcataatg acactttcata 113940
ttagcacaat tgaacactatt ccaccaatat ttcggctttat atttttcat ctaatgcctg 114000
gcataactt tggcttggctt gccactcttc atcagaaacc cgcgtccagcc cccttgycga 114060
caaattcata ttagcttgcagatatggtg atctgattgct tgtttttagtg 114120
acogcactta ctgacacata gcagaggtttgt tgccataacat ctcgttttctc ccaactttct 114180
cogcattct ccacggcata taggaacttg gctatattaa cacatattgg gcagaacgccga 114240
aatatttcat aatatttttt ctaacaagagt acctgttgtat gctatgtgat 114300
gaatattttt aatatggttat aatcataaat aaccggattg atgacacaacc gcagaactgc 114360
goccgatctt ccccgcatac gacaagagca tcctttttct caccagttagc tagcgtgtcga 114420
aagcttcct ccctcgcccg cacagacgctg ctcctcctgctg tagtggtgttag tattgcttctg 114480
cacactttat ctcgagtagtt cttataacaa ttggctattg ccgccgttcc tattacacat 114540
cagtgcaac acctttttgt ctcacggccg cgccttctc gctctgagc ataaccagc 114600
cctacgttct tcctttttcc tagcnaaatg gatattata gacagatattt cagacagttt 114660
gtcttattga gacagacata cccctctgag cctcacact ctaatggagct 114720
tacgcgctca cgtgtaagct tggctttcgc tgcgttaag ttaaatgata cagccggatg 114780
cocogeata gacagagcgc ttttatctcg tytagctaca aacattcttg gcattatggt 114040
aacctcaagc atccgtactac aaccagagcc cgctgtgggt taagttgnta aattacaacaa 114900
cogggatnasc ataggtgctg tgytgatgtct atcttttgtgc gtttagacca tagcagatcc 114960
accagatgt tcacttttgtg tgaatattgt tatccagagc gctcagatca caaacacaca 115020
gggttttact accatcttac gcctctacag aatgatattc ctacacagac cctttttccaa 115080
caaagctgtgt tgcggtatt accgccgaca ccnaagggct ccggtaccct cctgtttccaa 115140
catactgggt atacgttggtc cggtattacta gttaggatt aacccattttg aacagggggc 115200
gttgttacgc cagaactaca gtcctggttt aagaggggga tgaataatca cgtatatcca 115260
aacgatatgt ccagtttacac cgaanagttc accttattgt ctcacagama cttactttta 115320
attcatcta ttagagctgc tgcctattgat catcagcaca ctttagattta tttttttata 115380
acgtatttac gcccggatgatt tataaaccat caacatttac gcaccacaca aaaaacagag 115440
agggcctacac aaaaactagc accacatgag cagtggttag tggagggct gcctgatccaa 115500
tccagagcgt aacctgaaag aaccccccaca cctggggtgc cccggttatttg tggattttatg 115560
ataactttat ccggtatttt attatataa acaagatagc cttttttataa gctttttttac 115620
tacggtgtg aagtttaaac gcagattcct aacctattgct accagccccaa 115680
acccctggcg gggtttgttt atgaggttcc aagcggcagc cctggggtat cggagcagat 115740
acagtattggc agaaccgggt gctaggtgg ggtttaaatt gcacattttac gggagttcgc 115800
ctgtataag cggagttcata atacgactgt ggtggttattt tgcagttttct atggatatatt 115860
cacccgagcgt tttacgatat cgaacgagcc gttctttttg agatagtattt aacgacagag 115920
tacaacggct cggagcagct ccagtcacag gcctgatcagc ccagctgtttt 115980
deactgagg tgtctttgcct taaactaggg agatggcttg cggagataact ccacccctta 116040
cctcctctat ataggtttgc gtagatattc ttgagagaca ccacccgaca 116100
ccacggttgc tataacctga gccttgattt cgtgctggtg gcacagtttt cggagctattt 116160
aacaaagtgc gcacagagct actttttgtcc gcctgggtg ggcaccctga caccagttct tgcctcaacc 116220
aagacgagc agacgacata aacttgtataa ttggctaaaag cagcagaaact gtcgagtctc 116280
taaagggct caatcagcc aaccacccag cccgagcttc atcgggtttg cgctggagaga 116340
aacaccccag tttactttcc cggcagagct cagcagctag tttttttttg aacgactgag 116400
gggtttgac cttttttctt ctaacctgtc tggagggct gacagacgac cctgccacag 116460
taatattgc ataggtgctgg ctaactgcct cggagacgac ggaagggctt tggagggag 116520
aatactaacg gacagtcctg cggagctaat ctaggcttct tttcaggtta agaaggagc 116580
ggaccacggct tggaggtttc tataacagag ccacgttttt cgtgaaactcg aatcagaacc 116640
cccccgatg cagcctggtg tttgtgatg actcggac gaaacaactt cttgggtttt 116700
tcatacgtg gaagacgocg gcctgacctg tgaaccagtt aaccagcctc 116760
ctgagagccc gatgagaaaa caccacaccc taccgagcagc caccacaggtt cccgggtt 116820
ggtttttatc ctaatggttt actacgacg gctacgtattt atagttttttg atacagttttag 116880
ctggtccatt ccttttgtgt cttaacggtc tgaaccgcct tttggattttg tggagaagttc 116940
gttggtttac acctattgac ccacagttttc aaccacagtc tttttttttttt ctggtttttt 117000
tactccacac gcaccaccatt acctactctca tgaaccgcct tggagttact ttaaactggtc 117060
aatattgcc cagagttttg caccagcact ctgatcactg ccagactaactcc 117120
caccgccatc tgtctgggaaa tatttcatat ggacgctgct ttggtctaa tattacacga 117180
ggggcccacc aaccttaaag tgttagatac accagagag cttgccggat tatacttttt 117240
tggcgttgt ttaaacgagc atcgtttagc cctaacgata cttgccgtta 117300
tatattttgta aaccaaatgg aagactgctgg atttcgccca acggccggct gaccaacaggc 117360
gatctaaact ccacaagggata ccaacccgagct acaacaacc ttaacagata 117420
tgggccagtgc cccagaggggt ttgacaggtg agttctttta tggctgatgata tatttttatt 117480
tcttgacgctt aaccaaatgga ggtgtaaagct ctataggytga gcaagctcccc ctatataacc 117540
aagcctgatc taacgctggccc ttccagttgga ctatttccag gaactggctatt ctacccgata 117600
ggaagaggc ttggytaatt ccgattgaggg gatctagggcc gatcttagtt aacaggttga 117660
tatagataag aacccgcttt caccgacccg gggacagccc ggcctgtgta attmattaa 117720
aacacactac gttttatttt cgggtagttt ttaaaatttt ttttttttttt ttaaaatggg 117780
gatgggagtc cagagcgctc cttctttttt tggcttaaccc aagcctgctga 117840
cgctttccac aagcttttac cattttcccc ggggggggtc aatacttttttg cggggatcga 117900
atattttctg gcggcgtcata ttaacagttgg tctgctaggg gcgcttttcc aagcctgatc 117960
tgctatatta atacgcctgg cctctcagct ctattttgag tggctgttatgc gcgtatattt 118020
tcttgatcatt aacccaaaac cagctctgtg gatctgacgga aacggaggtg ggtgtaattc 118080
atctctctcg aagctcagag cttcctttgc gatccgtcttc tttcccttcc cccacaaacct 118140
cgagcctgcct tattcttttttg ggtgcgctgt ataatctctgg taattctttt cccacaaacct 118200
gagatcgcc cgcttcggag acccttttgc ccttttcatg gacgctgtgt gctggggttgt 118260
atctcgttgt ctcctttttt tggctgataa ttaacagcttt gccgcttttcc cccacaaacct 118320
ggaggtgcat tttccttttttg gccgcttttcc cccacaaacct 118380
ccagctgact tttccttttttg gccgcttttcc cccacaaacct 118440
aagacactgc gcacgagcctt ttgatatttt ttaaaagaca taacaccttt tgggggcccgg 118500
tatagatactg cgggctccgct cttcttttttt cagctctttt cctccttttt 118560
caacagcctg aagcccttggc cttctttttt cagctctttt cctccttttt 118620
gatgacgctgc tggcagtttcttt tggggggggtg ggtgtgtcag gcgtatcctct gcgtgatattt 118680
atctctctcg cttctttttt tggctgataa ttaacagcttt gccgcttttcc cccacaaacct 118740
taatactgc tttccttttttg gcgagctttt cccacaaacct 118800
tgggcttgct gcttttttttttt tggctgataa ttaacagctaag gccgcttttcc cccacaaacct 118860
caagcctgcct tttccttttttg gccgcttttcc cccacaaacct 118920
gggtggttg gctgctttttttttttt cccacaaacct 118980
tgatctgctg cttctttttttt tggctgataa ttaacagcttt gccgcttttcc cccacaaacct 119040
aagctctgag cttaccccgct tattttttttttt cgggcttttcc cccacaaacct 119100
tgctgactgc aagcccttggc cttctttttttt cagctctttt cctccttttt 119160
aagcccttggc cttctttttttt cagctctttt cctccttttt 119220
tgctgactgc aagcccttggc cttctttttttt cagctctttt cctccttttt 119280
caagcctgactg cttctttttttttttt cccacaaacct 119340
tcctttttttt ccaagctgcct tattttttttttt cgggcttttcc cccacaaacct 119400
ccagcctgactg cttctttttttttttt cccacaaacct 119460
tgctgactgc aagcccttggc cttctttttttt cagctctttt cctccttttt 119520
cgtgctttt ttttttataa cgtcaaatc gtatatstts cattttaaan cgcacctgct ccatcgagaa 119580
tatatattc ctgctgaacc ccccgcacac ccccatatca gccgcacact gcggggaccc 119640
gcgagaacac ggatatacct ctctttttct atatatatat atatatataa atatatatat 119700
agaaaaaggg tcggagtctt gctgagacc atgcagaatt atgaaaccag atcaggtgga 119760
aaaacaggg aagcgagatc agatacagag agtctttcag atggcgttac cccagaaca 119820
tgacgcagcc catttttatt ccccccttcc tcccccctcc caaccccaacc ccccccacc 119880
cgggggggg ccagctgggtt cagcgcctgc gatgtggaat tttctgcttt gtttttgaga 119940
aatatatttt tttttttttt ccaagcgatt agaagattt ggtattaaa ctcgcggggt 120000
taccgcggcc ccctctgcac gcgggggtta acgcgcccccc cccacatggg ggggtacggc 120060
gccccctcccc ccagcgaggg gtcacgcgc ccctccccct ccggcgggta ccggcggggcc 120120
tcccccagc ccgggggtta gctgaccacc ccacccggtt ggttgttactg 120180
cgggtctgtt tcggcctgac atataccttg gcgggggggg tgggtgttac gcgtggttact 120240
tcgccgacg taccacgagc gagaagggcc ccaacacacgc cctgagcagt ccctgtgatta 120300
actacggtcc cgtggggtgg aaaaacaccc cgatgtttttc actgtgacca 120360
ccccctct actttatgta tattttatca cgtcgatcga cccactagtt ttggtgtta 120420
ttaaccaac ctttgaaacc atttcacatgt tctgtagctc ttcttttttt 120480
atggtttcag aacacgcgg gcgcagcgcg ccacacaggg ttctctttaa aacagtcctct 120540
attgctctcc aggccccccgc cccacatgctat ccacatgctcct atcacttcac 120600
atatatctac cgcgtgacag ccgggggaggc aactgctgtt ccggggggg gcacccacgc 120660
cttttaattg tgtggaccct cctctccccca cccgagttca acctcttttg gaagcttcag 120720
agygtttggg aacagctttg cctcctctaat tcaagcagct ggtctttgctt oggcggcggc 120780
ggccgctaac ccacccacgcc ccgggggttc gcctgacttc tggaggttct tggacctgtt 120840
ggcgcgggg ggccgggggg gggagcttag ggacaccctcg gtaagccctg 120900
ccttatcttc ctctccggtgc acgggggttaa ttggctgtac gcgtgagcgc 120960
ccctctctcc ctcctccgtt ccaagacacc ccggggggcc cgggtctctgc gaaagatgcc 121020
acacacgcag cactcgggtg aggacgttca ggtttgatgt ggcgtttggtg ttaaccctct 121080
ggccgcgggcc ccacccacgc ggagagcccc ccagcggcagc 121140
tgtctctcttg gcgacagctt ctctcgaggt ggtttcttgc aggctcccaaaa aaccagcagc 121200
gaacagttgg ggaccgaggg ccgtgggttc cccagacggtt cctcctctctt 121260
atccccccct tccctctcct gcggcggcag cccaggaag aacacgcgct 121320
tatacagagc cggagagactt ccgcgtgctt ccgcgtgcttt 121380
ccggccacgc cgtgaggggt gcggagtgcg gcgcagcgcg gcgtgggtgct 121440
tcgaggggg ggacgagttac ttctccagaa aactaaaagg ccgcgctcgg gaaagagcgc 121500
gaccagagc actggtttta ctccgggggg cttccggggtt ggtgccctctg 121560
acccgcgggg gttgacagtt ctcagcagact cttccgggg ggcttgcggc gccttcgggct 121620
aaggggagc cgctcctttg gcggacagac tccacagcgg caagctggtc ctaagggggg 121680
tataccccag cctcagctt gggtgttttt ggccgggtaaat cgcaggtttt ttgctctttt 121740
ccgggggg gcctctccag cgcagcagagtt tggagccgac ggcgctgctg 121800
aaagagcttt gatgaggttt tgcgtttcttc ctcctctctg tctggtttgc gcgtgaccga 121860
-continued

ggatgaagac gatgaacccc ggcccttccc ggtyggaagt gaaatcaag gcacaggtc 121920
gggacagaa ccoccccctt cccocctaa tccgagtat cggactctaa atgatgtgg 121930
gtgcagcaaa caaatatc acacggtgata cggactctac acgggtcagc atccgagat 122040
tgtaacgc aacagtcttg ggggggacc gggggccag agacagaan tctttctct 122100
gcgcgatcgg aagacaccca gttactccc gggtggccgc cggcatgtga tcgcaagcgg 122160
gaacccctgg cccgactcgc cccccccttc atcccaaacg gttggttttc ggcctgggct 122220
ggcgacgac gggggtcact gggggagata gcgtgtgaga gcgggcccgg ctgttaacga 122280
ggctcaacc gacaccgtgc ccggctttcg gcggagaagt ggagatccgg ctgacaagtg 122340
cgctcgtgtg attacacctga tctctctgcc agacacagac gttatactgc gcggctaa 122400
coccaagctg acggctgcac accgggctct ggggctaatc tcacaaagtc gctgtgacc 122460
gggacgcgag ggtacgctgc ttaacgctttggc accgcgagc ccggcctatat gcggacatgg 122520
gacgtgtgcc acgggggagc cccctgtgggc tcctccccac gcggccgcgg ccggtgttgc 122580
gcggctagca cgaaaccgag ccggccaccc cttactctcc gacagcttcc gcaagactct 122640
tgcggagag gcataacccc gggccagcgg ctggctgccc gcggccggcg gttgggctgg 122700
tacccctgtcc caacaccacc cggccgaccc gccggcgagc ctgaccgcgt gcggccggc 122760
agatcctcttc tctgtgtctg ccagctgttc ctgtttaaag actccgagca agocacagt 122820
coccaacggt gcagcgcagc gctctctgca cagattagg gcacacaccg tcgcgtagcg 122880
cggtcttgcag gacgagcttg ccgatttccc gcacagaagcc gggggacaag acggctgaca 122940
cacccctcg gcggccttagg cggcttccgc cggcctataa acgatgctaac ttcagggcgg 123000
gccgacacc gcggggatttc gcggatctcc cgggggcccc tggctataac cggccggttc 123060
ggcgacgctgc ccaggggacg agcttacaaa gccggcttttc gcgggctctg gcagacaccg 123120
attggttcca gaggccggcg ccggccggtg cgtggttctat caagccgggt tgtggggct 123180
cggtggttcg cggccggtcc gcggggacgg cggctggtcg ccaccaagccg gctcaagggc 123240
gctgtaggag gctgtgtgctgc gcggccagaag cccggggctc gatccttttc gcggccgga 123300
gtatcctca gagctttggg ccggggcggca cacggagaag cccgggctcc gacccggccg 123360
gacaccgtgc gagttacgac gcggccggtc cggggggggc gctctgtgg gcgtggaagc 123420
cagcagcttt ggcgtcggcg tggccgaccc tcctgtggtcg ggggggacat gcggccgccc 123480
gccggagtgc ccgtcttttg gccggccggc cgttttatta cttgctgacc gcggccgaccg 123540
cttggcggg gcggctgagc atctagctgc gcgggttgac ccgcccggcc ggcggtgtct 123600
ggtgtgggcgc gcggggccgc gcggaggtgc gcggggagtt gcggccgcttg gcgtccgaga 123660
tcagcgtgat gcgggcttc ggggggggcc gcggggacag gcccattcgc gcggccgct 123720
tcgccgcgtcg cgacagccgc gggggcggccc gcggccggcg ggcggtggct gcggccgca 123780
agccagtttt gcggttgctg cgcggtctgg cggccggtctg cggctgaccc cttttgggcc 123840
ctttctttgg gcggggagct cggccggtcg cggggtggcc gcgggggctc gcgggggctt 123900
ggcggtggc gcggggcggc gcggggagt ggcgggccc gggggctcga cggccggtttgct 123960
agggacttg gcgggctatg cggccgggtc gggggctcgg cgcctgttgg tggccgggtt 124020
ggcgaccat gcggacgcgc gcggccaccc gttgggcttg gcgtggtggt gcggccgaccg 124080
ctgctctgcc gcggggacgg gcggggcccgc gcgggggagc gcggggccag cgctctgacc 124140
cgggctgctg gctgttttgcgc gcggccggtt gcggccgagc gcggccgatc gcggccgact 124200
cgtgctttcg cgcgtctgct gcggcttttg gcggccgact gcggccggtt gcggccgact 124260
What is claimed is:

1. An isolated polynucleotide comprising the nucleotide sequence of nucleotides 115,808 to 117,679 of SEQ ID NO:76, with the proviso that nucleotide 116,255 is an adenine.

2. The polynucleotide of claim 1 wherein the polynucleotide is isolated from a varicella zoster virus.

3. An isolated polynucleotide consisting essentially of the nucleotide sequence of nucleotides 115,808 to 117,679 of SEQ ID NO:76, with the proviso that nucleotide 116,255 is an adenine.

* * * * *
UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 6,528,066 B1
DATED : March 4, 2003
INVENTOR(S) : Grose et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 8,
Line 4, please delete "other wise" and insert -- otherwise --.

Column 19,
Line 35, please delete "Avall" and insert -- AvalI --.

Column 22,
Line 50, please delete "subdloning" and insert -- subcloning --.

Column 23,
Line 21, please delete "S4000" and insert -- S-4000 --.

Column 34,
Line 6, please delete "striing" and insert -- striking --.

Column 36,
Line 54, please delete "linases" and insert -- kinases --.

Signed and Sealed this

Twenty-second Day of July, 2003

[Signature]

JAMES E. ROGAN
Director of the United States Patent and Trademark Office