

* cited by examiner

Primary Examiner—Bruce R. Campbell
Assistant Examiner—Roy Teller
(74) Attorney, Agent or Firm—Fulbright & Jaworski

ABSTRACT

The present invention relates to the identification of a gene, now designated negevin (ngvn), that is involved in the genetic disease Bardet-Biedl Syndrome (BBS), which is characterized by such diverse symptoms as obesity, diabetes, hypertension, mental retardation, renal cancer and other abnormalities, retinopathy and hypogonadism. The human NGVN protein disclosed herein is 731 amino acids in length and is coded for by a gene spanning 17 exons. Homologs have been identified in mouse, rat, zebrafish. Methods of use for the gene, for example in diagnosis and therapy of BBS and in drug screening, also are described.

12 Claims, No Drawings
BARDET-BIEDEI SUSCEPTIBILITY GENE AND USES THEREOF

The government may own rights in the present invention pursuant to NIH grant number R01-EY-11298.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the fields of genetics and molecular biology. More particular the invention relates to the identification of a gene on human chromosome 16 that is involved in Bardet-Biedl Syndrome (BBS), designated here as neognin (ngvn). Defects in this gene are associated with a variety of clinical symptoms including diabetes, high blood pressure, renal cancer and other defects, retinal degeneration, congenital heart defects, limb deformity and obesity.

2. Description of Related Art

Bardet-Biedl Syndrome (BBS) is a rare, autosomal recessive disorder characterized by mental retardation, obesity, pigmentary retinopathy, post-axial polydactyly and hypogonadism. A high frequency of renal abnormalities is also associated with this disorder. The mental retardation is often mild. Obesity begins early in infancy, and complications of obesity including diabetes mellitus and hypertension occur later in life. The associated retinal degeneration is usually severe and most patients become blind prior to 20 years of age. A recent report also provides evidence of an increased incidence of renal cell carcinoma (kidney cancer) as well as kidney malformations in BBS subjects.

The incidence of BBS varies between populations. A relatively high incidence of BBS is found in the mixed Arab populations of Kuwait and the Bedouin tribes throughout the Middle East, most likely due to the high rate of consanguinity in these populations. A relatively high frequency of BBS has also been reported in Newfound land.

BBS has been shown to display a remarkable degree of non-allelic genetic heterogeneity. The disorder was first shown to be genetically heterogenous based on mapping studies performed in large inbred Bedouin kindreds from Israel. The large number of traditional consanguinous marriages within these groups make it possible to identify inbred kindreds with multiple affected individuals that are large enough for independent linkage analysis.

The first BBS locus (now referred to as BBS2) was mapped to chromosome 16 using a large inbred Bedouin kindred. Genetic heterogeneity was demonstrated when a second Bedouin BBS kindred did not map to the chromosome 16 locus. Subsequent studies in the second Bedouin kindred revealed linkage to chromosome 3 (BBS3). A third Bedouin kindred showed linkage to chromosome 15 (BBS4). To date, studies have demonstrated the existence of six BBS loci, and a seventh BBS locus has been postulated based on the fact that a few small BBS pedigrees do not appear to map to any of the known loci. A locus on chromosome 11 was assigned the designation BBS1 based on the fact that it appears to be the most common cause of BBS in some populations.

Recently, the first BBS gene (MKKS) was identified independently by two groups that hypothesized that mutations in the gene causing McKusick-Kaufman syndrome (MKS) could also cause BBS. MKS is an autosomal recessive disorder characterized by post-axial polydactyly, as well as genital and cardiac anomalies. Mutations in the MKKS gene, a putative chaperonin gene, appear to account for approximately 10% of BBS cases. The mechanism by which mutations in the MKKS gene cause BBS has not been determined.

Interest in the identification of genes causing BBS stem from the pleiotropic nature of the disorder, and the fact that identification of BBS genes may provide important insight into biochemical and developmental pathways involved in common complex disorders including obesity and diabetes mellitus.

SUMMARY OF THE INVENTION

Thus, in one aspect of the invention, there is provided an isolated and purified nucleic acid encoding a human neognin (NGVN) polypeptide. The amino acid sequence of SEQ ID NO:2 is exemplary, as are the nucleic acid sequences of SEQ ID NO:1 or SEQ ID NO:3. In addition, variants of the sequence included one or more of the changes selected from the group consisting of T→G, C→T, T→G, A→G, and 1206insA. The nucleic acid may further comprise a promoter, for example, an inducible promoter, a constitutive promoter, or a tissue specific promoter. It may also comprise a selectable marker, a poly-adenylation signal and/or an origin of replication.

The nucleic acid may be part of a replicable vector, for example a viral vector such as a retroviral vector, an adenoviral vector, an adeno-associated viral vector, a herpes viral vector, a polyoma viral vector, a vaccinia viral vector or a lentiviral vector. The viral vector may be located within a viral particle. The vector also may be a non-viral vector.

In another embodiment, there is provided an oligonucleotide of at least 10 to about 50 bases comprising at least 10 consecutive bases of SEQ ID NO:1 or SEQ ID NO:3, or the complement thereof. The oligonucleotide may be 10, 15, 20, 25, 30, 35, 40, 45 or 50 bases in length, and may have 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 consecutive bases of SEQ ID NO:1 or NO:3. The oligonucleotide may encode or be complementary to a splice junction or regulatory region of SEQ ID NO:3. The oligonucleotide may encode or be complementary to bases 224, 814, 823, 387, 1413, 940 or 1206 of SEQ ID NO:1. Also provided is human NGVN promoter isolated from SEQ ID NO:3.

In still another embodiment, there is provided an isolated and purified human NGVN polypeptide, for example, comprising the sequence of SEQ ID NO:2. The polypeptide may also have one or more of the changes selected from the group consisting of Val→Gly, Arg→Glu, Gln→Stop, Arg→Thr, and Leu→Val. The polypeptide may comprise less than the entire NGVN sequence, for example, only residues 1–313 or 1–401 of SEQ ID NO:2. The NGVN polypeptide also may be fused to a non-NGVN polypeptide.

In yet another embodiment, there is provided a method of expressing a NGVN polypeptide comprising transforming a host cell with an expression construct encoding a NGVN polypeptide and cultivating said host cell under conditions supporting expression of said NGVN polypeptide. The host cell may be a prokaryotic or a eukaryotic cell. The method may further comprise purifying said NGVN polypeptide.

The expression construct may comprise an inducible promoter, and the method may further comprise providing to said host cell and inducer of said promoter.
In still yet another embodiment, there is provided a peptide of 8 to 50 residues comprising at least 5 consecutive residues of SEQ ID NO:2. The peptide may be 10, 15, 20, 25, 30, 35, 40, 45 or 50 residues in length, and may comprise 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 consecutive residues of SEQ ID NO:2. The peptide may be bound to a carrier molecule, for example, by a linker. Also provided are a monoclonal antibody and a polyclonal antiserum that binds immunologically to a polypeptide comprising the sequence of SEQ ID NO:2. The antibodies may be bound to a support.

In still further embodiments, there are provided a method of diagnosing Bardet-Biedl Syndrome (BBS), a method of diagnosing an individual genetically predisposed to obesity, diabetes mellitus, retinopathy, hypertension, kidney cancer (renal carcinoma) and other renal abnormalities, congenital heart disease or limb defects comprising identifying a mutation in a NGVn polypeptide or nucleic acid. The method may comprise identifying a mutation in a NGVn polypeptide, for example, by using immunological analysis with a NGVn-binding monoclonal antibody or polyclonal antiserum (e.g., ELISA, RIA, or Western blot). The method may identify a mutation selected from the group consisting of Val27→Gly, Arg22→Stop, Arg25→Stop, and Ile123→Val.

Alternatively, the method may comprise identifying a mutation in a NGVn nucleic acid, either mRNA, genomic DNA or cDNA. The method may comprise amplification of said nucleic acid, hybridization of said nucleic acid to a labeled nucleic acid probe, and/or sequencing of a NGVn nucleic acid. Again, the method may identify a mutation selected from the group consisting of T25→G, C814→T, C925→T, A987→G, A1113→C, A949del and 1206insA.

In still other embodiments, there are provided: a method of screening for a modifier of NGVn expression comprising (a) providing a cell expressing a NGVn polypeptide; (b) contacting said cell with a candidate modifier; (c) measuring NGVn expression; and (d) comparing said NGVn expression in the presence of said candidate modifier with the expression of NGVn in the absence of said candidate modifier; wherein a difference in the expression of NGVn in the presence of said candidate modifier, as compared with the expression of NGVn in the absence of said candidate modifier, identifies said candidate modifier as a modifier of NGVn expression; and (e) producing the modifier; and

a method of NGVn expression produced according to the method comprising (a) providing a cell expressing a NGVn polypeptide; (b) contacting said cell with a candidate modifier; (c) measuring NGVn expression; (d) comparing said NGVn expression in the presence of said candidate modifier with the expression of NGVn in the absence of said candidate modifier; wherein a difference in the expression of NGVn in the presence of said candidate modifier, as compared with the expression of NGVn in the absence of said candidate modifier, identifies said candidate modifier as a modifier of NGVn expression; and (e) producing the modifier.

Other objects, features and advantages of the present invention will become apparent from the following detailed description. It should be understood, however, that the detailed description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.

DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

Bardet Biedl Syndrome (BBS) is a debilitating genetic disorder that is prevalent in Bedouin populations, probably due to the high consanguinity observed therein. In order to identify the gene causing BBS2, the inventors used genetic fine mapping to reduce the size of the BBS2 interval on chromosome 16 from the previously reported interval of 18 cM. Fine mapping looking at shared haplotypes of affected individuals within the extended Bedouin kindred only made it possible to narrow the interval to approximately 6 cM. Therefore, it was decided to search for unaffected individuals within the extended kindred who had the complete affected haplotype on one chromosome, but were recombinant for the affected haplotype on the homologous chromosome. Two such individuals were identified, and the recombination events within these individuals greatly reduced the candidate interval to approximately 3 cM. The ability to narrow the disease interval using data from the Bedouin kindred made it possible to construct a physical map across the disease interval.

The identification of the BBS2 gene was aided by sample sequencing (approximately 1X coverage), as well as sequence data from the Human Genome Project. Analysis of this sequence resulted in the identification of a number of candidate genes within the narrowest interval. In order to determine which of these genes was the BBS2 gene, the inventors undertook to prioritize the genes for mutation screening based on a number of parameters including sequence homology or a putative functional relationship to genes in other known BBS intervals, as well as tissue pattern of expression. Although this approach yielded a number of high priority candidate genes, none of these genes proved to be mutated in BBS patients. The recent identification of BBS causing mutations in the MKKS gene provided initial specu-
lation that a chaperonin gene might be found in this interval. A search of the available sequence in the interval failed to identify such a candidate gene.

Due to the non-allelic genetic heterogeneity of BBS, the strategy for mutation screening of candidate genes was to focus the search for mutations by direct DNA sequencing of DNA from a proband from each of two inbred families shown to link to the chromosome 16 BBS interval. One of the families was the large Bedouin kindred that was used to initially map and refine the 16q21 interval. Sequencing of probands from inbred families provided the advantage of looking for homozygous sequence variations compared to control sequence. Homozygous changes are more readily recognized compared to heterozygous mutations by direct sequencing. Sequencing revealed homozygous mutations in the negevin (ngnv) gene in each of the two inbred families. Each mutation was shown to segregate completely with the disease phenotype in the respective kindreds, and neither mutation was found in 96 control individuals. After the identification of mutations in NGNV in both of the linked families, the inventors screened an additional 18 probands for NGNV mutations. A total of 4 probands (22%) had mutations, a figure that is consistent with the proportion of BBS2 cases reported in the literature.

The conclusion that NGNV is the BBS2 gene is supported by a number of lines of evidence. First, it maps to the narrowed disease interval and has a broad pattern of tissue expression as would be predicted for a pleiotropic gene. Second, it is found to have homozygous mutations in two inbred pedigrees, one of which is a frameshift. And third, it is mutated (both nonsense and frameshift) in a number of isolated BBS probands and small families. Together, the evidence strongly supports the conclusion that NGNV is responsible for the BBS2 phenotype.

The inventors had previously hypothesized that the identification of the first BBS gene would lead to the rapid identification of other BBS genes. In the case of MKKS, this has not yet proven to be the case, as NGNV has no significant sequence homology to MKKS and no currently known functional relationship. Despite this fact, the inventors hypothesize that a functional relationship does exist. It is possible that NGNV plays an unrecognized chaperonin role or is part of a chaperonin complex. Another possibility is that NGNV is a substrate of MKKS chaperonin function.

The identification of NGNV has immediate implications for the isolated Bedouin community that was used in the initial mapping and that has a high incidence of the disease. Population-wide carrier testing could now be efficiently performed to accurately identify disease gene carriers. Such a program would have the potential of decreasing the burden of this disorder in this isolated community. Detection of carriers might be particularly useful in this society since the vast majority of marriages are arranged. In addition, the present invention also provides the opportunity for therapeutic intervention, as well as drug screening to identify therapeutic agents. This and other embodiments are described in greater detail below.

1. NGNV Protein

The protein sequence for human negevin is provided in SEQ ID NO:2. In addition to the entire NGNV molecule, the present invention also relates to fragments of the polypeptides that may or may not retain various of the functions described below. Fragments, including the N-terminus of the molecule may be generated by genetic engineering of translation stop sites within the coding region (discussed below). Alternatively, treatment of the NGNV with proteolytic enzymes, known as proteases, can produces a variety of N-terminal, C-terminal and internal fragments. Peptides range from 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, and 50 residues, such as those made synthetically, up to 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700 and more residues, which are conveniently produced by recombinant means or by proteolytic digestion of full length NGNV. Examples of fragments may include contiguous residues of SEQ ID NO:2 of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 85, 90, 95, 100, 100, 200, 400 or more amino acids in length. These fragments may be purified according to known methods, such as precipitation (e.g., ammonium sulfate), HPLC, ion exchange chromatography, affinity chromatography (including immunoadfinity chromatography) or various size separations (sedimentation, gel electrophoresis, gel filtration).

A. Variants of NGNV

Amino acid sequence variants of the NGNV polypeptide can be substitutional, insertional or deletion variants. Deletion variants lack one or more residues of the native protein which are not essential for function or immunogenic activity, and are exemplified by the variants lacking a transmembrane sequence described above. Another common type of deletion variant is one lacking secretory signal sequences or signal sequences directing a protein to bind to a particular part of a cell. Insertional mutants typically involve the addition of material at a non-terminal point in the polypeptide. This may include the insertion of an immunoreactive epitope or simply a single residue. Terminal additions, called fusion proteins, are discussed below.

Substitutional variants typically contain the exchange of one amino acid for another at one or more sites within the protein, and may be designed to modulate one or more properties of the polypeptide, such as stability against proteolytic cleavage, without the loss of other functions or properties. Substitutions of this kind preferably are conservative, that is, one amino acid is replaced with one of similar shape and charge. Conservative substitutions are well known in the art and include, for example, the changes of alanine to serine; arginine to lysine; asparagine to glutamine or histidine; aspartate to glutamate; cysteine to serine; glutamine to asparagine; glutamate to aspartate; glycine to proline; histidine to asparagine or glutamine; isoleucine to leucine or valine; leucine to valine or isoleucine; lysine to arginine; methionine to leucine or isoleucine; phenylalanine to tyrosine, leucine or methionine; serine to threonine; threonine to serine; tryptophan to tyrosine; tyrosine to tryptophan or phenylalanine; and valine to isoleucine or leucine.

The following is a discussion based upon changing of the amino acids of a protein to create an equivalent, or even an improved, second-generation molecule. For example, certain amino acids may be substituted for other amino acids in a protein structure without appreciable loss of interactive binding capacity with structures such as, for example, antigen-binding regions of antibodies or binding sites on substrate molecules. Since it is the interactive capacity and nature of a protein that defines that protein’s biological functional activity, certain amino acid substitutions can be made in a protein sequence, and its underlying DNA coding sequence, and nevertheless obtain a protein with like properties. It is thus contemplated by the inventors that various changes may be made in the DNA sequences of genes without appreciable loss of their biological utility or activity, as discussed below. Table 1 shows the codons that encode particular amino acids.
In making such changes, the hydrophatic index of amino acids may be considered. The importance of the hydrophobic amino acid index in conferring interactive biologic function on a protein is generally understood in the art (Kyte and Doolittle, 1982). It is accepted that the relative hydrophatic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like.

Each amino acid has been assigned a hydrophatic index on the basis of their hydrophobicity and charge characteristics (Kyte and Doolittle, 1982), these are: isoleucine (+4.5); valine (+3.2); leucine (+3.8); phenylalanine (+2.8; cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamine (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5).

It is known in the art that certain amino acids may be substituted by other amino acids having a similar hydrophobic index or score and still result in a protein with similar biological activity, i.e., still obtain a biological functionally equivalent protein. In making such changes, the substitution of amino acids whose hydrophatic indices are within ±2 is preferred, and those which are within ±1 are particularly preferred, and those within ±0.5 are even more particularly preferred.

It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity. U.S. Pat. No. 4,554,101, incorporated herein by reference, states that the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with a biological property of the protein. As detailed in U.S. Pat. No. 4,554,101, the following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0); glutamate (+3.0); serine (+3.0); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (-0.4); proline (-0.5); alanine (-0.5); histidine (-0.5); cysteine (-1.0); methionine (-1.3); valine (-1.5); leucine (-1.8); isoleucine (-1.8); tyrosine (-2.3); phenylalanine (-2.5); tryptophan (-3.4).

It is understood that an amino acid can be substituted for another having a similar hydrophilicity value and still maintain a biologically equivalent and immunologically equivalent protein. In such changes, the substitution of amino acids whose hydrophilicity values are within ±2 is preferred, those that are within ±1 are particularly preferred, and those within ±0.5 are even more particularly preferred.

As outlined above, amino acid substitutions are generally based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. Exemplary substitutions that take variants of the foregoing characteristics into consideration are well known to those of skill in the art and include: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine.

Another embodiment for the preparation of polypeptides according to the invention is the use of peptide mimetics. Mimetics are peptide-containing molecules that mimic elements of protein secondary structure (Johnson et al., 1993). The underlying rationale behind the use of peptide mimetics is that the peptide backbone of proteins exists chiefly to orient amino acid side chains in such a way as to facilitate molecular interactions, such as those of antibody and antigen. A peptide mimic is expected to permit molecular interactions similar to the natural molecule. These principles may be used, in conjunction with the principles outline above, to engineer second generation molecules having many of the natural properties of NGVN, but with altered and even improved characteristics.

B. Domain Switching

As described in the examples, the present inventors have identified murine and rat NGVN, in addition to humans. An interesting series of mutants can be created by substituting homologous regions of various proteins. This is known in certain contexts, as “domain switching.”

Domain switching involves the generation of chimeric molecules using different but, in this case, related polypeptides. By comparing various NGVN proteins, one can make predictions as to the functionally significant regions of these molecules. It is possible, then, to switch related domains of these molecules in an effort to determine the criticality of these regions to NGVN function. These molecules may have additional value in that these “chimeras” can be distinguished from natural molecules, while possibly providing the same function.

C. Fusion Proteins

A specialized kind of insertional variant is the fusion protein. This molecule generally has all or a substantial portion of the native molecule, linked at the N- or C-terminus to all or a portion of a second polypeptide. For example, fusions typically employ leader sequences from other species to permit the recombinant expression of a protein in a heterologous host. Another useful fusion includes the addition of an immunologically active domain, such as an antibody epitope, to facilitate purification of the fusion protein. Inclusion of a cleavage site at or near the fusion junction will facilitate removal of the extraneous polypeptide after purification. Other useful fusions include linking of functional domains, such as active sites from enzymes, glycosylation domains, cellular targeting signals or transmembrane regions.

D. Purification of Proteins

It will be desirable to purify NGVN or variants thereof. Protein purification techniques are well known to those of skill in the art. These techniques involve, at one level, the crude fractionation of the cellular milieu to polypeptide and non-polypeptide fractions. Having separated the polypeptide from other proteins, the polypeptide of interest may be further purified using chromatographic and electrophoretic techniques to achieve partial or complete purification (or purification to homogeneity). Analytical methods particularly suited to the preparation of a pure peptide are ion-exchange chromatography, exclusion chromatography; polyacrylamide gel electrophoresis; isoelectric focusing. A particularly efficient method of purifying peptides is fast protein liquid chromatography or even HPLC.

Certain aspects of the present invention concern the purification, and in particular embodiments, the substantial purification, of an encoded protein or peptide. The term “purified protein or peptide” as used herein, is intended to refer to a composition, isolatable from other components, wherein the protein or peptide is purified to any degree relative to its naturally-obtainable state. A purified protein or peptide therefore also refers to a protein or peptide, free from the environment in which it may naturally occur.

Generally, “purified” will refer to a protein or peptide composition that has been subjected to fractionation to remove various other components, and which composition substantially retains its expressed biological activity. Where the term “substantially purified” is used, this designation
will refer to a composition in which the protein or peptide forms the major component of the composition, such as constituting about 50%, about 60%, about 70%, about 80%, about 90%, about 95% or more of the proteins in the composition.

Various methods for quantifying the degree of purification of the protein or peptide will be known to those of skill in the art in light of the present disclosure. These include, for example, determining the specific activity of an active fraction, or assessing the amount of polypeptides within a fraction by SDS/PAGE analysis. A preferred method for assessing the purity of a fraction is to calculate the specific activity of the fraction, to compare it to the specific activity of the initial extract, and to thus calculate the degree of purity, herein assessed by a “-fold purification number.” The actual units used to represent the amount of activity will, of course, be dependent upon the particular assay technique chosen to follow the purification and whether or not the expressed protein or peptide exhibits a detectable activity.

Various techniques suitable for use in protein purification will be well known to those of skill in the art. These include, for example, precipitation with ammonium sulphate, PEG, antibodies and the like or by heat denaturation, followed by centrifugation; chromatography steps such as ion exchange, gel filtration, reverse phase, hydroxyapatite and affinity chromatography; isoelectric focusing; gel electrophoresis; and combinations of such and other techniques. As is generally known in the art, it is believed that the order of conducting the various purification steps may be changed, or that certain steps may be omitted, and still result in a suitable method for the preparation of a substantially purified protein or peptide.

There is no general requirement that the protein or peptide always be provided in their most purified state. Indeed, it is contemplated that less substantially purified products will have utility in certain embodiments. Partial purification may be accomplished by using fewer purification steps in combination, or by utilizing different forms of the same general purification scheme. For example, it is appreciated that a cation-exchange column chromatography performed utilizing an HPLC apparatus will generally result in a greater “-fold” purification than the same technique utilizing a low pressure chromatography system. Methods exhibiting a lower degree of relative purification may have advantages in total recovery of protein product, or in maintaining the activity of an expressed protein.

It is known that the migration of a polypeptide can vary, sometimes significantly, with different conditions of SDS/PAGE (Capaldi et al., 1977). It will therefore be appreciated that under differing electrophoresis conditions, the apparent molecular weights of purified or partially purified expression products may vary.

High Performance Liquid Chromatography (HPLC) is characterized by a very rapid separation with extraordinary resolution of peaks. This is achieved by the use of very fine particles and high pressure to maintain an adequate flow rate. Separation can be accomplished in a matter of minutes, or at most an hour. Moreover, only a very small volume of the sample is needed because the particles are so small and close-packed that the void volume is a very small fraction of the bed volume. Also, the concentration of the sample need not be very great because the bands are so narrow that there is very little dilution of the sample.

Gel chromatography, or molecular sieve chromatography, is a special type of partition chromatography that is based on molecular size. The theory behind gel chromatography is that the column, which is prepared with tiny particles of an inert substance that contain small pores, separates larger molecules from smaller molecules as they pass through or around the pores, depending on their size. As long as the material of which the particles are made does not adsorb the molecules, the sole factor determining rate of flow is the size. Hence, molecules are eluted from the column in decreasing size, so long as the shape is relatively constant. Gel chromatography is unsurpassed for separating molecules of different size because separation is independent of all other factors such as pH, ionic strength, temperature, etc. There also is virtually no adsorption, loss zone spreading and the elution volume is related in a simple matter to molecular weight.

Affinity Chromatography is a chromatographic procedure that relies on the specific affinity between a substance to be isolated and a molecule that it can specifically bind to. This is a receptor-ligand type interaction. The column material is synthesized by covalently coupling one of the binding partners to an insoluble matrix. The column material is then able to specifically adsorb the substance from the solution. Elution occurs by changing the conditions to those in which binding will not occur (alter pH, ionic strength, temperature, etc.).

A particular type of affinity chromatography useful in the purification of carbohydrate containing compounds is lectin affinity chromatography. Lectins are a class of substances that bind to a variety of polysaccharides and glycoproteins. Lectins are usually coupled to agarose by cyanogen bromide. Concanavalin A coupled to Sepharose was the first material of this sort to be used and has been widely used in the isolation of polysaccharides and glycoproteins other lectins that have been include lentil lectin, wheat germ agglutinin which has been useful in the purification of N-acetyl glucosaminyl residues and Helix pomatia lectin. Lectins themselves are purified using affinity chromatography with carbohydrate ligands. Lactose has been used to purify lectins from castor bean and peanuts; maltose has been used in extracting lectins from lentil and jack bean; N-acetyl-D galactosamine is used for purifying lectins from soybean; N-acetyl glucosaminyl binds to lectins from wheat germ; D-galactosamine has been used in obtaining lectins from clams and L-fucose will bind to lectins from lotus.

The matrix should be a substance that itself does not adsorb molecules to any significant extent and that has a broad range of chemical, physical and thermal stability. The ligand should be coupled in such a way as to not affect its binding properties. The ligand should also provide relatively tight binding. And it should be possible to elute the substance without destroying the sample or the ligand. One of the most common forms of affinity chromatography is immunoaffinity chromatography. The generation of antibodies that would be suitable for use in accord with the present invention is discussed below.

E. Synthetic Peptides

The present invention also describes smaller NGYN-related peptides for use in various embodiments of the present invention. Because of their relatively small size, the peptides of the invention can also be synthesized in solution or on a solid support in accordance with conventional techniques. Various automatic synthesizers are commercially available and can be used in accordance with known protocols. See, for example, Stewart and Young, (1984); Tan et al., (1983); Merrifield, (1986); and Barany and Merrifield (1979), each incorporated herein by reference. Short peptide sequences, or libraries of overlapping peptides, usually from about 6 up to about 35 to 50 amino acids, which correspond to the selected regions described herein,
can be readily synthesized and then screened in screening assays designed to identify reactive peptides. Alternatively, recombinant DNA technology may be employed wherein a nucleotide sequence which encodes a peptide of the invention is inserted into an expression vector, transformed or transfected into an appropriate host cell and cultivated under conditions suitable for expression.

F. Antigen Compositions

The present invention also provides for the use of NGVNg compositions in accordance with the present invention and collecting antisera from that immunized animal.

A wide range of animal species can be used for the production of antisera. Typically the animal used for production of antisera is a rabbit, a mouse, a rat, a hamster, a guinea pig, or a goat. Because of the relatively large blood volume of rabbits, a rabbit is a preferred choice for production of polyclonal antibodies.

As is well known in the art, a given composition may vary in its immunogenicity. It is often necessary therefore to boost the host immune system, as may be achieved by coupling a peptide or polypeptide immunogen to a carrier. Exemplary and preferred carriers are keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA).

Other albumins such as ovalbumin, mouse serum albumin or rabbit serum albumin can also be used as carriers. Means for conjugating a polypeptide to a carrier protein are well known in the art and include glutaraldehyde, m-maleimidobenzoyl-N-hydroxysuccinimide ester, carbodiimide and bis-benzimide.

As is also well known in the art, the immunogenicity of a particular immunogen composition can be enhanced by the use of non-specific stimulators of the immune response, known as adjuvants. Suitable adjuvants include all acceptable immunostimulatory compounds, such as cytokines, toxins or synthetic compositions.

Adjuvants that may be used include IL-1, IL-2, IL-4, IL-7, IL-12, γ-interferon, GMCSF, BCG, aluminum hydroxide, MDP compounds, such as thur-MDP and nor-MDP, CPG (MTP-PE), lipid A, and monophosphoryl lipid A (MPL).

Rib, which contains three components extracted from bacteria, MPL, trehalose dimycolate (TDM) and cell wall skeleton (CWS) in a 2% squalene/Tween 80 emulsion is also contemplated. MHIC antigens may also be used. Exemplary, often preferred adjuvants include complete Freund’s adjuvant (a non-specific stimulator of the immune response containing killed Mycobacterium tuberculosis), incomplete Freund’s adjuvants and aluminum hydroxide adjuvant.

In addition to adjuvants, it may be desirable to coadminister biologic response modifiers (BRM), which have been shown to upregulate T cell immunity or downregulate suppressor cell activity. Such BRMs include, but are not limited to, Cimetidine (CIM; 1200 mg/d) (Smith/Kline, Pa.); low-dose Cyclophosphamide (CYP; 300 mg/m²) (Johnson/ Mead, N.J.), cytokines such as γ-interferon, IL-2, or IL-12 or genes encoding proteins involved in immune helper functions, such as B-7.

The amount of immunogen composition used in the production of polyclonal antibodies varies upon the nature of the immunogen as well as the animal used for immunization. A variety of routes can be used to administer the immunogen (subcutaneous, intramuscular, intradermal, intravenous and intraperitoneal). The production of polyclonal antibodies may be monitored by sampling blood of the immunized animal at various points following immunization.

A second, booster injection, may also be given. The process of boosting and titering is repeated until a suitable titer is achieved. When a desired level of immunogenicity is obtained, the immunized animal can be bled and the serum isolated and stored, and/or the animal can be used to generate MAb.

For production of rabbit polyclonal antibodies, the animal can be bled through an ear vein or alternatively by cardiac puncture. The removed blood is allowed to coagulate and then centrifuged to separate serum components from whole
cells and blood clots. The serum may be used as is for various applications or else the desired antibody fraction may be purified by well-known methods, such as affinity chromatography using another antibody, a peptide bound to a solid matrix, or by using, e.g., protein A or protein G chromatography.

MAbs may be readily prepared through use of well-known techniques, such as those exemplified in U.S. Pat. No. 4,196,265, incorporated herein by reference. Typically, this technique involves immunizing a suitable animal with a selected immunogen composition, e.g., a purified or partially purified NGVN protein, polypeptide, peptide or domain, be it a wild-type or mutant composition. The immunizing composition is administered in a manner effective to stimulate antibody producing cells.

The methods for generating monoclonal antibodies (MAbs) generally begin along the same lines as those for preparing polyclonal antibodies. Rodents such as mice and rats are preferred animals, however, the use of rabbit, sheep or frog cells is also possible. The use of rats may provide certain advantages (Goding, 1986, pp. 60-61), but mice are preferred, with the BALB/c mouse being most preferred as this is most routinely used and generally gives a higher percentage of stable fusions.

The animals are injected with antigen, generally as described above. The antigen may be coupled to carrier molecules such as keyhole limpet hemocyanin if necessary. The antigen would typically be mixed with adjuvant, such as Freund's complete or incomplete adjuvant. Booster injections with the same antigen would occur at approximately two-week intervals.

Following immunization, somatic cells with the potential for producing antibodies, specifically B lymphocytes (B cells), are selected for use in the MAb generating protocol. These cells may be obtained from biopsied spleens, tonsils or lymph nodes, or from a peripheral blood sample. Spleen cells and peripheral blood cells are preferred, the former because they are a rich source of antibody-producing cells that are in the dividing plasmablast stage, and the latter because peripheral blood is easily accessible.

Often, a panel of animals will have been immunized and the spleen of an animal with the highest antibody titer will be removed and the spleen lymphocytes obtained by homogenizing the spleen with a syringe. Typically, a spleen from an immunized mouse contains approximately 5x10⁷ to 2x10⁹ lymphocytes.

The antibody-producing B lymphocytes from the immunized animal are then fused with cells of an immortal myeloma cell, generally one of the same species as the animal that was immunized. Myeloma cell lines suited for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and enzyme deficiencies that render them incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas).

Any one of a number of myeloma cells may be used, as are known to those of skill in the art (Goding, pp. 65–66, 1986; Campbell, 1984). For example, where the immunized animal is a mouse, one may use P3-X63Ag8 Cl1, P3U1, WI-38, B9.4, 145.8, Sp2/0-Ag14, FO, NOSO/1, MPC-11, MPC11, X45-GTG 1.7 and S194/SXX0 Bul; for rats, one may use R210 RCY3, Y3-Ag 1.23, IR983F and 4B210; and U-266, GM1500-GRG2, LICR-LON-HMY2 and UC729-6 are all useful in connection with human cell fusions.

One preferred murine myeloma cell is the NS-1 myeloma cell line (also termed P3-NS-1-Ag4+1), which is readily available from the NIGMS Human Genetic Mutant Cell Repository by requesting cell line repository number GM3573. Another mouse myeloma cell line that may be used is the 8-azaguanine-resistant mouse murine myeloma SP2/0 non-producer cell line.

Methods for generating hybrids of antibody-producing spleen or lymph node cells and myeloma cells usually comprise mixing somatic cells with myeloma cells in a 2:1 proportion, though the proportion may vary from about 20:1 to about 1:1, respectively, in the presence of an agent or agents (chemical or electrical) that promote the fusion of cell membranes. Fusion methods using Sendai virus have been described by Kohler and Milstein (1975; 1976), and those using polyethylene glycol (PEG), such as 37% (v/v) PEG, by Gelfter et al. (1977). The use of electrically induced fusion methods is also appropriate (Goding pp. 71–74, 1986).

Fusion procedures usually produce viable hybrids at low frequencies, about 1x10⁻⁶ to 1x10⁻⁸. However, this does not pose a problem, as the viable, fused hybrids are differentiated from the parental, unfused cells (particularly the unfused myeloma cells that would normally continue to divide indefinitely) by cultivating in a selective medium. The selective medium is generally one that contains an agent that blocks the de novo synthesis of nucleotides in the tissue culture media. Exemplary and preferred agents are aminopterin, methotrexate, and azaserine. Aminopterin and methotrexate block de novo synthesis of both purines and pyrimidines, whereas azaserine blocks only purine synthesis.

Where aminopterin or methotrexate is used, the media is supplemented with hypoxanthine and thymidine as a source of nucleotides (HAT medium). Where azaserine is used, the media is supplemented with hypoxanthine.

The preferred selection medium is HAT. Only cells capable of operating nucleotide salvage pathways are able to survive in HAT medium. The myeloma cells are defective in key enzymes of the salvage pathway, e.g., hypoxanthine phosphoribosyl transferase (HPRT), and they cannot survive. The B cells can operate this pathway, but they have a limited life span in culture and generally die within about two weeks. Therefore, the only cells that can survive in the selective media are those hybrids formed from myeloma and B cells.

This culturing provides a population of hybridomas from which specific hybridomas are selected. Typically, selection of hybridomas is performed by culturing the cells by single-cell dilution in microtiter plates, followed by testing the individual clonal supernatants (after about two to three weeks) for the desired reactivity. The assay should be sensitive, simple and rapid, such as radioimmunoassays, enzyme immunoassays, cytotoxicity assays, plaque assays, dot immunoassays, and the like.

The selected hybridomas would then be serially diluted and cloned into individual antibody-producing cell lines, which clone can then be propagated indefinitely to provide MAbs. The cell lines may be exploited for MAb production in two basic ways. First, a sample of the hybridoma can be injected (often into the peritoneal cavity) into a histocompatible animal of the type that was used to provide the somatic and myeloma cells for the original fusion (e.g., a syngeneic mouse). Optionally, the animals are primed with a hydrocarbon, especially oils such as pristane (tetramethylpentadecane) prior to injection. The injected animal develops tumors secreting the specific monoclonal antibody produced by the fused cell hybrid. The body fluids of the animal, such as serum or ascites fluid, can then be tapped to provide MAbs in high concentration. Second, the individual cell lines could be cultured in vitro, where the MAbs are
naturally secreted into the culture medium from which they can be readily obtained in high concentrations.

MAbs produced by either means may be further purified, if desired, using filtration, centrifugation and various chromatographic methods such as HPLC or affinity chromatography. Fragments of the monoclonal antibodies of the invention can be obtained from the monoclonal antibodies so produced by methods which include digestion with enzymes, such as pepsin or papain, and/or cleavage of disulfide bonds by chemical reduction. Alternatively, monoclonal antibody fragments encompassed by the present invention can be synthesized using an automated peptide synthesizer.

It is also contemplated that a molecular cloning approach may be used to generate monoclonals. For this, combinatorial immunoglobulin phagemid libraries are prepared from RNA isolated from the spleen of the immunized animal, and phagemids expressing appropriate antibodies are selected by panning using cells expressing the antigen and control cells. The advantages of this approach over conventional hybridoma techniques are that approximately 10^7 times as many antibodies can be produced and screened in a single round, and that new specificities are generated by H and L chain combination which further increases the chance of finding appropriate antibodies.

Alternatively, monoclonal antibody fragments encompassed by the present invention can be synthesized using an automated peptide synthesizer, or by expression of full-length gene or of gene fragments in E. coli.

H. Antibody Conjugates

The present invention further provides antibodies against NGVN, generally of the monoclonal type, that are linked to one or more other agents to form an antibody conjugate. Any antibody of sufficient selectivity, specificity and affinity may be employed as the basis for an antibody conjugate. Such properties may be evaluated using conventional immunological screening methodology known to those of skill in the art.

Certain examples of antibody conjugates are those conjugates in which the antibody is linked to a detectable label. “Detectable labels” are compounds or elements that can be detected due to their specific functional properties, or chemical characteristics, the use of which allows the antibody to which they are attached to be detected, and further quantified if desired. Another such example is the formation of a conjugate comprising an antibody linked to a cytoxic or anti-cellular agent, as may be termed “immunotoxins” (described in U.S. Pat. Nos. 5,686,072, 5,578,706, 4,792,447, 5,045,451, 4,664,911 and 5,767,072, each incorporated herein by reference).

Antibody conjugates are thus preferred for use as diagnostic agents. Antibody diagnostics generally fall within two classes, those for use in in vitro diagnostics, such as in a variety of immunoassays, and those for use in vivo diagnostic protocols, generally known as “antibody-directed imaging.” Again, antibody-directed imaging is less preferred for use with this invention.

Many appropriate imaging agents are known in the art, as are methods for their attachment to antibodies (see, e.g., U.S. Pat. Nos. 5,021,236 and 4,472,509, both incorporated herein by reference). Certain attachment methods involve the use of a metal chelate complex employing, for example, an organic chelating agent such as DTPA attached to the antibody (U.S. Pat. No. 4,472,509). Monoclonal antibodies may also be reacted with an enzyme in the presence of a coupling agent such as glutaraldehyde or periodate. Conjugates with fluorescein markers are prepared in the presence of these coupling agents or by reaction with an isothiocyanate.

In the case of paramagnetic ions, one might mention by way of example ions such as chromium (III), manganese (II), iron (III), iron (II), cobalt (II), nickel (II), copper (II), neodymium (III), samarium (III), yttrium (III), gadolinium (III), vanadium (II), terbium (III), dysprosium (III), holmium (III) and erbium (III), with gadolinium being particularly preferred. Ions useful in other contexts, such as X-ray imaging, include but are not limited to lanthanum (III), gold (III), lead (II), and especially bismuth (III).

In the case of radioactive isotopes for therapeutic and/or diagnostic application, one might mention astatine, carbon, chlorine, cobalt, copper, gallium, hydrogen, iodine, indium, phosphorus, rhenium, selenium, sulphur, technicium and yttrium. One is often preferred for use in certain embodiements, and technicium and indium are also often preferred due to their low energy and suitability for long range detection.

Radioactively labeled monoclonal antibodies of the present invention may be produced according to well-known methods in the art. For instance, monoclonal antibodies can be iodinated by contact with sodium or potassium iodide and a chemical oxidizing agent such as sodium hypochlorite, or an enzymatic oxidizing agent, such as lactoperoxidase. Monoclonal antibodies according to the invention may be labeled with technetium by ligand exchange process, for example, by reducing pertechnetate with stannous solution, chelating the reduced technetium onto a Sephadex column and applying the antibody to this column or by direct labeling techniques, e.g., by incubating pertechnetate, a reducing agent such as SNC12, a buffer solution such as sodium-potassium phosphate solution, and the antibody. Intermediary functional groups which are often used to bind radioiodotopes which exist as metallic ions to antibody are diethylenetriaminepentaacetic acid (DTPA) and ethylene diaminetetraacetic acid (EDTA). Also contemplated for use are fluorescent labels, including rhodamine, fluorescein isothiocyanate and renogroph.

The much preferred antibody conjugates of the present invention are those intended primarily for use in vitro, where the antibody is linked to a secondary binding ligand or to an enzyme (an enzyme tag) that will generate a colored product upon contact with a chromogen substrate. Examples of suitable enzymes include urease, alkaline phosphatase, (horseradish) hydrogen peroxidase and glucose oxidase. Preferred secondary binding ligands are biotin and avidin or streptavidin compounds. The use of such labels is well known to those of skill in the art in light and is described, for example, in U.S. Pat. Nos. 3,817,837, 3,850,752, 3,939, 350; 3,996,345; 4,277,437; 4,275,149 and 4,366,241; each incorporated herein by reference.

2. NGVN Nucleic Acids

Important aspects of the present invention concern isolated DNA segments and recombinant vectors encoding NGVN proteins, polypeptides or peptides, and the creation and use of recombinant host cells through the application of DNA technology, that express a wild-type, polymorphic or mutant NGVN, using the sequence of SEQ ID NO:1 and SEQ ID NO:3, and biologically functional equivalents thereof.

The present invention concerns DNA segments, isolatable from mammalian cells, such as mouse, rat or human cells, that are free from total genomic DNA and that are capable
of expressing a protein, polypeptide or peptide. As used herein, the term "DNA segment" refers to a DNA molecule that has been isolated free of total genomic DNA of a particular species. Therefore, a DNA segment encoding NGVN refers to a DNA segment that contains wild-type, polymorphic or mutant NGVN coding sequences yet is isolated away from, or purified free from, total mammalian genomic DNA. Included within the term "DNA segment", are DNA segments and smaller fragments of such segments, and also recombinant vectors, including, for example, plasmids, cosmids, phage, viruses, and the like.

Similarly, a DNA segment comprising an isolated or purified ngvn gene refers to a DNA segment encoding NGVN protein, polypeptide or peptide coding sequences and, in certain aspects, regulatory sequences, isolated substantially away from other naturally-occurring genes or protein encoding sequences. In this respect, the term "gene" is used for simplicity to refer to a functional protein, polypeptide or peptide encoding unit. As will be understood by those in the art, this functional term includes both genomic sequences, cDNA sequences and engineered segments that express, or may be adapted to express, proteins, polypeptides, domains, peptides, fusion proteins and mutants of NGVN encoded sequences.

"Isolated substantially away from other coding sequences" means that the gene of interest, in this case the NGVN gene, forms the significant part of the coding region of the DNA segment, and that the DNA segment does not contain large portions of naturally-occurring coding DNA, such as large chromosomal fragments or other functional genes or cDNA coding regions. Of course, this refers to the DNA segment as originally isolated, and does not exclude genes or coding regions later added to the segment by the hand of man.

A. Variants

In particular embodiments, the invention concerns isolated DNA segments and recombinant vectors incorporating DNA sequences that encode a NGVN protein, polypeptide or peptide that includes within its amino acid sequence a contiguous amino acid sequence in accordance with, or essentially as set forth in, SEQ ID NO:2, corresponding to the NGVN designated “human NGVN.”

The term “a sequence essentially as set forth in SEQ ID NO:2” means that the sequence substantially corresponds to a portion of SEQ ID NO:2 and has relatively few amino acids that are not identical to, or a biologically functional equivalent of, the amino acids of SEQ ID NO:2.

The term “biologically functional equivalent” is well understood in the art and is further defined in detail herein. Accordingly, sequences that have about 70%, about 71%, about 72%, about 73%, about 74%, about 75%, about 76%, about 77%, about 78%, about 79%, about 80%, about 81%, about 82%, about 83%, about 84%, about 85%, about 86%, about 87%, about 88%, about 89%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99%, and any range derivable therein, such as, for example, about 70% to about 80%, and more preferably about 81% and about 90%, or even more preferably, between about 91% and about 99%; of amino acids that are identical or functionally equivalent to the amino acids of SEQ ID NO:2 will be sequences that are “essentially as set forth in SEQ ID NO:2,” provided the biological activity of the protein is maintained. In particular embodiments, the biological activity of a NGVN protein, polypeptide or peptide, or a biologically functional equivalent, comprises binding to one or more proteases, particularly serine proteases. In specific embodiments, the biological activity of a NGVN protein, polypeptide or peptide, or a biologically functional equivalent, comprises inhibition of the activity of one or more proteases, particularly serine proteases, through binding. A preferred protease activity that may be inhibited by a NGVN protein, polypeptide or peptide, or a biologically functional equivalent, is inhibition of the ability or rate of proteolytic cleavage catalyzed by the protease.

In certain other embodiments, the invention concerns isolated DNA segments and recombinant vectors that include within their sequence a nucleic acid sequence essentially as set forth in SEQ ID NO:1. The term “essentially as set forth in SEQ ID NO:1” is used in the same sense as described above and means that the nucleic acid sequence substantially corresponds to a portion of SEQ ID NO:1 and has relatively few codons that are not identical, or functionally equivalent, to the codons of SEQ ID NO:1.

The term “functionally equivalent codon” is used herein to refer to codons that encode the same amino acid, such as the six codons for arginine and serine, and also refers to codons that encode biologically equivalent amino acids. For optimization of expression of NGVN in human cells, the codons are shown in Table 1 in preference of use from left to right. Thus, the most preferred codon for alanine is thus “GCC”, and the least is “GCG” (see Table 1 below). Codon usage for various organisms and organelles can be found at the website http://www.kazusa.or.jp/codon/, incorporated herein by reference, allowing one of skill in the art to optimize codon usage for expression in various organisms using the disclosures herein. Thus, it is contemplated that codon usage may be optimized for other animals, as well as other organisms such as a prokaryote (e.g., an eubacteria, an archaea), an eukaryote (e.g., a protist, a plant, a fungi, an animal), a virus and the like, as well as organelles that contain nucleic acids, such as mitochondria or chloroplasts, based on the preferred codon usage as would be known to those of ordinary skill in the art.

<table>
<thead>
<tr>
<th>Amino Acids</th>
<th>Codons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>Ala A</td>
</tr>
<tr>
<td>Cysteine</td>
<td>Cys C</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>Asp D</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>Gla E</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>Phe F</td>
</tr>
<tr>
<td>Glycine</td>
<td>Gly G</td>
</tr>
<tr>
<td>Histidine</td>
<td>His H</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>Ile I</td>
</tr>
<tr>
<td>Lysine</td>
<td>Lys K</td>
</tr>
<tr>
<td>Leucine</td>
<td>Leu L</td>
</tr>
<tr>
<td>Methionine</td>
<td>Met M</td>
</tr>
<tr>
<td>Asparagine</td>
<td>Asn N</td>
</tr>
<tr>
<td>Proline</td>
<td>Pro P</td>
</tr>
<tr>
<td>Glutamine</td>
<td>Gln Q</td>
</tr>
<tr>
<td>Arginine</td>
<td>Arg R</td>
</tr>
<tr>
<td>Serine</td>
<td>Ser S</td>
</tr>
<tr>
<td>Threonine</td>
<td>Thr T</td>
</tr>
<tr>
<td>Valine</td>
<td>Val V</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>Trp T</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>Tyr Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Preferred Human DNA Codons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala A GCC GCT GCA GCG</td>
</tr>
<tr>
<td>Cys C TGC TGT</td>
</tr>
<tr>
<td>Asp D GAC GAT</td>
</tr>
<tr>
<td>Gla E GAG GAA</td>
</tr>
<tr>
<td>Phe F TTC TTT</td>
</tr>
<tr>
<td>Gly G GGC GGG GGA GGT</td>
</tr>
<tr>
<td>His H CAC CAT</td>
</tr>
<tr>
<td>Ile I ATC ATT AFA</td>
</tr>
<tr>
<td>Lys K AAG AAA</td>
</tr>
<tr>
<td>Leu L CTG CTC TTG CTT CTA TTA</td>
</tr>
<tr>
<td>Met M AGT</td>
</tr>
<tr>
<td>Asn N AAC AAT</td>
</tr>
<tr>
<td>Pro P CCC CCT CCA CCG</td>
</tr>
<tr>
<td>Gln Q CAG CAA</td>
</tr>
<tr>
<td>Arg R GGC AGO CGG AGA CGA CGT</td>
</tr>
<tr>
<td>Ser S AGC TCC TCT AGT TCA TCG</td>
</tr>
<tr>
<td>Thr T ACC ACA ACT ACG</td>
</tr>
<tr>
<td>Val V GTG GTT GTA</td>
</tr>
<tr>
<td>Trp T TGG</td>
</tr>
<tr>
<td>Tyr Y TAC TAT</td>
</tr>
</tbody>
</table>

It will also be understood that amino acid and nucleic acid sequences may include additional residues, such as additional N- or C-terminal amino acids or S' or 3' sequences, and yet still be essentially as set forth in one of the sequences disclosed herein, so long as the sequence meets the criteria set forth above, including the maintenance of biological
protein, polypeptide or peptide activity where an amino acid sequence expression is concerned. The addition of terminal sequences particularly applies to nucleic acid sequences that may, for example, include various non-coding sequences flanking either of the 5' or 3' portions of the coding region or may include various internal sequences, i.e., introns, which are known to occur within genes.

Excepting intronic or flanking regions, and allowing for the degeneracy of the genetic code, sequences that have about 70%, about 71%, about 72%, about 73%, about 74%, about 75%, about 76%, about 77%, about 78%, about 79%, about 80%, about 81%, about 82%, about 83%, about 84%, about 85%, about 86%, about 87%, about 88%, about 89%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, or about 99%, and any range derivable therein, such as, for example, about 70% to about 80%, and more preferably about 81% and about 90%; or even more preferably, between about 91% and about 99%; of nucleotides that are identical to the nucleotides of SEQ ID NO:1 or NO:3 will be sequences that are “essentially as set forth in SEQ ID NO:1 or NO:3.”

B. Nucleic Acid Hybridization

The nucleic acid sequences disclosed herein also have a variety of uses, such as for example, utility as probes or primers in nucleic acid hybridization embodiments.

Naturally, the present invention also encompasses DNA segments that are complementary, or essentially complementary, to the sequence set forth in SEQ ID NO:1 and NO:3. Nucleic acid sequences that are “complementary” are those that are capable of base-pairing according to the standard Watson-Crick complementarity rules. As used herein, the term “complementary sequences” means nucleic acid sequences that are substantially complementary, as may be assessed by the same nucleotide comparison set forth above, or as defined as being capable of hybridizing to the nucleic acid segment of SEQ ID NO:1 and NO:3 under stringent conditions such as those described herein.

As used herein, “hybridization”, “hybridizes” or “capable of hybridizing” is understood to mean the forming of a double or triple stranded molecule or a molecule with partial double or triple stranded nature. The term “hybridization”, “hybridizes(s)” or “capable of hybridizing” encompasses the terms “stringent condition(s)” or “high stringency” and the terms “low stringency” or “low stringent condition(s).”

As used herein “stringent condition(s)” or “high stringency” are those conditions that allow hybridization between or within one or more nucleic acid strand(s) containing complementary sequence(s), but precludes hybridization of random sequences. Stringent conditions tolerate little, if any, mismatch between a nucleic acid and a target strand. Such conditions are well known to those of ordinary skill in the art, and are preferred for applications requiring high selectivity. Non-limiting applications include isolating a nucleic acid, such as a gene or a nucleic acid segment thereof, or detecting at least one specific mRNA transcript or a nucleic acid segment thereof, and the like.

Stringent conditions may comprise low salt and/or high temperature conditions, such as provided by about 0.02 M to about 0.15 M NaCl at temperatures of about 50° C. to about 70° C. It is understood that the temperature and ionic strength of a desired stringency are determined in part by the length of the particular nucleic acid(s), the length and nucleobase content of the target sequence(s), the charge composition of the nucleic acid(s), and to the presence or concentration of formamide, triethylammonium chloride or other solvent(s) in a hybridization mixture.

It is also understood that these ranges, compositions and conditions for hybridization are mentioned by way of non-limiting examples only, and that the desired stringency for a particular hybridization reaction is often determined empirically by comparison to one or more positive or negative controls. Depending on the application envisioned it is preferred to employ varying conditions of hybridization to achieve varying degrees of selectivity of a nucleic acid towards a target sequence. In a non-limiting example, identification or isolation of a related target nucleic acid that does not hybridize to a nucleic acid under stringent conditions may be achieved by hybridization at low temperature and/or high ionic strength. For example, a medium stringency condition could be provided by about 0.1 to 0.25 M NaCl at temperatures of about 37° C. to about 55° C. Under these conditions, hybridization may occur even though the sequences of probe and target strand are not perfectly complementary, but are mismatched at one or more positions. In another example, a low stringency condition could be provided by about 0.15 M to about 0.9 M salt, at temperatures ranging from about 20° C. to about 55° C. Of course, it is within the skill of one in the art to further modify the low or high stringency conditions to suit a particular application. For example, in other embodiments, hybridization may be achieved under conditions of, 50 mM Tris-HCl (pH 8.3), 75 mM KCl, 3 mM MgCl₂, 1.0 mM dithiothreitol, at temperatures between approximately 20° C. to about 37° C. Other hybridization conditions utilized could include approximately 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl₂, at temperatures ranging from approximately 40° C. to about 72° C.

Accordingly, the nucleotide sequences of the disclosure may be used for their ability to selectively form duplex molecules with complementary stretches of genes or RNAs or to provide primers for amplification of DNA or RNA from tissues. Depending on the application envisioned, it is preferred to employ varying conditions of hybridization to achieve varying degrees of selectivity of probe towards target sequence.

The nucleic acid segments of the present invention, regardless of the length of the coding sequence itself, may be combined with other DNA sequences, such as promoters, enhancers, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. It is therefore contemplated that a nucleic acid fragment of almost any length may be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol.

For example, nucleic acid fragments may be prepared that include a contiguous stretch of nucleotides identical to or complementary to SEQ ID NO:1 or NO:3, such as, for example, about 8, about 10 to about 14, or about 15 to about 20 nucleotides, and that are chromosome sized pieces, up to about 1,000,000, about 750,000, about 500,000, about 250,000, about 100,000, about 50,000, about 20,000, or about 10,000, or about 5,000 base pairs in length, with segments of about 3,000 being preferred in certain cases, as well as DNA segments with total lengths of about 1,000, about 500, about 200, about 100 and about 50 base pairs in length (including all intermediate lengths of these lengths listed above, i.e., any range derivable therein and any integer derivable therein such a range) are also contemplated to be useful.

For example, it will be readily understood that "intermediate lengths", in these contexts, means any length between the quoted ranges, such as 10, 11, 12, 13, 14, 15, 16, 17, 18,
where n is an integer from 1 to the last number of the sequence and y is the length of the nucleic acid (SEQ ID NO:1 and NO:3) segment minus one, where n+y does not exceed the last number of the sequence. Thus, for a 10-mer, the nucleic acid segments correspond to bases 1 to 10, 2 to 11, 3 to 12 . . . and/or so on. For a 15-mer, the nucleic acid segments correspond to bases 1 to 15, 2 to 16, 3 to 17 . . . and/or so on. For a 20-mer, the nucleic acid segments correspond to bases 1 to 20, 2 to 21, 3 to 22 . . . and/or so on. In certain embodiments, the nucleic acid segment may be a probe or primer. As used herein, a “probe” generally refers to a nucleic acid used in a detection method or composition. As used herein, a “primer” generally refers to a nucleic acid used in an extension or amplification method or composition.

The use of a hybridization probe of between 17 and 100 nucleotides in length, or in some aspect of the invention even up to ~1-kb or more in length, allows the formation of a duplex molecule that is both stable and selective. Molecules having complementary sequences over stretches greater than 20 bases in length are generally preferred, in order to increase stability and selectivity of the hybrid, and thereby improve the quality and degree of particular hybrid molecules obtained. One will generally prefer to design nucleic acid molecules having stretches of 20 to 30 nucleotides, or even longer where desired. Such fragments may be readily prepared by, for example, directly synthesizing the fragment by chemical means or by introducing selected sequences into recombinant vectors for recombinant production.

In general, it is envisioned that the hybridization probes described herein will be useful both as reagents in solution hybridization, as in PCR™, for detection of expression of corresponding genes, as well as in embodiments employing a solid phase. In embodiments involving a solid phase, the test DNA (or RNA) is adsorbed or otherwise affixed to a selected matrix or surface. This fixed, single-stranded nucleic acid is then subjected to hybridization with selected probes under desired conditions. The selected conditions will depend on the particular circumstances based on the particular criteria required (depending, for example, on the “G+C” content, type of target nucleic acid, source of nucleic acid, size of hybridization probe, etc.). Following washing of the hybridized surface to remove non-specifically bound probe molecules, hybridization is detected, or even quantified, by means of the label.

C. Nucleic Acid Amplification

Nucleic acid used as a template for amplification is isolated from cells contained in the biological sample, according to standard methodologies (Sambrook et al., 1989). The nucleic acid may be genomic DNA or fractionated or whole cell RNA. Where RNA is used, it may be desired to convert the RNA to a complementary DNA. In one embodiment, the RNA is whole cell RNA and is used directly as the template for amplification.

Pairs of primers that selectively hybridize to nucleic acids corresponding to NVGN genes are contacted with the isolated nucleic acid under conditions that permit selective hybridization. The term “primer,” as defined herein, is meant to encompass any nucleic acid that is capable of priming the synthesis of a nascent nucleic acid in a template-dependent process. Typically, primers are oligonucleotides from ten to twenty or thirty base pairs in length, but longer sequences can be employed. Primers may be provided in double-stranded or single-stranded form, although the single-stranded form is preferred.

Once hybridized, the nucleic acid:primer complex is contacted with one or more enzymes that facilitate template-dependent nucleic acid synthesis. Multiple rounds of amplification, also referred to as “cycles,” are conducted until a sufficient amount of amplification product is produced.

Next, the amplification product is detected. In certain applications, the detection may be performed by visual means. Alternatively, the detection may involve indirect identification of the product via chemiluminescence, radioactive scintigraphy of incorporated radiolabel or fluorescent label or even via a system using electrical or thermal impulse signals (Affymax technology).

A number of template dependent processes are available to amplify the marker sequences present in a given sample. One of the best known amplification methods is the polymerase chain reaction (referred to as PCR™) which is described in detail in U.S. Pat. Nos. 4,683,195, 4,683,202 and 4,800,159, each incorporated herein by reference in entirety.

Briefly, in PCR™, two primer sequences are prepared that are complementary to regions on opposite complementary strands of the marker sequence. An excess of deoxynucleoside triphosphates are added to a reaction mixture along with a DNA polymerase, e.g., Taq polymerase. If the marker sequence is present in a sample, the primers will bind to the marker and the polymerase will cause the primers to be extended along the marker sequence by adding on nucleotides. By raising and lowering the temperature of the reaction mixture, the extended primers will dissociate from the marker to form reaction products, excess primers will bind to the marker and to the reaction products and the process is repeated.

A reverse transcriptase PCR amplification procedure may be performed in order to quantify the amount of mRNA amplified. Methods of reverse transcribing RNA into cDNA are well known and described in Sambrook et al., 1989. Alternative methods for reverse transcription utilize thermostable, RNA-dependent DNA polymerases. These methods are described in WO 90/07641, filed Dec. 21, 1990, incorporated herein by reference. Polymerase chain reaction methodologies are well known in the art.

Another method for amplification is the ligase chain reaction (“LCR”), disclosed in EPA No. 320 308, incorporated herein by reference in its entirety. In LCR, two complementary probe pairs are prepared, and in the presence of the target sequence, each pair will bind to opposite complementary strands of the target such that they abut. In the presence of a ligase, the two probe pairs will link to form a single unit. By temperature cycling, as in PCR™, bound ligated units dissociate from the target and then serve as “target sequences” for ligation of excess probe pairs. U.S.
Pat. No. 4,883,750 describes a method similar to LCR for binding probe pairs to a target sequence.

Qbeta Replicase, described in PCT Application No. PCT/US87/00880, incorporated herein by reference, may also be used as still another amplification method in the present invention. In this method, a replicative sequence of RNA that has a region complementary to that of a target is added to a sample in the presence of an RNA polymerase. The polymerase will copy the replicative sequence that can then be detected.

An isothermal amplification method, in which restriction endonucleases and ligases are used to achieve the amplification of target molecules that contain nucleotide 5'-[alpha-thio]-triphosphates in one strand of a restriction site may also be useful in the amplification of nucleic acids in the present invention.

Strand Displacement Amplification (SDA) is another method of carrying out isothermal amplification of nucleic acids which involves multiple rounds of strand displacement and synthesis, i.e., nick translation. A similar method, called Repair Chain Reaction (RCR), involves annealing several probes throughout a region targeted for amplification, followed by a repair reaction in which only two of the four bases are present. The other two bases can be added as biotinylated derivatives for easy detection. A similar approach is used in SDA. Target specific sequences can also be detected using a cyclic probe reaction (CPR). In CPR, a probe having 3' and 5' sequences of non-specific DNA and a middle sequence of specific RNA is hybridized to DNA that is present in a sample. Upon hybridization, the reaction is treated with RNase H, and the products of the probe identified as distinctive products that are released after digestion. The original template is annealed to another cycling probe and the reaction is repeated.

Still another amplification methods described in GB Application No. 2 202 326, and in PCT Application No. PCT/US89/01025, each of which is incorporated herein by reference in its entirety, may be used in accordance with the present invention. In the former application, “modified” primers are used in a PCR-like, template- and enzyme-dependent synthesis. The primers may be modified by labeling with a capture moiety (e.g., biotin) and/or a detector moiety (e.g., enzyme). In the latter application, an excess of labeled probes are added to a sample. In the presence of the target sequence, the probe binds and is cleaved catalytically. After cleavage, the target sequence is released intact to be bound by excess probe. Cleavage of the labeled probe signals the presence of the target sequence.

Other nucleic acid amplification procedures include transcription-based amplification systems (TAS), including nucleic acid sequence based amplification (NASBA) and 3SR (Gingeras et al., PCT Application WO 88/0315, incorporated herein by reference). In NASBA, the nucleic acids can be prepared for amplification by standard phenol/chloroform extraction, heat denaturation of a clinical sample, treatment with lysis buffer and minipin columns for isolation of DNA and RNA or guanidium chloride extraction of RNA. These amplification techniques involve annealing a primer which has target specific sequences. Following polymerization, DNA/RNA hybrids are digested with RNase H while double stranded DNA molecules are heat denatured again. In either case the single stranded DNA is made fully double stranded by addition of second target specific primer, followed by polymerization. The double-stranded DNA molecules are then multiply transcribed by an RNA polymerase such as T7 or SP6. In an isothermal cyclic reaction, the RNA's are reverse transcribed into single stranded DNA, which is then converted to double stranded DNA, and then transcribed once again with an RNA polymerase such as T7 or SP6. The resulting products, whether truncated or complete, indicate target specific sequences.

Davy et al., EP 329 822 (incorporated herein by reference in its entirety) disclose a nucleic acid amplification process involving cyclically synthesizing single-stranded RNA (“ssRNA”), ssDNA, and double-stranded DNA (dsDNA), which may be used in accordance with the present invention. The ssRNA is a template for a first primer oligonucleotide, which is elongated by reverse transcriptase (RNA-dependent DNA polymerase). The RNA is then removed from the resulting DNA:RNA duplex by the action of ribonuclease H (RNase H, an RNase specific for RNA in duplex with either DNA or RNA). The resultant ssDNA is a template for a second primer, which also includes the sequences of an RNA polymerase promoter (exemplified by T7 RNA polymerase) 5' to its homology to the template. This primer is then extended by DNA polymerase (exemplified by the large “Klenow” fragment of E. coli DNA polymerase I), resulting in a double-stranded DNA (“dsDNA”) molecule, having a sequence identical to that of the original RNA between the primers and having additionally, at one end, a promoter sequence. This promoter sequence can be used by the appropriate RNA polymerase to make many RNA copies of the DNA. These copies can then re-enter the cycle leading to very swift amplification. With proper choice of enzymes, this amplification can be done isothermally without addition of enzymes at each cycle. Because of the cyclical nature of this process, the starting sequence can be chosen to be in the form of either DNA or RNA.

Miller et al., PCT Application WO 89/06700 (incorporated herein by reference in its entirety) disclose a nucleic acid sequence amplification scheme based on the hybridization of a promoter/ primer sequence to a target single-stranded DNA (“ssDNA”) followed by transcription of many RNA copies of the sequence. This scheme is not cyclic, i.e., new templates are not produced from the resultant RNA transcripts. Other amplification methods include “RACE” and “one-sided PCR” (Frohman, 1990, incorporated herein by reference).

Methods based on ligation of two (or more) oligonucleotides in the presence of nucleic acid having the sequence of the resulting “di-oligonucleotide”, thereby amplifying the di-oligonucleotide, may also be used in the amplification step of the present invention.

D. Nucleic Acid Detection

In certain embodiments, it will be advantageous to employ nucleic acid sequences of the present invention in combination with an appropriate means, such as a label, for determining hybridization. A wide variety of appropriate indicator means are known in the art, including fluorescent, radioactive, enzymatic or other ligands, such as avidin/biotin, which are capable of being detected. In preferred embodiments, one may desire to employ a fluorescent label or an enzyme tag such as urease, alkaline phosphatase or peroxidase, instead of radioactive or other environmentally undesirable reagents. In the case of enzyme tags, colorimetric indicator substrates are known that can be employed to provide a detection means visible to the human eye or spectrophotometrically, to identify specific hybridization with complementary nucleic acid-containing samples.

In embodiments wherein nucleic acids are amplified, it may be desirable to separate the amplification product from the template and the excess primer for the purpose of determining whether specific amplification has occurred. In
one embodiment, amplification products are separated by agarose, agarose-acylamide or polyacrylamide gel electrophoresis using standard methods (Sambrook et al., 1989). Alternatively, chromatographic techniques may be employed to effect separation. There are many kinds of chromatography which may be used in the present invention: adsorption, partition, ion-exchange and molecular sieve, and many specialized techniques for using them including column, paper, thin-layer and gas chromatography.

Amplification products must be visualized in order to confirm amplification of the marker sequences. One typical visualization method involves staining of a gel with ethidium bromide and visualization under UV light. Alternatively, if the amplification products are integrally labeled with radio- or fluorometrically-labeled nucleotides, the amplification products can then be exposed to x-ray film or visualized under the appropriate stimulating spectra, following separation.

In one embodiment, visualization is achieved indirectly. Following separation of amplification products, a labeled, nucleic acid probe is brought into contact with the amplified marker sequence. The probe preferably is conjugated to a chromophore but may be radiolabeled. In another embodiment, the probe is conjugated to a binding partner, such as an antibody or biotin, and the other member of the binding pair carries a detectable moiety.

In one embodiment, detection is by Southern blotting and hybridization with a labeled probe. The techniques involved in Southern blotting are well known to those skilled in the art and can be found in many standard books on molecular protocols (See Sambrook et al., 1989). Briefly, amplification products are separated by gel electrophoresis. The gel is then contacted with a membrane, such as nitrocellulose, permitting transfer of the nucleic acid and non-covalent binding. Subsequently, the membrane is incubated with a chromophore-conjugated probe that is capable of hybridizing with a target amplification product. Detection is by exposure of the membrane to x-ray film or ion-emitting detection devices.

One example of the foregoing is described in U.S. Pat. No. 5,279,721, incorporated by reference herein, which discloses an apparatus and method for the automated electrophoresis and transfer of nucleic acids. The apparatus permits electrophoresis and blotting without external manipulation of the gel and is ideally suited to carrying out methods according to the present invention.

Other methods for genetic screening to accurately detect mutations in genomic DNA, cDNA or RNA samples may be employed, depending on the specific situation.

Historically, a number of different methods have been used to detect point mutations, including denaturing gradient gel electrophoresis (“DGGE”), restriction enzyme polymorphism analysis, chemical and enzymatic cleavage methods, and others. The more common procedures currently in use include direct sequencing of target regions amplified by PCR™ (see above) and single-strand conformation polymorphism analysis (“SSCP”).

Another method of screening for point mutations is based on Rnase cleavage of base pair mismatches in RNA/DNA and RNA/RNA heteroduplexes. As used herein, the term “mismatch” is defined as a region of one or more unpaired or mispaired nucleotides in a double-stranded RNA/RNA, RNA/DNA or DNA/DNA molecule. This definition thus includes mismatches due to insertion/deletion mutations, as well as single and multiple base point mutations.

U.S. Pat. No. 4,946,773 describes an Rnase A mismatch cleavage assay that involves annealing single-stranded DNA or RNA test samples to an RNA probe, and subsequent treatment of the nucleic acid duplexes with Rnase A. After the Rnase cleavage reaction, the Rnase is inactivated by proteolytic digestion and organic extraction, and the cleavage products are denatured by heating and analyzed by electrophoresis on denaturing polyacrylamide gels. For the detection of mismatches, the single-stranded products of the Rnase A treatment, electrophoretically separated according to size, are compared to similarly treated control duplexes. Samples containing smaller fragments (cleavage products) not seen in the control duplex are scored as positive.

Currently available Rnase mismatch cleavage assays, including those performed according to U.S. Pat. No. 4,946,773, require the use of radiolabeled RNA probes. Myers and Maniatis in U.S. Pat. No. 4,946,773 describe the detection of base pair mismatches using Rnase A. Other investigators have described the use of an E. coli enzyme, Rnase I, in mismatch assays. Because it has broader cleavage specificity than Rnase A, Rnase I would be a desirable enzyme to employ in the detection of base pair mismatches if components can be found to decrease the extent of non-specific cleavage and increase the frequency of cleavage of mismatches. The use of Rnase I for mismatch detection is described in literature from Promega Biotech. Promega markets a kit containing Rnase I that is shown in their literature to cleave three out of four known mismatches, provided the enzyme level is sufficiently high.

The Rnase Protection assay was first used to detect and map the ends of specific mRNA targets in solution. The assay relies on being able to easily generate high specific activity radiolabeled RNA probes complementary to the mRNA of interest by in vitro transcription. Originally, the templates for in vitro transcription were recombinant plasmids containing bacteriophage promoters. The probes are mixed with total cellular RNA samples to permit hybridization to their complementary targets, then the mixture is treated with Rnase to degrade excess unhybridized probe. Also, as originally intended, the Rnase used is specific for single-stranded RNA, so that hybridized double-stranded probe is protected from degradation. After inactivation and removal of the Rnase, the protected probe (which is proportional in amount to the amount of target mRNA that was present) is recovered and analyzed on a polyacrylamide gel.

The Rnase Protection assay was adapted for detection of single base mutations. In this type of Rnase A mismatch cleavage assay, radiolabeled RNA probes transcribed in vitro from wild-type sequences, are hybridized to complementary target regions derived from test samples. The test target generally comprises DNA (either genomic DNA or RNA amplified by cloning in plasmids or by PCR™), although RNA targets (endogenous mRNA) have occasionally been used. If single nucleotide (or greater) sequence differences occur between the hybridized probe and target, the resulting disruption in Watson-Crick hydrogen bonding at that position (“mismatch”) can be recognized and cleaved in some cases by single-strand specific ribonuclease. To date, Rnase A has been used almost exclusively for cleavage of single-base mismatches, although Rnase I has recently been shown as useful also for mismatch cleavage. There are recent descriptions of using the MutS protein and other DNA-repair enzymes for detection of single-base mismatches.

E. Cloning of Additional NGVN Genes

The present invention contemplates cloning NGVN genes or cDNAs from animal (e.g., mammalian) organisms. A
The first step in such cloning procedures is the screening of an appropriate DNA library. The screening protocol may utilize nucleotide segments or probes derived from SEQ ID NO:1 or 3. Additionally, antibodies designed to bind to the expressed NGVN proteins, polypeptides, or peptides may be used as probes to screen an appropriate mammalian DNA expression library. Alternatively, activity assays may be employed. The operation of such screening protocols are well known to those of skill in the art and are described in detail in the scientific literature, for example, in Sambrook et al. (1989), incorporated herein by reference. Moreover, as the present invention encompasses the cloning of genomic segments as well as DNA molecules, it is contemplated that suitable genomic cloning methods, as known to those in the art, may also be used.

As used herein "designed to hybridize" means a sequence selected for its likely ability to hybridize to a mammalian NGVN gene, for example due to the expected high degree of homology between the human, rat, or mouse NGVN gene and the NGVN genes from other mammals. Also included are segments or probes altered to enhance their ability to hybridize to or bind to a mammalian NGVN gene. Additionally, these regions of homology also include amino acid sequences of 4 or more consecutive amino acids selected and/or altered to increase conservation of the amino acid sequences in comparison to the same or similar region of residues in the same or related genes in one or more species. Such amino acid sequences may derive from amino acid sequences encoded by the NGVN gene, and more particularly from the isolated sequences of SEQ ID NO:2.

Designing probe sequences may involve selection of regions of highly conserved nucleotide sequences between various species for a particular gene or related genes, relative to the general conservation of nucleotide of the gene or related genes in one or more species. Comparison of the amino acid sequences conserved between one or more species for a particular gene may also be used to determine a group of 4 or more consecutive amino acids that are conserved relative to the protein encoded by the gene or related genes. The nucleotide probe or primers may then be designed from the region of the gene that encodes the conserved sequence of amino acids.

One may also prepare fusion proteins, polypeptides and peptides, e.g., where the NGVN proteinaceous material coding regions are aligned within the same expression unit with other proteins, polypeptides or peptides having desired functions, such as for purification or immunodetection purposes (e.g., proteinaceous compositions that may be purified by affinity chromatography and enzyme label coding regions, respectively).

Encompassed by the invention are DNA segments encoding relatively small peptides, such as, for example, peptides of from about 8, about 9, about 10, about 11, about 12, about 13, about 14, about 15, about 16, about 17, about 18, about 19, about 20, about 21, about 22, about 23, about 24, about 25, about 26, about 27, about 28, about 29, about 30, about 31, about 32, about 33, about 34, about 35, about 36, about 37, about 38, about 39, about 40, about 41, about 42, about 43, about 44, about 45, to about 50 amino acids in length, and more preferably, of from about 15 to about 30 amino acids in length; as set forth in SEQ ID NO:2 and also larger polypeptides up to and including proteins corresponding to the full-length sequences set forth in SEQ ID NO:2, and any range derivable therein and any integer derivable therein such a range.

In addition to the "standard" DNA and RNA nucleotide bases, modified bases are also contemplated for use in particular applications of the present invention. A table of exemplary, but not limiting, modified bases is provided herein below.

Table 2

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Modified base description</th>
<th>Abbr.</th>
<th>Modified base description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ac4e</td>
<td>4-acetylcytidine</td>
<td>MmS5</td>
<td>5-methoxyaminomethyl-2-thiouridine</td>
</tr>
<tr>
<td>chmSu</td>
<td>5-(carboxyhydroxymethyl)uridine</td>
<td>MmS6</td>
<td>BetaD2-mannosyluridine</td>
</tr>
<tr>
<td>Cm</td>
<td>2'-O-methylcytidine</td>
<td>MmS7</td>
<td>5-methylcarboxy-b-methyl-2-thiouridine</td>
</tr>
<tr>
<td>CmSnS</td>
<td>5-carboxymethylaminomethyl-2-thiouridine</td>
<td>MmS8</td>
<td>5-methylcarboxy-b-methylthymidine</td>
</tr>
<tr>
<td>CmSnSu</td>
<td>5-carboxymethyllaminoethyluridine</td>
<td>MmS9</td>
<td>2'-O-methylthymidine</td>
</tr>
<tr>
<td>D</td>
<td>Dihydrouridine</td>
<td>MmS10</td>
<td>2'-O-methylthio-2'-deoxyadenosine</td>
</tr>
<tr>
<td>Fm</td>
<td>2'-O-methylpsuedouridine</td>
<td>MmS11</td>
<td>2'-O-methylthio-2'-deoxyguanosine</td>
</tr>
<tr>
<td>gal</td>
<td>Beta,D-galactoslycosine</td>
<td>MmS12</td>
<td>2'-O-methylthio-2'-deoxyguanosine</td>
</tr>
<tr>
<td>Gm</td>
<td>2'-O-methylguanosine</td>
<td>MmS13</td>
<td>2'-O-methylthio-2'-deoxyguanosine</td>
</tr>
<tr>
<td>I</td>
<td>Inosine</td>
<td>MmS14</td>
<td>2'-O-methylthio-2'-deoxyguanosine</td>
</tr>
<tr>
<td>lta</td>
<td>N6-iso-pentenyladenosine</td>
<td>MmS15</td>
<td>2'-O-methylthio-2'-deoxyguanosine</td>
</tr>
<tr>
<td>m1a</td>
<td>1-methyladenosine</td>
<td>MmS16</td>
<td>2'-O-methylthio-2'-deoxyguanosine</td>
</tr>
<tr>
<td>m1f</td>
<td>1-methylpsuedouridine</td>
<td>MmS17</td>
<td>2'-O-methylthio-2'-deoxyguanosine</td>
</tr>
<tr>
<td>m1g</td>
<td>1-methylguanosine</td>
<td>MmS18</td>
<td>2'-O-methylthio-2'-deoxyguanosine</td>
</tr>
<tr>
<td>m1l</td>
<td>1-methylinosine</td>
<td>MmS19</td>
<td>2'-O-methylthio-2'-deoxyguanosine</td>
</tr>
<tr>
<td>m22g</td>
<td>2'-b-dimethylguanosine</td>
<td>MmS20</td>
<td>2'-O-methylthio-2'-deoxyguanosine</td>
</tr>
<tr>
<td>m2a</td>
<td>2-methyladenosine</td>
<td>MmS21</td>
<td>2'-O-methylthio-2'-deoxyguanosine</td>
</tr>
<tr>
<td>m2g</td>
<td>2-methylguanosine</td>
<td>MmS22</td>
<td>2'-O-methylthio-2'-deoxyguanosine</td>
</tr>
<tr>
<td>m3e</td>
<td>3-methylcytidine</td>
<td>MmS23</td>
<td>2'-O-methylthio-2'-deoxyguanosine</td>
</tr>
<tr>
<td>m5e</td>
<td>5-methylcytidine</td>
<td>MmS24</td>
<td>2'-O-methylthio-2'-deoxyguanosine</td>
</tr>
<tr>
<td>m6n</td>
<td>N6-methyladenosine</td>
<td>MmS25</td>
<td>2'-O-methylthio-2'-deoxyguanosine</td>
</tr>
<tr>
<td>m7g</td>
<td>7-methylguanosine</td>
<td>MmS26</td>
<td>2'-O-methylthio-2'-deoxyguanosine</td>
</tr>
<tr>
<td>MmS5</td>
<td>5-methylinomethyuridine</td>
<td>MmS27</td>
<td>2'-O-methylthio-2'-deoxyguanosine</td>
</tr>
</tbody>
</table>

F. Mutagenesis, Peptidomimetics and Rational Drug Design

It will also be understood that this invention is not limited to the particular nucleic acid and amino acid sequences of SEQ ID NO:2. Recombinant vectors and isolated DNA segments may therefore variously include these coding regions themselves, coding regions bearing selected alterations or modifications in the basic coding region, or they may encode larger polypeptides that nevertheless include
such coding regions or may encode biologically functional equivalent proteins, polypeptides or peptides that have variant amino acids sequences.

The DNA segments of the present invention encompass biologically functional equivalent NGVN proteins, polypeptides, and peptides. Such sequences may arise as a consequence of codon redundancy and functional equivalency that are known to occur naturally within nucleic acid sequences and the proteinaceous compositions thus encoded. Alternatively, functionally equivalent proteins, polypeptides or peptides may be created via the application of recombinant DNA technology, in which changes in the protein, polypeptide or peptide structure may be engineered, based on considerations of the properties of the amino acids being exchanged. Changes may be introduced, for example, through the application of site-directed mutagenesis techniques as discussed herein below, e.g., to introduce improvements to the antigenicity of the proteinaceous composition or to test mutants in order to examine NGVN activity at the molecular level.

Site-specific mutagenesis is a technique useful in the preparation of individual peptides, or biologically functional equivalent proteins, polypeptides or peptides, through specific mutagenesis of the underlying DNA. The technique further provides a ready ability to prepare and test sequence variants, incorporating one or more of the foregoing considerations, by introducing one or more nucleotide sequence changes into the DNA. Site-specific mutagenesis allows the production of mutants through the use of specific oligonucleotide sequences which encode the DNA sequence of the desired mutation, as well as a sufficient number of adjacent nucleotides, to provide a primer sequence of sufficient size and sequence complexity to form a stable duplex on both sides of the deletion junction being traversed. Typically, a primer of about 17 to 25 nucleotides in length is preferred, with about 5 to 10 residues on both sides of the junction of the sequence being altered.

In general, the technique of site-specific mutagenesis is well known in the art. As will be appreciated, the technique typically employs a bacteriophage vector that exists in both a single stranded and double stranded form. Typical vectors useful in site-directed mutagenesis include vectors such as the M13 phage. These phage vectors are commercially available and their use is generally well known to those skilled in the art. Double-stranded plasmids are also routinely employed in site directed mutagenesis, which eliminates the step of transferring the gene of interest from a phage to a plasmid.

In general, site-directed mutagenesis is performed by first obtaining a single-stranded vector, or melting of two strands of a double stranded vector which includes within its sequence a DNA sequence encoding the desired proteinaceous molecule. An oligonucleotide primer bearing the desired mutated sequence is synthetically prepared. This primer is then annealed with the single-stranded DNA preparation, and subjected to DNA polymerizing enzymes such as E. coli polymerase I Klenow fragment, in order to complete the synthesis of the mutation-bearing strand. Thus, a heteroduplex is formed wherein one strand encodes the original non-mutated sequence and the second strand bears the desired mutation. This heteroduplex vector is then used to transform appropriate cells, such as E. coli cells, and clones are selected that include recombinant vectors bearing the mutated sequence arrangement.

The preparation of sequence variants of the selected gene using site-directed mutagenesis is provided as a means of producing potentially useful species and is not meant to be limiting, as there are other ways in which sequence variants of genes may be obtained. For example, recombinant vectors encoding the desired gene may be treated with mutagenic agents, such as hydroxylamine, to obtain sequence variants.

As modifications and changes may be made in the structure of the NGVN genes, nucleic acids (e.g., nucleic acid segments) and proteinaceous molecules of the present invention, and still obtain molecules having like or otherwise desirable characteristics, such biologically functional equivalents are also encompassed within the present invention.

For example, certain amino acids may be substituted for other amino acids in a proteinaceous structure without appreciable loss of interactive binding capacity with structures such as, for example, antigen-binding regions of antibodies, binding sites on substrate molecules or receptors, or such like. Since it is the interactive capacity and nature of a proteinaceous molecule that defines that proteinaceous molecule's biological functional activity, certain amino acid sequence substitutions can be made in a proteinaceous molecule sequence (or, of course, its underlying DNA coding sequence) and nevertheless obtain a proteinaceous molecule with like (agonistic) properties. It is thus contemplated that various changes may be made in the sequence of NGVN proteins, polypeptides or peptides, or the underlying nucleic acids, without appreciable loss of their biological utility or activity.

Equally, the same considerations may be employed to create a protein, polypeptide or peptide with countervailing, e.g., antagonistic properties. This is relevant to the present invention in which NGVN mutants or analogues may be generated. For example, a NGVN mutant may be generated and tested for NGVN activity to identify those residues important for NGVN activity. NGVN mutants may also be synthesized to reflect a NGVN mutant that occurs in the human population and that is linked to the development of cancer. Such mutant proteinaceous molecules are particularly contemplated for use in generating mutant-specific antibodies and such mutant DNA segments may be used as mutant-specific probes and primers.

While discussion has focused on functionally equivalent polypeptides arising from amino acid changes, it will be appreciated that these changes may be effected by alteration of the encoding DNA; taking into consideration also that the genetic code is degenerate and that two or more codons may code for the same amino acid. A table of amino acids and their codons is presented herein above for use in such embodiments, as well as for other uses, such as in the design of probes and primers and the like.

In terms of functional equivalents, it is well understood by the skilled artisan that, inherent in the definition of a "biologically functional equivalent" protein, polypeptide, peptide, gene or nucleic acid, is the concept that there is a limit to the number of changes that may be made within a defined portion of the molecule and still result in a molecule with an acceptable level of equivalent biological activity. Biologically functional equivalent peptides are thus defined herein as those peptides in which certain, not most or all, of the amino acids may be substituted.

In particular, where shorter length peptides are concerned, it is contemplated that fewer amino acids changes should be made within the given peptide. Longer domains may have an intermediate number of changes. The full length protein will have the most tolerance for a larger number of changes. Of course, a plurality of distinct proteins/polypeptide/peptides with different substitutions may easily be made and used in accordance with the invention.
It is also well understood that where certain residues are shown to be particularly important to the biological or structural properties of a protein, polypeptide or peptide, e.g., residues in binding regions or active sites, such residues may not generally be exchanged. In this manner, functional equivalents are defined herein as those peptides which maintain a substantial amount of their native biological activity.

Amino acid substitutions are generally based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. An analysis of the size, shape and type of the amino acid side-chain substituents reveals that arginine, lysine and histidine are all positively charged residues; that alanine, glycine and serine are all a similar size; and that phenylalanine, tryptophan and tyrosine all have a generally similar shape. Therefore, based on these considerations, arginine, lysine and histidine; alanine, glycine and serine; and phenylalanine, tryptophan and tyrosine, are defined herein as biologically functional equivalents.

To effect more quantitative changes, the hydrophobicity index of amino acids may be considered. Each amino acid has been assigned a hydrophobicity index on the basis of their hydrophobicity and charge characteristics, these are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (−0.4); threonine (−0.7); serine (−0.8); tryptophan (−0.9); tyrosine (−1.3); proline (−1.6); histidine (−3.2); glutamate (−3.5); glutamine (−3.5); aspartate (−3.5); asparagine (−3.5); lysine (−3.9); and arginine (−4.5).

The importance of the hydrophobic amino acid index in conferring interactive biological function on a proteinaceous molecule is generally understood in the art (Kyte & Doolittle, 1982, incorporated herein by reference). It is known that certain amino acids may be substituted for other amino acids having a similar hydrophobic index or score and still retain a similar biological activity. In making changes based upon the hydrophobic index, the substitution of amino acids whose hydrophobic indices are within ±2 is preferred, those which are within ±1 are particularly preferred, and those within ±0.5 are even more particularly preferred.

It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity, particularly where the biological functional equivalent protein, polypeptide or peptide thereby created is intended for use in immunological embodiments, as in certain embodiments of the present invention. U.S. Pat. No. 4,554,101, incorporated herein by reference, states that the greatest local average hydrophobicity of a proteinaceous molecule, as governed by the hydrophilicity of its adjacent amino acids, correlates with its immunogenicity and antigenicity, i.e., with a biological property of the proteinaceous molecule.

As detailed in U.S. Pat. No. 4,554,101, the following hydrophilicity values have been assigned to amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0a1); glutamate (+3.0a1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (−0.4); proline (−0.5a1); alanine (−0.5); histidine (−0.5); cysteine (−1.0); methionine (−1.3); valine (−1.5); leucine (−1.8); isoleucine (−1.8); tyrosine (−2.3); phenylalanine (−2.5); tryptophan (−3.4).

In making changes based upon similar hydrophilicity values, the substitution of amino acids whose hydrophilicity values are within 12 is preferred, those which are within ±1 are particularly preferred, and those within ±0.5 are even more particularly preferred.

In addition to the NGVN peptidyl compounds described herein, it is contemplated that other sterically similar compounds may be formulated to mimic the key portions of the peptide structure. Such compounds, which may be termed peptidomimetics, may be used in the same manner as the peptides of the invention and hence are also functional equivalents.

Certain mimetics that mimic elements of proteinaceous molecules secondary structure are described in Johnson et al. (1993). The underlying rationale behind the use of peptide mimetics is that the peptide backbone of proteinaceous molecules exists chiefly to orientate amino acid side chains in such a way as to facilitate molecular interactions, such as those of antibody and antigen. A peptide mimic is thus designed to permit molecular interactions similar to the natural molecule.

Some successful applications of the peptide mimicetic concept have focused on mimetics of β-turns within proteinaceous molecules, which are known to be highly anti- genetic. Likely β-turn structure within a polypeptide can be predicted by computer-based algorithms, as discussed herein. Once the component amino acids of the turn are determined, mimetics can be constructed to achieve a similar spatial orientation of the essential elements of the amino acid side chains.

The generation of further structural equivalents or mimetics may be achieved by the techniques of modeling and chemical design known to those of skill in the art. The art of receptor modeling is now well known, and by such methods a chemical that binds NGVN can be designed and then synthesized. It will be understood that all such sterically designed constructs fall within the scope of the present invention.

In addition to the 20 “standard” amino acids provided through the genetic code, modified or unusual amino acids are also contemplated for use in the present invention. A table of exemplary, but not limiting, modified or unusual amino acids is provided herein below.

<table>
<thead>
<tr>
<th>Table 3: Modified and Unusual Amino Acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbr.</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Amd</td>
</tr>
<tr>
<td>Baad</td>
</tr>
<tr>
<td>Bala</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Abu</td>
</tr>
<tr>
<td>4Abu</td>
</tr>
<tr>
<td>Acp</td>
</tr>
<tr>
<td>Ahe</td>
</tr>
<tr>
<td>Alb</td>
</tr>
<tr>
<td>Bais</td>
</tr>
<tr>
<td>Agpl</td>
</tr>
<tr>
<td>Dbe</td>
</tr>
<tr>
<td>Des</td>
</tr>
<tr>
<td>Dpm</td>
</tr>
<tr>
<td>Dpr</td>
</tr>
<tr>
<td>EisoY</td>
</tr>
</tbody>
</table>

In one aspect, an compound may be designed by rational drug design to function as an NGVN in inhibition serine proteases. The goal of rational drug design is to produce structural analogs of biologically active compounds. By creating such analogs, it is possible to fashion drugs which are more active or stable than the natural molecules, which have different susceptibility to alteration or which may affect the function of various other molecules. In one approach,
one would generate a three-dimensional structure for the NGVN protein of the invention or a fragment thereof. This could be accomplished by X-ray crystallography, computer modeling or by a combination of both approaches. An alternative approach, involves the random replacement of functional groups throughout the NGVN protein, polypeptides or peptides, and the resulting effect on function determined.

It also is possible to isolate a NGVN protein, polypeptide or peptide specific antibody, selected by a functional assay, and then solve its crystal structure. In principle, this approach yields a pharmacore upon which subsequent drug design can be based. It is possible to bypass protein crystallography altogether by generating anti-idiotypic antibodies to a functional, pharmacologically active antibody. As a mirror image of a mirror image, the binding site of anti-idiotypic would be expected to be an analog of the original antigen. The anti-idiotypic could then be used to identify and isolate peptides from banks of chemically- or biologically-produced peptides. Selected peptides would then serve as the pharmacore. Anti-idiotypic may be generated using the methods described herein for producing antibodies, using an antibody as the antigen.

Thus, one may design drugs which have enhanced and improved biological activity, for example, serine protease or tumor growth or metastasis inhibition, relative to a starting NGVN proteinaceous sequences. By virtue of the ability to recombantly produce sufficient amounts of the NGVN proteins, polypeptides or peptides, crystallographic studies may be performed to determine the most likely sites for mutagenesis and chemical mimicry. In addition, knowledge of the chemical characteristics of these compounds permits computer employed predictions of structure-function relationships. Computer models of various polypeptide and peptide structures are also available in the literature or computer databases. In a non-limiting example, the Entrez database (http://www.ncbi.nlm.nih.gov/Entrez/) may be used by one of ordinary skill in the art to identify target sequences and regions for mutagenesis.

3. Diagnosing BBS and Related Conditions

As discussed above, the present inventors have determined that alterations in the NGVN gene are associated with BBS. Therefore, NGVN and the corresponding gene may be employed as a diagnostic or prognostic indicator of BBS in general, and of related disorders such as diabetes, hypertension, retinal degeneration, renal carcinoma, renal malformation, congenital heart defects, limb deformity and obesity. More specifically, point mutations, deletions, insertions or regulatory perturbations relating to NGVN will be identified. The present invention contemplates further the diagnosis of disease states by detecting changes in the levels of NGVN expression.

A. Genetic Diagnosis

One embodiment of the instant invention comprises a method for detecting variation in the expression of NGVN. This may comprise determining the level of NGVN expressed, or determining specific alterations in the expressed product. Obviously, this sort of assay has importance in the diagnosis of related BBS, but it also is relevant to other disease states such as diabetes, renal degeneration, renal carcinoma (cancers), renal malformation, congenital heart defects, limb deformity, hypertension and obesity.

The biological sample can be any tissue or fluid. Various embodiments include cells of the skin, muscle, fascia, brain, prostate, breast, endometrium, lung, head & neck, pancreas, small intestine, blood cells, liver, testes, ovaries, colon, rectum, skin, stomach, esophagus, spleen, lymph nodes, bone marrow or kidney. Other embodiments include fluid samples such as peripheral blood, lymph fluid, ascites, serous fluid, pleural effusion, sputum, cerebrospinal fluid, lacrimal fluid, stool urine or amniotic fluid.

Nucleic acids used are isolated from cells contained in the biological sample, according to standard methodologies (Sambrook et al., 1989). The nucleic acid may be genomic DNA or fractionated or whole cell RNA. Where RNA is used, it may be desired to convert the RNA to a complementary DNA (cDNA). In one embodiment, the RNA is whole cell RNA; in another, it is poly-A-RNA. Normally, the nucleic acid is amplified.

Depending on the format, the specific nucleic acid of interest is identified in the sample directly using amplification or with a second, known nucleic acid following amplification. Next, the identified product is detected. In certain applications, the detection may be performed by visual means (e.g., ethidium bromide staining of a gel). Alternatively, the detection may involve indirect identification of the product via chemiluminescence, radioactive scintigraphy of radiolabel or fluorescent label or even via a system using electrical or thermal impulse signals (Affymax Technology; Bellus, 1994).

Following detection, one may compare the results seen in a given patient with a statistically significant reference group of normal patients and patients that have BBS or BBS-related pathologies. In this way, it is possible to correlate the amount or kind of BBS detected with various clinical states.

Various types of defects have been identified by the present inventors. Thus, “alterations” should be read as including deletions, insertions, point mutations and duplications. Point mutations result in stop codons, frameshift mutations or amino acid substitutions. Somatic mutations are those occurring in non-germ line tissues. Germ-line tissue can occur in any tissue and are inherited. Mutations in outside the coding region also may affect the amount of NGVN produced, both by altering the transcription of the gene or in destabilizing or otherwise altering the processing of either the transcript (mRNA) or protein.

The following table provides a summary of the changes identified in the NGVN gene:

<table>
<thead>
<tr>
<th>Exon #</th>
<th>DNA Change (cDNA base)</th>
<th>Protein Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>T224G</td>
<td>Val75Gly</td>
</tr>
<tr>
<td>08</td>
<td>C814T</td>
<td>Arg272Stop</td>
</tr>
<tr>
<td>08</td>
<td>C823T</td>
<td>Arg272Stop</td>
</tr>
<tr>
<td>08</td>
<td>940delA</td>
<td>Frameshift</td>
</tr>
<tr>
<td>10</td>
<td>1206insA</td>
<td>Frameshift</td>
</tr>
<tr>
<td>03</td>
<td>A367G</td>
<td>Ile123Val</td>
</tr>
<tr>
<td>12</td>
<td>A1413C</td>
<td>Val471Val</td>
</tr>
</tbody>
</table>

It is contemplated that other mutations in the NGVN gene may be identified in accordance with the present invention by detecting a nucleotide change in particular nucleic acids (U.S. Pat. No. 4,988,617, incorporated herein by reference). A variety of different assays are contemplated in this regard, including but not limited to, fluorescent in situ hybridization (FISH; U.S. Pat. No. 5,633,365 and U.S. Pat. No. 5,665,549, each incorporated herein by reference), direct DNA sequencing, PFGE analysis, Southern or Northern blotting, single-stranded conformation analysis (SSCA), RNASe protection assay, allele-specific oligonucleotide (ASO, e.g., U.S. Pat. No. 5,639,611), dot blot analysis, denaturing gradient gel electrophoresis (e.g., U.S. Pat. No. 5,190,856
incorporated herein by reference), RFLP (e.g., U.S. Pat. No. 5,324,631 incorporated herein by reference) and PCR™. SSCP Methods for detecting and quantitating gene sequences, such as mutated genes and oncogenes, in for example biological fluids are described in U.S. Pat. No. 5,496,699, incorporated herein by reference.

a. Primers and Probes

The term primer, as defined herein, is meant to encompass any nucleic acid that is capable of priming the synthesis of a nascent nucleic acid in a template-dependent process. Typically, primers are oligonucleotides from ten to twenty base pairs in length, but longer sequences can be employed. Primers may be provided in double-stranded or single-stranded form, although the single-stranded form is preferred. Probes are defined differently, although they may act as primers. Probes, while perhaps capable of priming, are designed to bind to the target DNA or RNA and need not be used in an amplification process.

In preferred embodiments, the probes or primers are labeled with radioactive species (³²P, ³¹P, ³²S, ³¹H, or other label), with a fluorophore (rhodamine, fluorescein) or a chemiluminescent (luciferase).

b. Template Dependent Amplification Methods

A number of template dependent processes are available to amplify the marker sequences present in a given template sample. One of the best known amplification methods is the polymerase chain reaction (referred to as PCR™) which is described in detail in U.S. Pat. Nos. 4,683,195, 4,683,202 and 4,800,159, and in Innis et al., 1990, each of which is incorporated herein by reference in its entirety.

Briefly, in PCR™, two primer sequences are prepared that are complementary to regions on opposite complementary strands of the marker sequence. An excess of deoxynucleoside triphosphates are added to a reaction mixture along with a DNA polymerase, e.g., Taq polymerase. If the marker sequence is present in a sample, the primers will bind to the marker and the polymerase will cause the primers to be extended along the marker sequence by adding on nucleotides. By raising and lowering the temperature of the reaction mixture, the extended primers will dissociate from the marker to form reaction products, excess primers will bind to the marker and to the reaction products and the process is repeated.

A reverse transcriptase PCR™ amplification procedure may be performed in order to quantitate the amount of mRNA amplified. Methods of reverse transcribing RNA into cDNA are well known and described in Sambrook et al., 1989. Alternative methods for reverse transcription utilize thermostable, RNA-dependent DNA polymerases. These methods are described in WO 90/07641 filed Dec. 21, 1990. Polymerase chain reaction methodologies are well known in the art.

Another method for amplification is the ligase chain reaction ("LCR" U.S. Pat. Nos. 5,494,810, 5,484,699, EP 320 308, each incorporated herein by reference). In LCR, two complementary probe pairs are prepared, and in the presence of the target sequence, each pair will bind to opposite complementary strands of the target such that they about. In the presence of a ligase, the two probe pairs will link to form a single unit. By temperature cycling, as in PCR™, bound ligated units dissociate from the target and then serve as "target sequences" for ligation of excess probe pairs. U.S. Pat. No. 4,883,750 describes a method similar to LCR for binding probe pairs to a target sequence.

Qbeta Replicase is an RNA-directed RNA polymerase, also may be used as still another amplification method in the present invention. In this method, a replicative sequence of RNA that has a region complementary to that of a target is added to a sample in the presence of an RNA polymerase. The polymerase will copy the replicative sequence that can then be detected. Similar methods also are described in U.S. Pat. No. 4,786,600, incorporated herein by reference, which concerns recombinant RNA molecules capable of serving as a template for the synthesis of complementary single-stranded molecules by RNA-directed RNA polymerase. The product molecules so formed also are capable of serving as a template for the synthesis of additional copies of the original recombinant RNA molecule.

An isothermal amplification method, in which restriction endonucleases and ligases are used to achieve the amplification of target molecules that contain nucleotide 5'-[alpha-thio]-triphosphates in one strand of a restriction site also may be useful in the amplification of nucleic acids in the present invention (Walker et al., 1992; U.S. Pat. No. 5,270, 184, incorporated herein by reference). U.S. Pat. No. 5,707, 255 (incorporated herein by reference) describes an isothermal amplification using cleavable oligonucleotides for nucleotide detection. In the method described herein, separated populations of oligonucleotides are provided that contain complementary sequences to one another and that contain at least one scissile linkage which is cleaved whenever a perfectly matched duplex is formed containing the linkage. When a target polynucleotide contacts a first oligonucleotide cleavage occurs and a first fragment is produced which can hybridize with a second oligonucleotide. Upon such hybridization, the second oligonucleotide is cleaved releasing a second fragment that can, in turn, hybridize with a first oligonucleotide in a manner similar to that of the target polynucleotide.

Strand Displacement Amplification (SDA) is another method of carrying out isothermal amplification of nucleic acids which involves multiple rounds of strand displacement and synthesis, i.e., nick translation (e.g., U.S. Pat. Nos. 5,744,311; 5,733,752; 5,733,737; 5,712,124). A similar method, called Repair Chain Reaction (RCR), involves annealing several probes throughout a region targeted for amplification, followed by a repair reaction in which only two of the four bases are present. The other two bases can be added as biotinylated derivatives for easy detection. A similar approach is used in SDA. Target specific sequences can also be detected using a cyclic probe reaction (CPR). In CPR, a probe having 3' and 5' sequences of non-specific DNA and a middle sequence of specific RNA is hybridized to DNA that is present in a sample. Upon hybridization, the reaction is treated with RNase H, and the products of the probe identified as distinctive products that are released after digestion. The original template is annealed to another cycling probe and the reaction is repeated.

Still another amplification methods described in GB Application No. 2 202 328, and in PCT Application No. PCT/US89/01025, each of which is incorporated herein by reference in its entirety, may be used in accordance with the present invention. In the former application, "modified" primers are used in a PCR™-like, template- and enzyme-dependent synthesis. The primers may be modified by labeling with a capture moiety (e.g., biotin) and/or a detector moiety (e.g., enzyme). In the latter application, an excess of labeled probes are added to a sample. In the presence of the target sequence, the probe binds and is cleaved catalytically. After cleavage, the target sequence is released intact to be bound by excess probe. Cleavage of the labeled probe signals the presence of the target sequence.

Other nucleic acid amplification procedures include transcription-based amplification systems (TAS), including
nucleic acid sequence based amplification (NASBA) and 3SR (Kwoh et al., 1989; Gingeras et al., PCT Application WO 88/10315, incorporated herein by reference in its entirety). In NASBA, the nucleic acids can be prepared for amplification by standard phenol/chloroform extraction, heat denaturation of a clinical sample, treatment with lysis buffer and minispin columns for isolation of DNA and RNA or guanidinium chloride extraction of RNA. These amplification techniques involve annealing a primer which has target specific sequences. Following polymerization, DNA/RNA hybrids are digested with RNase H while double stranded DNA molecules are heat denatured again. In either case the single stranded DNA is made fully double stranded by addition of second target specific primer, followed by polymerization. The double-stranded DNA molecules are then multiply transcribed by an RNA polymerase such as T7 or SP6. In an isothermal cyclic reaction, the RNA’s are reverse transcribed into single stranded DNA, which is then converted to double stranded DNA, and then transcribed once again with an RNA polymerase such as T7 or SP6. The resulting products, whether truncated or complete, indicate target specific sequences.

Davey et al., EP 329 822 (incorporated herein by reference in its entirety) disclose a nucleic acid amplification process involving cyclically synthesizing single-stranded RNA (“ssRNA”), ssDNA, and double-stranded DNA (dsDNA), which may be used in accordance with the present invention. The ssRNA is a template for a first primer oligonucleotide, which is elongated by reverse transcriptase (RNA-dependent DNA polymerase). The RNA is then removed from the resulting DNA:RNA duplex by the action of ribonuclease H (RNase H, an RNase specific for RNA in duplex with either DNA or RNA). The resultant ssDNA is a template for a second primer, which also includes the sequences of an RNA polymerase promoter (exemplified by T7 RNA polymerase) 5′ to its homology to the template. This primer is then extended by DNA polymerase (exemplified by the large “Klenow” fragment of E. coli DNA polymerase I), resulting in a double-stranded DNA (“dsDNA”) molecule, having a sequence identical to that of the original RNA between the primers and having additionally, at one end, a promoter sequence. This promoter sequence can be used by the appropriate RNA polymerase to make many RNA copies of the DNA. These copies can then re-enter the cycle leading to very swift amplification. With proper choice of enzymes, this amplification can be done isothermally without addition of enzymes at each cycle. Because of the cyclical nature of this process, the starting sequence can be chosen to be in the form of either DNA or RNA.

Miller et al., PCT Application WO 89/06700 (incorporated herein by reference in its entirety) disclose a nucleic acid sequence amplification scheme based on the hybridization of a promoter/primer sequence to a target single-stranded DNA (“ssDNA”) followed by transcription of many RNA copies of the sequence. This scheme is not cyclic, i.e., new templates are not produced from the resultant RNA transcripts. Other amplification methods include “RACE” and “one-sided PCRTM” (Frohman, 1990; Oehara et al., 1989; each herein incorporated by reference in its entirety).

Methods based on ligation of two (or more) oligonucleotides in the presence of nucleic acid having the sequence of the resulting “di-oligonucleotide”, thereby amplifying the di-oligonucleotide, also may be used in the amplification step of the present invention. Wu et al., (1989), incorporated herein by reference in its entirety.

C. Southern/Northern Blotting
Blotting techniques are well known to those of skill in the art. Southern blotting involves the use of DNA as a target, whereas Northern blotting involves the use of RNA as a target. Each provide different types of information, although cDNA blotting is analogous, in many aspects, to blotting or RNA species.

Briefly, a probe is used to target a DNA or RNA species that has been immobilized on a suitable matrix, often a filter of nitrocellulose. The different species should be spatially separated to facilitate analysis. This often is accomplished by gel electrophoresis of nucleic acid species followed by “blotting” on to the filter.

Subsequently, the blotted target is incubated with a probe (usually labeled) under conditions that promote denaturation and rehybridization. Because the probe is designed to base pair with the target, the probe will binding a portion of the target sequence under renaturing conditions. Unbound probe is then removed, and detection is accomplished as described above.

d. Separation Methods
It normally is desirable, at one stage or another, to separate the amplification product from the template and the excess primer for the purpose of determining whether specific amplification has occurred. In one embodiment, amplification products are separated by agarose, agarose-acrylamide or polyacrylamide gel electrophoresis using standard methods (See Sambrook et al., 1989).

Alternatively, chromatographic techniques may be employed to effect separation. There are many kinds of chromatography which may be used in the present invention: adsorption, partition, ion-exchange and molecular sieve, and many specialized techniques for using them including column, paper, thin-layer and gas chromatography (Freidelker, 1982).

e. Detection Methods
Products may be visualized in order to confirm amplification of the marker sequences. One typical visualization method involves staining of a gel with ethidium bromide and visualization under UV light. Alternatively, if the amplification products are integrally labeled with radio- or fluorometrically-labeled nucleotides, the amplification products can then be exposed to x-ray film or visualized under the appropriate stimulating spectra, following separation.

In one embodiment, visualization is achieved indirectly. Following separation of amplification products, a labeled nucleic acid probe is brought into contact with the amplified marker sequence. The probe preferably is conjugated to a chromophore but may be radiolabeled. In another embodiment, the probe is conjugated to a binding partner, such as an antibody or biotin, and the other member of the binding pair carries a detectable moiety.

In one embodiment, detection is by a labeled probe. The techniques involved are well known to those of skill in the art and can be found in many standard books on molecular protocols. See Sambrook et al., 1989. For example, chromophore or radiolabel probes or primers identify the target during or following amplification.

One example of the foregoing is described in U.S. Pat. No. 5,279,721, incorporated by reference herein, which discloses an apparatus and method for the automated electrophoresis and transfer of nucleic acids. The apparatus permits electrophoresis and blotting without external manipulation of the gel and is ideally suited to carrying out methods according to the present invention.

In addition, the amplification products described above may be subjected to sequence analysis to identify specific
kinds of variations using standard sequence analysis
techniques. Within certain methods, exhaustive analysis of genes
is carried out by sequence analysis using primer sets
designed for optimal sequencing (Pignon et al, 1994). The
present invention provides methods by which any or all of
these types of analyses may be used. Using the sequences
disclosed herein, oligonucleotide primers may be designed to
permit the amplification of sequences throughout the
NGVN gene that may then be analyzed by direct sequenc-
ing.

f. Kit Components
All the essential materials and reagents required for
detecting and sequencing NGVN and variants thereof may
be assembled together in a kit. This generally will comprise
preselected primers and probes. Also included may be
enzymes suitable for amplifying nucleic acids including
various polymerases (RT, Taq, Sequenase™, etc.),
deoxy-
nucleotides and buffers to provide the necessary reaction
mixture for amplification. Such kits also generally will
comprise, in suitable means, distinct containers for each
individual reagent and enzyme as well as for each primer or
probe.

g. Design and Theoretical Considerations for Relative
Quantitative RT-PCR™
Reverse transcription (RT) of RNA to CDNA followed by
relative quantitative PCR™ (RT-PCR™) can be used to
determine the relative concentrations of specific mRNA
species isolated from patients. By determining that
the concentration of a specific mRNA species varies, it is shown
that the gene encoding the specific mRNA species is differen-
tially expressed.

In PCR™, the number of molecules of the amplified target
dNA increase by a factor approaching two with every cycle
of the reaction until some reagent becomes limiting. There-
after, the rate of amplification becomes increasingly dimin-
ished until there is no increase in the amplified target
between cycles. If a graph is plotted in which the cycle
number is on the X axis and the log of the concentration
of the amplified target DNA is on the Y axis, a curved line of
characteristic shape is formed by connecting the plotted
points. Beginning with the first cycle, the slope of the line is
positive and constant. This is said to be the linear portion of
the curve. After a reagent becomes limiting, the slope of the
line begins to decrease and eventually becomes zero. At this
point the concentration of the amplified target DNA
becomes asymptotic to some fixed value. This is said to be the
plateau portion of the curve.

The concentration of the target DNA in the linear portion
of the PCR™ amplification is directly proportional to the
starting concentration of the target before the reaction began.
By determining the concentration of the amplified products
of the target DNA in PCR™ reactions that have completed
the same number of cycles and are in their linear ranges, it
is possible to determine the relative concentrations of the
specific target sequence in the original DNA mixture. If the
DNA mixtures are CDNA synthesized from RNAs isolated
from different tissues or cells, the relative abundances of the
specific mRNA from which the target sequence was derived
can be determined for the respective tissues or cells. This
direct proportionality between the concentration of the
PCR™ products and the relative mRNA abundances is only
true in the linear range of the PCR™ reaction.

The final concentration of the target DNA in the plateau
portion of the curve is determined by the availability of
reagents in the reaction mix and is independent of the
original concentration of target DNA. Therefore, the first
condition that must be met before the relative abundances of
a mRNA species can be determined by RT-PCR™ for a
collection of RNA populations is that the concentrations of
the amplified PCR™ products must be sampled when the
PCR™ reactions are in the linear portion of their curves.
The second condition that must be met for an RT-PCR™
experiment to successfully determine the relative abund-
crances of a particular mRNA species is that relative con-
centrations of the amplifiable CDNAs must be normalized to
some independent standard. The goal of an RT-PCR™
experiment is to determine the abundance of a particular
mRNA species relative to the average abundance of all
mRNA species in the sample. In the experiments described
below, mRNAs for β-actin, asparagine synthetase and lipo-
cortin II were used as internal and external standards to
which the relative abundance of other mRNAs are com-
pared.

Most protocols for competitive PCR™ utilize internal
PCR™ standards that are approximately as abundant as the
target. These strategies are effective if the products of the
PCR™ amplifications are sampled during their linear
phases. If the products are sampled when the reactions are
approaching the plateau phase, then the less abundant prod-
uct becomes relatively over represented. Comparisons of relative abundances made for many different RNA samples,
such as the case when examining RNA samples for
expression, become distorted in such a way as to
make differences in relative abundances of RNAs appear
less than they actually are. This is not a significant problem
if the internal standard is much more abundant than the
target. If the internal standard is more abundant than the
target, then direct linear comparisons can be made between
RNA samples.

The above discussion describes theorectical consider-
ations for an RT-PCR™ assay for clinically derived materials. The
problems inherent in clinical samples are that they are of
variable quantity (making normalization problematic), and
that they are of variable quality (accelerating the co-
amplification of a reliable internal control, preferably of
larger size than the target). Both of these problems are
overcome if the RT-PCR™ is performed as a relative quanti-
tative RT-PCR™ with an internal standard in which the
internal standard is an amplifiable CDNA fragment that is
larger than the target CDNA fragment and in which the
abundance of the mRNA encoding the internal standard is
roughly 5–100 fold higher than the mRNA encoding the
target. This assay measures relative abundance, not absolute
abundance of the respective mRNA species.

Other studies may be performed using a more conven-
tional relative quantitative RT-PCR™ assay with an external
standard protocol. These assays sample the PCR™ products
in the linear portion of their amplification curves. The
number of PCR™ cycles that are optimal for sampling must
be empirically determined for each target CDNA fragment.
In addition, the reverse transcriptase products of each RNA
population isolated from the various tissue samples must be
carefully normalized for equal concentrations of amplifiable
CDNAs. This consideration is very important since the assay
measures absolute mRNA abundance. Absolute mRNA
abundance can be used as a measure of differential gene
expression only in normalized samples. While empirical
determination of the linear range of the amplification curve
and normalization of CDNA preparations are tedious and
time consuming processes, the resulting RT-PCR™ assays
can be superior to those derived from the relative quantita-
tive RT-PCR™ assay with an internal standard.

One reason for this advantage is that without the internal
standard/competitor, all of the reagents can be converted
into a single PCR™ product in the linear range of the amplification curve, thus increasing the sensitivity of the assay. Another reason is that with only one PCR™ product, display of the product on an electrophoretic gel or another display method becomes less complex, has less background and is easier to interpret.

h. Chip Technologies

Specifically contemplated by the present inventors are chip-based DNA technologies such as those described by Hacia et al. (1996) and Shoemaker et al. (1996). Briefly, these techniques involve quantitative methods for analyzing large numbers of genes rapidly and accurately. By tagging genes with oligonucleotides or using fixed probe arrays, one can employ chip technology to segregate target molecules as high density arrays and screen these molecules on the basis of hybridization. See also Pease et al., (1994); Fodor et al., (1991).

B. Immunodiagnosis

Antibodies can be used in characterizing the NGVN content of healthy and diseased tissues, through techniques such as ELISAs and Western blotting. This may provide a prenatal screen or in counseling for those individuals seeking to have children.

The use of antibodies of the present invention, in an ELISA assay is contemplated. For example, anti-NGVN antibodies are immobilized onto a selected surface, preferably a surface exhibiting a protein affinity such as the walls of a polystyrene microtiter plate. After washing to remove incompletely adsorbed material, it is desirable to bind or coat the assay plate wells with a non-specific protein that is known to be antigenically neutral with regard to the test antisera such as bovine serum albumin (BSA), casein or solutions of powdered milk. This allows for blocking of non-specific adsorption sites on the immobilizing surface and thus reduces the background caused by non-specific binding of antigen onto the surface.

After binding of antibody to the well, coating with a non-reactive material to reduce background, and washing to remove unbound material, the immobilizing surface is contacted with the sample to be tested in a manner conducive to immune complex (antigen/antibody) formation.

Following formation of specific immunocomplexes between the test sample and the bound antibody, and subsequent washing, the occurrence and even amount of immunocomplex formation may be determined by subjecting the same to a second antibody having specificity for NGVN that differs the first antibody. Appropriate conditions preferably include diluting the sample with diluents such as BSA, bovine gamma globulin (BGG) and phosphate buffered saline (PBS)/Tween®. These added agents also tend to assist in the reduction of nonspecific background. The layered antisera is then allowed to incubate for about 2 to about 4 hr. at temperatures preferably on the order of about 25° to about 27° C. Following incubation, the antisera-contacted surface is washed so as to remove non-immunocomplexed material. A preferred washing procedure includes washing with a solution such as PBS/Tween®, or borate buffer.

To provide a detecting means, the second antibody will preferably have an associated enzyme that will generate a color development upon incubating with an appropriate chromogenic substrate. Thus, for example, one will desire to contact and incubate the second antibody-bound surface with a urease or peroxidase-conjugated anti-human IgG for a period of time and under conditions which favor the development of immunocomplex formation (e.g., incubation for 2 hr at room temperature in a PBS-containing solution such as PBS/Tween®).

After incubation with the second enzyme-tagged antibody, and subsequent to washing to remove unbound material, the amount of label is quantified by incubation with a chromogenic substrate such as urea and bromocresol purple or 2,2’-azino-di-(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) and H₂O₂, in the case of peroxidase as the enzyme label. Quantitation is then achieved by measuring the degree of color generation, e.g., using a visible spectrum spectrophotometer.

The preceding format may be altered by first binding the sample to the assay plate. Then, primary antibody is incubated with the assay plate, followed by detecting of bound primary antibody using a labeled secondary antibody with specificity for the primary antibody.

The steps of various other useful immunodetection methods have been described in the scientific literature, such as, e.g., Nakamura et al., (1987). Immunoassays, in their most simple and direct sense, are binding assays. Certain preferred immunoassays are the various types of radioimmunoassays (RIA) and immunobead capture assay. Immunohistochemical detection using tissue sections also is particularly useful. However, it will be readily appreciated that detection is not limited to such techniques, and Western blotting, dot blotting, FACS analyses, and the like also may be used in connection with the present invention.

The antibody compositions of the present invention will find great use in immunoblot or Western blot analysis. The antibodies may be used as high-affinity primary reagents for the identification of proteins immobilized onto a solid support matrix, such as nitrocellulose, nylon or combinations thereof. In conjunction with immunoprecipitation, followed by gel electrophoresis, these may be used as a single step reagent for use in detecting antigens against which secondary reagents used in the detection of the antigen cause an adverse background. Immunologically-based detection methods for use in conjunction with Western blotting include enzymatically-, radiolabeled-, or fluorescently-tagged secondary antibodies against the toxin moiety are considered to be of particular use in this regard. U.S. Patents concerning the use of such labels include U.S. Pat. Nos. 3,817,837; 3,850,752; 3,939,350; 3,996,345; 4,277,437; 4,275,149 and 4,366,241, each incorporated herein by reference. Of course, one may find additional advantages through the use of a secondary binding ligand such as a second antibody or a biotin/avidin ligand binding arrangement, as is known in the art.

4. Methods for Screening Active Compounds

The present invention also contemplates the use of NGVN and active fragments, and nucleic acids coding therefor, in the screening of compounds for activity in either stimulating NGVN activity, overcoming the lack of NGVN or blocking the effect of a mutant NGVN molecule. These assays may make use of a variety of different formats and may depend on the kind of “activity” for which the screen is being conducted.

A. In Vitro Assays

In one embodiment, the invention is to be applied for the screening of compounds that bind to the NGVN polypeptide or fragment thereof. The polypeptide or fragment may be either free in solution, fixed to a support, expressed in or on the surface of a cell. Either the polypeptide or the compound may be labeled, thereby permitting determining of binding.

In another embodiment, the assay may measure the inhibition of binding of NGVN to a natural or artificial substrate or binding partner. Competitive binding assays can be performed in which one of the agents (NGVN, binding partner
or compound) is labeled. Usually, the polypeptide will be the labeled species. One may measure the amount of free label versus bound label to determine binding or inhibition of binding.

Another technique for high throughput screening of compounds is described in WO 84/03564. Large numbers of small peptide test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. The peptide test compounds are reacted with NGVN and washed. Bound polypeptide is detected by various methods.

Purified NGVN can be coated directly onto plates for use in the aforementioned drug screening techniques. However, non-neutralizing antibodies to the polypeptide can be used to immobilize the polypeptide to a solid phase. Also, fusion proteins containing a reactive region (preferably a terminal region) may be used to link the NGVN active region to a solid phase.

Various cell lines containing wild-type or natural or engineered mutations in NGVN gene can be used to study various functional attributes of NGVN and how a candidate compound affects these attributes. Methods for engineering mutations are described elsewhere in this document, as are naturally-occurring mutations in NGVN that lead to, contribute to and/or otherwise cause BBS. In such assays, the compound would be formulated appropriately, given its biochemical nature, and contacted with a target cell. Depending on the assay, culture may be required. The cell may then be examined by virtue of a number of different physiologic assays. Alternatively, molecular analysis may be performed in which the function of NGVN, or related pathways, may be explored.

B. In Vivo Assays

The present invention also encompasses the use of various animal models. Thus, any identity seen between human and other animal NGVN provides an excellent opportunity to examine the function of NGVN in a whole animal system where it is normally expressed. By developing or isolating mutant cell lines that fail to express normal NGVN, one can generate models in mice that will be highly predictive of BBS and related syndromes in humans and other mammals.

Treatment of animals with test compounds will involve the administration of the compound, in an appropriate form, to the animal. Administration will be by any route the compound could be utilized for clinical or non-clinical purposes, including but not limited to oral, nasal, buccal, rectal, vaginal or topical. Alternatively, administration may be by intratracheal insufflation, bronchial instillation, intradermal, subcutaneous, intramuscular, intraperitoneal or intravenous injection. Specifically contemplated are systemic intravenous injection, regional administration via blood or lymph supply and intratumoral injection.

Determining the effectiveness of a compound in vivo may involve a variety of different criteria. Such criteria include, but are not limited to, survival, reduction of tumor burden or mass, arrest or slowing of tumor progression, elimination of tumors, inhibition or prevention of metastasis, increased activity level, improvement in immune effector function and improved food intake.

C. Rational Drug Design

The goal of rational drug design is to produce structural analogs of biologically active polypeptides or compounds with which they interact (agonists, antagonists, inhibitors, binding partners, etc.). By creating such analogs, it is possible to fashion drugs which are more active or stable than the natural molecules, which have different susceptibility to alteration or which may affect the function of various other molecules. In one approach, one would generate a three-dimensional structure for NGVN or a fragment thereof. This could be accomplished by x-ray crystallography, computer modeling or by a combination of both approaches. An alternative approach, "alanine scan," involves the random replacement of residues throughout the molecule with alanine, and the resulting effect on function determined.

It also is possible to isolate a NGVN-specific antibody, selected by a functional assay, and then solve its crystal structure. In principle, this approach yields a pharmacore upon which subsequent drug design can be based. It is possible to bypass protein crystallography altogether by generating anti-idiotypic antibodies to a functional, pharmacologically active antibody. As a mirror image of a mirror image, the binding site of anti-idiotype would be expected to be an analog of the original antigen. The anti-idiotypic could then be used to identify and isolate peptides from banks of chemically- or biologically-produced peptides. Selected peptides would then serve as the pharmacore. Anti-idiotypic may be generated using the methods described herein for producing antibodies, using an antibody as the antigen.

Thus, one may design drugs which have improved NGVN activity or which act as stimulators, inhibitors, agonists, antagonists of NGVN or molecules affected by NGVN function. By virtue of the availability of cloned NGVN gene sequences, sufficient amounts of NGVN can be produced to perform crystallographic studies. In addition, knowledge of the polypeptide sequences permits computer employed predictions of structure-function relationships.

D. Transgenic Animals/Knockout Animals

In one embodiment of the invention, transgenic animals are produced which contain a functional transgene encoding a functional NGVN polypeptide or variants thereof. Transgenic animals expressing NGVN transgenes, recombinant cell lines derived from such animals and transgenic embryos may be useful in methods for screening for and identifying agents that induce or repress function of NGVN. Transgenic animals of the present invention also can be used as models for studying disease states.

In one embodiment of the invention, a NGVN transgene is introduced into a non-human host to produce a transgenic animal expressing a human or murine NGVN gene. The transgenic animal is produced by the integration of the transgene into the genome in a manner that permits the expression of the transgene. Methods for producing transgenic animals are generally described by Wagner and Hoppe (U.S. Pat. No. 4,873,191; which is incorporated herein by reference), Brinster et al., 1985; which is incorporated herein by reference in its entirety) and in "Manipulating the Mouse Embryo: A Laboratory Manual" 2nd edition (eds., Hogan, Beddington, Costantini and Long, Cold Spring Harbor Laboratory Press, 1994; which is incorporated herein by reference in its entirety).

It may be desirable to replace the endogenous NGVN by homologous recombination between the transgene and the endogenous gene; or the endogenous gene may be eliminated by deletion as in the preparation of “knock-out” animals. Typically, a NGVN gene flanked by genomic sequences is transferred by microinjection into a fertilized egg. The microinjected eggs are implanted into a host female, and the progeny are screened for the expression of the transgene. Transgenic animals may be produced from the fertilized eggs from a number of animals including, but not limited to reptiles, amphibians, birds, mammals, and fish. Within a particularly preferred embodiment, transgenic mice are generated which overexpress NGVN or express a mutant form of the polypeptide. Alternatively, the absence of a
NGVN in “knock-out” mice permits the study of the effects that loss of NGVN protein has on a cell in vivo. Knock-out mice also provide a model for the development of NGVN-related disease.

As noted above, transgenic animals and cell lines derived from such animals may find use in certain testing experiments. In this regard, transgenic animals and cell lines capable of expressing wild-type or mutant NGVN may be exposed to test substances. These test substances can be screened for the ability to enhance wild-type NGVN expression or function or impair the expression or function of mutant NGVN.

5. Methods for Treating BBS

The present invention also contemplates the treatment of BBS and related symptoms such as obesity, diabetes, renal cancer or other abnormalities, retinal degeneration and hypertension by providing a NGVN protein to cells of an affected individual.

A. Genetic Based Therapies

Specifically, the present inventors intend to provide, to a cell, an expression construct capable of providing NGVN to that cell. Because the sequence homology between the human, and other NGVN, any of these nucleic acids could be used in human therapy, as could any of the gene sequence variants discussed above which would encode the same, or a biologically equivalent polypeptide. The lengthy discussion of expression vectors and the genetic elements employed therein is incorporated into this section by reference. Particularly preferred expression vectors are viral vectors such as adenovirus, adenovector-associated viruses, herpesvirus, vaccinia virus and retrovirus. Also preferred is liposomally-encapsulated expression vector.

Those of skill in the art are well aware of how to apply gene delivery to in vivo and ex vivo situations. For viral vectors, one generally will prepare a viral vector stock. Depending on the kind of virus and the titer attainable, one will deliver 1×10^6, 1×10^7, 1×10^8, 1×10^9, 1×10^10, 1×10^11 or 1×10^12 infectious particles to the patient. Similar figures may be extrapolated for liposomal or other non-viral formulations by comparing relative uptake efficiencies. Formulation as a pharmaceutically acceptable composition is discussed below.

B. Protein Therapy

Another therapy approach is the provision, to a subject, of NGVN polypeptide, active fragments, synthetic peptides, mimetics or other analogs thereof. The protein may be produced by recombinant expression means. Formulations would be selected based on the route of administration and purpose including, but not limited to, liposomal formulations and classic pharmaceutical preparations.

6. Engineering Expression Constructs

In certain embodiments, the present invention involves the manipulation of genetic material to produce expression constructs that encode NGVN gene. Such methods involve the generation of expression constructs containing, for example, a heterologous DNA encoding a gene of interest and a means for its expression, replicating the vector in an appropriate helper cell, obtaining viral particles produced therefrom, and infecting cells with the recombinant virus particles.

The gene will be a normal NGVN gene discussed herein above. In the context of gene therapy, the gene will be a heterologous DNA, meant to include DNA derived from a source other than the viral genome which provides the backbone of the vector. The gene may be derived from a prokaryotic or eukaryotic source such as a bacterium, a virus, a yeast, a parasite, a plant, or even an animal. The heterologous DNA also may be derived from more than one source, i.e., a multicistronic construct or a fusion protein. The heterologous DNA also may include a regulatory sequence which may be derived from one source and the gene from a different source.

A. Selectable Markers

In certain embodiments of the invention, the therapeutic expression constructs of the present invention contain nucleic acid constructs whose expression may be identified in vitro or in vivo by including a marker in the expression construct. Such markers will confer an identifiable change to the cell permitting easy identification of cells containing the expression construct. Usually the inclusion of a drug selection marker aids in cloning and in the selection of transformants. For example, genes that confer resistance to neomycin, puromycin, hygromycin, DHFR, GPT, zeocin and hpgicolin are useful selectable markers. Alternatively, enzymes such as herpes simplex virus thymidine kinase (tk) may be employed. Immunologic markers also can be employed. The selectable marker employed is not believed to be important, so long as it is capable of being expressed simultaneously with the nucleic acid encoding a gene product. Further examples of selectable markers are well known to one of skill in the art and include reporters such as EGFP, β-gal or chloramphenicol acetyltransferase (CAT).

B. Control Regions

a. Promoters

Throughout this application, the term “expression construct” is meant to include any type of genetic construct containing a nucleic acid coding for gene products in which part or all of the nucleic acid encoding sequence is capable of being transcribed. The transcript may be translated into a protein, but it need not be. In certain embodiments, expression includes both transcription of a gene and translation of mRNA into a gene product. In other embodiments, expression only includes transcription of the nucleic acid encoding genes of interest.

The nucleic acid encoding a gene product is under transcriptional control of a promoter. A “promoter” refers to a DNA sequence recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the specific transcription of a gene. The phrase “under transcriptional control” means that the promoter is in the correct location and orientation in relation to the nucleic acid to control RNA polymerase initiation and expression of the gene.

The term promoter will be used here to refer to a group of transcriptional control modules that are clustered around the initiation site for RNA polymerase II. Much of the thinking about how promoters are organized derives from analyses of several viral promoters, including those for the HSV thymidine kinase (tk) and SV40 early transcription units. These studies, augmented by more recent work, have shown that promoters are composed of discrete functional modules, each consisting of approximately 7–20 bp of DNA, and containing one or more recognition sites for transcriptional activator or repressor proteins.

At least one module in each promoter functions to position the start site for RNA synthesis. The best known example of this is the TATA box, but in some promoters lacking a TATA box, such as the promoter for the mammalian terminal deoxynucleotidyl transferase gene and the promoter for the SV40 late genes, a discrete element overriding the start site itself helps to fix the place of initiation. Additional promoter elements regulate the frequency of transcriptional initiation. Typically, these are located in the
region 30-110 bp upstream of the start site, although a number of promoters have recently been shown to contain functional elements downstream of the start site as well. The spacing between promoter elements frequently is flexible, so that promoter function is preserved when elements are inverted or moved relative to one another. In the tk promoter, the spacing between promoter elements can be increased to 50 bp apart before activity begins to decline. Depending on the promoter, it appears that individual elements can function either cooperatively or independently to activate transcription.

The particular promoter employed to control the expression of a nucleic acid sequence of interest is not believed to be important, so long as it is capable of directing the expression of the nucleic acid in the targeted cell. Thus, where a human cell is targeted, it is preferable to position the nucleic acid coding region adjacent to and under the control of a promoter that is capable of being expressed in a human cell. Generally speaking, such a promoter might include either a human or viral promoter.

In various embodiments, the human cytomegalovirus (CMV) immediate early gene promoter, the SV40 early promoter, the Rous sarcoma virus long terminal repeat, β-actin, rat insulin promoter and glyceraldehyde-3-phosphate dehydrogenase can be used to obtain high-level expression of the coding sequence of interest. The use of other viral or mammalian cellular or bacterial phage promoters which are well-known in the art to achieve expression of a coding sequence of interest is contemplated as well, provided that the levels of expression are sufficient for a given purpose. By employing a promoter with well-known properties, the level and pattern of expression of the protein of interest following transfection or transformation can be optimized.

Selection of a promoter that is regulated in response to specific physiologic or synthetic signals can permit inducible expression of the gene product. For example in the case where expression of a transgene, or transgenes when a multistaticronic vector is utilized, is toxic to the cells in which the vector is produced in, it may be desirable to prohibit or reduce expression of one or more of the transgenes. Examples of transgenes that may be toxic to the producer cell line are pro-apoptotic and cytokine genes. Several inducible promoter systems are available for production of viral vectors where the transgene product may be toxic.

The ecdysone system (Invitrogen, Carlsbad, Calif.) is one such system. This system is designed to allow regulated expression of a gene of interest in mammalian cells. It consists of a tightly regulated expression mechanism that allows virtually no basal level expression of the transgene, but over 200-fold inducibility. The system is based on the heterodimeric ecdysone receptor of Drosophyla, and when ecdysone or an analog such as muriosterone A binds to the receptor, the receptor activates a promoter to turn on transcription of the downstream transgene high levels of mRNA transcripts are attained. In this system, both monomers of the heterodimeric receptor are constitutively expressed from one vector, whereas the ecdysone-responsive promoter which drives expression of the gene of interest is on another plasmid. Engineering of this type of system into the gene transfer vector of interest would therefore be useful. Cotransfection of plasmids containing the gene of interest and the receptor monomers in the producer cell line would then allow for the production of the gene transfer vector without expression of a potentially toxic transgene. At the appropriate time, expression of the transgene could be activated with ecdysone or muriosterone A.

Another inducible system that would be useful is the Tet-Off™ or Tet-On™ system (Clontech, Palo Alto, Calif.) originally developed by Gossen and Bujard (Gossen and Bujard, 1992; Gossen et al., 1995). This system also allows high levels of gene expression to be regulated in response to tetracycline or tetracycline derivatives such as doxycycline. In the Tet-On™ system, gene expression is turned on in the presence of doxycycline, whereas in the Tet-Off™ system, gene expression is turned on in the absence of doxycycline. These systems are based on two regulatory elements derived from the tetracycline resistance operon of E. coli. The tetracycline operator sequence to which the tetracycline repressor binds, and the tetracycline repressor protein. The gene of interest is cloned into a plasmid behind a promoter that has tetracycline-responsive elements present in it. A second plasmid contains a regulatory element called the tetracycline-controlled transactivator, which is composed, in the Tet-Off™ system, of the VP16 domain from the herpes simplex virus and the wild-type tetracycline repressor. Thus in the absence of doxycycline, transcription is constitutively on. In the Tet-On™ system, the tetracycline repressor is not wild type and in the presence of doxycycline activates transcription. For gene therapy vector production, the Tet-Off™ system would be preferable so that the producer cells could be grown in the presence of tetracycline or doxycycline and prevent expression of a potentially toxic transgene, but when the vector is introduced to the patient, the gene expression would be constitutively on.

In some circumstances, it may be desirable to regulate expression of a transgene in a gene therapy vector. For example, different viral promoters with varying strengths of activity may be utilized depending on the level of expression desired. In mammalian cells, the CMV immediate early promoter is often used to provide strong transcriptional activation. Modified versions of the CMV promoter that are less potent have also been used when reduced levels of expression of the transgene are desired. When expression of a transgene in hematopoetic cells is desired, retroviral promoters such as the LTRs from MLV or MMTV are often used. Other viral promoters that may be used depending on the desired effect include SV40, RSV LTR, HIV-1 and HIV-2 LTR, adenovirus promoters such as from the E1A, E2A, or MLP region, AAV LTR, cauliflower mosaic virus, HSV-TK, and avian sarcoma virus.

Similarly tissue specific promoters may be used to effect transcription in specific tissues or cells so as to reduce potential toxicity or undesirable effects to non-targeted tissues. For example, promoters such as the PSA, probasin, prostatic acid phosphatase or prostate-specific glandular kallikrein (hK2) may be used to target gene expression in the prostate. Similarly, the following promoters may be used to target gene expression in other tissues (Table 5).

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Promoter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreas</td>
<td>insulin, elastin, amylase</td>
</tr>
<tr>
<td>Liver</td>
<td>pdr-1, pdk-1, glucokinase, albumin PEPCK, HBV enhancer, alpha fetoprotein, apolipoprotein C, alpha-1 antitrypsin</td>
</tr>
</tbody>
</table>
promoters such as those of various cyclins, PCNA, galectin-3, E2F1, p53 and BRCA1 could be used. Promoters that could be used according to the present invention include Lac-regulatable, chemotherapy inducible (e.g. MDR), and heat (hyperthermia) inducible promoters, Radiation-inducible (e.g., EGR (Joki et al., 1995)), Alpha-hinhibin, RNA pol III rRNA met and other amino acid promoters, U1 mRNA (Bartlett et al., 1996), MC-1, PGK, -actin and alpha-globin. Many other promoters that may be useful are listed in Walther and Stein (1996).

It is envisioned that any of the above promoters alone or in combination with another may be useful according to the present invention depending on the action desired. In addition, this list of promoters should not be construed to be exhaustive or limiting, those of skill in the art will know of other promoters that may be used in conjunction with the promoters and methods disclosed herein.

b. Enhancers

Enhancers are genetic elements that increase transcription from a promoter located at a distant position on the same molecule of DNA. Enhancers are organized much like promoters. That is, they are composed of many individual elements, each of which binds to one or more transcriptional proteins. The basic distinction between enhancers and promoters is operational. An enhancer region as a whole must be able to stimulate transcription at a distance; this need not be true of a promoter region or its component elements. On the other hand, a promoter must have one or more elements that direct initiation of RNA synthesis at a particular site and in a particular orientation, whereas enhancers lack these specificities. Promoters and enhancers are often overlapping and contiguous, often seeming to have a very similar modular organization.

Below is a list of promoters additional to the tissue specific promoters listed above, cellular promoters/enhancers and inducible promoters/enhancers that could be used in combination with the nucleic acid encoding a gene of interest in an expression construct (Table 6 and Table 7). Additionally, any promoter/enhancer combination (as per the Eukaryotic Promoter Data Base EPDB) could also be used to drive expression of the gene. Eukaryotic cells can support cytoplasmic transcription from certain bacterial promoters if the appropriate bacterial polymerase is provided, either as part of the delivery complex or as an additional genetic expression construct.

In preferred embodiments of the invention, the expression construct comprises a virus or engineered construct derived from a viral genome. The ability of certain viruses to enter cells via receptor-mediated endocytosis and to integrate into host cell genome and express viral genes stably and efficiently have made them attractive candidates for the transfer of foreign genes into mammalian cells (Ridgeway, 1988; Nicolas and Rubenstein, 1988; Baichwal and Sugden, 1986; Temin, 1986). The first viruses used as gene vectors were DNA viruses including the papovaviruses (simian virus 40, bovine papilloma virus, and polyoma) (Ridgeway, 1988; Baichwal and Sugden, 1986) and adenoviruses (Ridgeway, 1988; Baichwal and Sugden, 1986). These have a relatively low capacity for foreign DNA sequences and have a restricted host spectrum. Furthermore, their oncogenic potential and cytotoxic effects in permissive cells raise safety concerns. They can accommodate only up to 8 kB of foreign genetic material but can be readily introduced in a variety of cell lines and laboratory animals (Nicolas and Rubenstein, 1988; Temin, 1986).

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Promoter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeletal muscle</td>
<td>myosin H chain</td>
</tr>
<tr>
<td></td>
<td>muscle creatine kinase</td>
</tr>
<tr>
<td></td>
<td>dystrophin</td>
</tr>
<tr>
<td></td>
<td>calspincth p94</td>
</tr>
<tr>
<td></td>
<td>skeletal alpha-actin</td>
</tr>
<tr>
<td>Skin</td>
<td>keratin K6</td>
</tr>
<tr>
<td></td>
<td>keratin K1</td>
</tr>
<tr>
<td>Lung</td>
<td>CFTR</td>
</tr>
<tr>
<td></td>
<td>human cytokeratin 18 (K18)</td>
</tr>
<tr>
<td></td>
<td>pulmonary surfactant proteins A, B and C</td>
</tr>
<tr>
<td></td>
<td>CC-10</td>
</tr>
<tr>
<td></td>
<td>P1</td>
</tr>
<tr>
<td>Smooth muscle</td>
<td>sm22 alpha</td>
</tr>
<tr>
<td></td>
<td>SM-alpha-actin</td>
</tr>
<tr>
<td>Endothelium</td>
<td>endothelin-1</td>
</tr>
<tr>
<td></td>
<td>E-selectin</td>
</tr>
<tr>
<td></td>
<td>von Willebrand factor</td>
</tr>
<tr>
<td></td>
<td>TIE (Korhonen et al., 1995)</td>
</tr>
<tr>
<td></td>
<td>KDR/Tk-1</td>
</tr>
<tr>
<td>Melanoocytes</td>
<td>tyrosinase</td>
</tr>
<tr>
<td>Adipose tissue</td>
<td>lipoprotein lipase (Zechnier et al., 1988)</td>
</tr>
<tr>
<td></td>
<td>adipase (Spiegelman et al., 1989)</td>
</tr>
<tr>
<td></td>
<td>acetyl-CoA carboxylase (Pape and Kim, 1989)</td>
</tr>
<tr>
<td></td>
<td>glycerophosphate dehydrogenase (Dunil et al., 1989)</td>
</tr>
<tr>
<td></td>
<td>adipocyte P2 (Hunt et al., 1986)</td>
</tr>
<tr>
<td>Blood</td>
<td>β-globin</td>
</tr>
</tbody>
</table>
C. Polyadenylation Signals

Where a cDNA insert is employed, one will typically desire to include a polyadenylation signal to effect proper polyadenylation of the gene transcript. The nature of the polyadenylation signal is not believed to be crucial to the successful practice of the invention, and any such sequence may be employed such as human or bovine growth hormone and SV40 polyadenylation signals. Also contemplated as an element of the expression cassette is a terminator. These elements can serve to enhance message levels and to minimize read through from the cassette into other sequences.

<table>
<thead>
<tr>
<th>TABLE 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENHANCER</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Immunoglobulin Heavy Chain</td>
</tr>
<tr>
<td>Immunoglobulin Light Chain</td>
</tr>
<tr>
<td>T-Cell Receptor</td>
</tr>
<tr>
<td>HLA DQ α and DQ β</td>
</tr>
<tr>
<td>β-Interferon</td>
</tr>
<tr>
<td>Interleukin-2</td>
</tr>
<tr>
<td>Interleukin-2 Receptor</td>
</tr>
<tr>
<td>MHC Class II 5</td>
</tr>
<tr>
<td>MHC Class II HLA-DRα</td>
</tr>
<tr>
<td>β-Actin</td>
</tr>
<tr>
<td>Muscle Creatine Kinase</td>
</tr>
<tr>
<td>Prealbumin (Transferrin)</td>
</tr>
<tr>
<td>Elastase</td>
</tr>
<tr>
<td>Metallothionein</td>
</tr>
<tr>
<td>Collagenase</td>
</tr>
<tr>
<td>Albumin Gene</td>
</tr>
<tr>
<td>α-1-Antitrypsin</td>
</tr>
<tr>
<td>κ-2-Globin</td>
</tr>
<tr>
<td>β-Globin</td>
</tr>
<tr>
<td>c-fos</td>
</tr>
<tr>
<td>c-HA-ras</td>
</tr>
<tr>
<td>Insulin</td>
</tr>
<tr>
<td>Neural Cell Adhesion Molecule (NCAM)</td>
</tr>
<tr>
<td>α1-Actin</td>
</tr>
<tr>
<td>H2B (H2BZ) Histone</td>
</tr>
<tr>
<td>Mouse or Type I Collagen</td>
</tr>
<tr>
<td>Glucose-Regulated Proteins (GRP94 and GRP78)</td>
</tr>
<tr>
<td>Rat Growth Hormone</td>
</tr>
<tr>
<td>Human Serum Amyloid A (SAA)</td>
</tr>
<tr>
<td>Tropo-1 (TN I)</td>
</tr>
<tr>
<td>Platelet-Derived Growth Factor</td>
</tr>
<tr>
<td>Duchenne Muscular Dystrophy</td>
</tr>
<tr>
<td>SV40</td>
</tr>
<tr>
<td>Polyoma</td>
</tr>
<tr>
<td>Retroviruses</td>
</tr>
<tr>
<td>Papilloma Virus</td>
</tr>
<tr>
<td>Hepatitis B Virus</td>
</tr>
<tr>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>Cytomegalovirus</td>
</tr>
<tr>
<td>Gibbon Ape Leukemia Virus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
</tr>
<tr>
<td>Inducer</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>MT II</td>
</tr>
<tr>
<td>Phorbol Ester (TPA)</td>
</tr>
<tr>
<td>Heavy metals</td>
</tr>
<tr>
<td>MMTV (mouse mammary tumor virus)</td>
</tr>
<tr>
<td>Phorbol Ester (TPA), H2O2</td>
</tr>
<tr>
<td>Poly(dX)</td>
</tr>
<tr>
<td>Poly(rC)</td>
</tr>
<tr>
<td>β-Interferon</td>
</tr>
<tr>
<td>Adenovirus 5 E2</td>
</tr>
<tr>
<td>c-jun</td>
</tr>
<tr>
<td>Collagenase</td>
</tr>
<tr>
<td>Stromelysin</td>
</tr>
<tr>
<td>SV40</td>
</tr>
<tr>
<td>Mouse MX Gene</td>
</tr>
<tr>
<td>GRP78 Gene</td>
</tr>
<tr>
<td>β-2-Macroglobulin</td>
</tr>
<tr>
<td>Vimentin</td>
</tr>
<tr>
<td>MHC Class I Gene (H-2k)</td>
</tr>
<tr>
<td>Interferon</td>
</tr>
<tr>
<td>Interferon, Newcastle Disease Virus</td>
</tr>
<tr>
<td>A23187</td>
</tr>
<tr>
<td>IL-6</td>
</tr>
<tr>
<td>Serum</td>
</tr>
<tr>
<td>Interferon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 7-continued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
</tr>
<tr>
<td>Inducer</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>HSP70</td>
</tr>
<tr>
<td>E1a, SV40 Large T Antigen</td>
</tr>
<tr>
<td>Follitropin</td>
</tr>
<tr>
<td>Phorbol Ester-TPA</td>
</tr>
<tr>
<td>Tumor Necrosis Factor</td>
</tr>
<tr>
<td>FMA</td>
</tr>
<tr>
<td>Thyroid Stimulating Hormone α</td>
</tr>
<tr>
<td>Thyroid Hormone</td>
</tr>
<tr>
<td>Insulin E Box</td>
</tr>
<tr>
<td>Glucose</td>
</tr>
</tbody>
</table>

7. Methods of Gene Transfer

In order to mediate the effect transgene expression in a cell, it will be necessary to transfer the therapeutic expression constructs of the present invention into a cell. Such transfer may employ viral or non-viral methods of gene transfer. This section provides a discussion of methods and compositions of gene transfer.

A. Viral Vector-Mediated Transfer

In certain embodiments, the NGV gene is incorporated into a viral particle to mediate gene transfer to a cell. Typically, the virus simply will be exposed to the appropriate host cell under physiologic conditions, permitting uptake of the virus. The present methods may be advantageously employed using a variety of viral vectors, as discussed below.

a. Adenovirus

Adenovirus is particularly suitable for use as a gene transfer vector because of its mid-sized DNA genome, ease of manipulation, high titer, wide target-cell range, and high infectivity. The roughly 36 kb viral genome is bounded by 100–200 base pair (bp) inverted terminal repeats (ITR), in which are contained cis-acting elements necessary for viral DNA replication and packaging. The early (E) and late (L) regions of the genome that contain different transcription units are divided by the onset of viral DNA replication.

The E1 region (E1A and E1B) encodes proteins responsible for the regulation of transcription of the viral genome and a few cellular genes. The expression of the E2 region (E2A and E2B) results in the synthesis of the proteins for viral DNA replication. These proteins are involved in DNA replication, late gene expression, and host cell shut off (Renan, 1990). The products of the late genes (L1, L2, L3, L4 and L5), including the majority of the viral capsid proteins, are expressed only after significant processing of a single primary transcript issued by the major late promoter (MLP). The MLP (located at 16.8 map units) is particularly efficient during the late phase of infection, and all the mRNAs issued from this promoter possess a 5′ tripartite leader (TL) sequence which makes them preferred mRNAs for translation.

In order for adenovirus to be optimized for gene therapy, it is necessary to maximize the carrying capacity so that large segments of DNA can be included. It also is very desirable to reduce the toxicity and immunologic reaction associated with certain adenoviral products. The two goals are, to an extent, coterminal in that elimination of adenoviral genes serves both ends. By practice of the present invention, it is possible achieve both these goals while retaining the ability to manipulate the therapeutic constructs with relative ease.

The large displacement of DNA is possible because the cis elements required for viral DNA replication all are localized in the inverted terminal repeats (ITR) (100–200 bp) at either end of the linear viral genome. Plasmids containing ITR’s can replicate in the presence of a non-defective adenovirus.
(Hay et al., 1984). Therefore, inclusion of these elements in an adenoaviral vector should permit replication. In addition, the packaging signal for viral encapsidation is localized between 194–385 bp (0.5–1.1 map units) at the left end of the viral genome (Hearing et al., 1987). This signal mimics the protein recognition site in bacteriophage λ DNA where a specific sequence close to the left end, but outside the cohesive end sequence, mediates the binding to proteins that are required for insertion of the DNA into the head structure. E1 substitution vectors of Ad have demonstrated that a 450 bp (0–1.25 map units) fragment at the left end of the viral genome could direct packaging in 293 cells (Levercro et al., 1991).

Previously, it has been shown that certain regions of the adenoaviral genome can be incorporated into the genome of mammalian cells and the genes encoded thereby expressed. These cell lines are capable of supporting the replication of an adenoaviral vector that is deficient in the adenoaviral function encoded by the cell line. There also have been reports of complementation of replication deficient adenoaviral vectors by “helper” vectors, e.g., wild-type virus or conditionally defective mutants.

Replication-deficient adenoaviral vectors can be complemented, in trans, by helper virus. This observation alone does not permit isolation of the replication-deficient vectors, however, since the presence of helper virus, needed to provide replicative functions, would contaminate any preparation. Thus, an additional element was needed that would add specificity to the replication and/or packaging of the replication-deficient vector. That element, as provided for in the present invention, derives from the packaging function of adenoaviral virus.

It has been shown that a packaging signal for adenoaviral virus exists in the left end of the conventional adenoaviral map (Tibbetts, 1977). Later studies showed that a mutant with a deletion in the E1A (194–358 bp) region of the genome grew poorly even in a cell line that complemented the early (E1A) function (Hearing and Shenk, 1983). When a compensating adenoaviral DNA (0–353 bp) was recombined into the right end of the mutant, the virus was packaged normally. Further mutational analysis identified a short, repeated, position-dependent element in the left end of the Ad5 genome. One copy of the repeat was found to be sufficient for efficient packaging if present at either end of the genome, but not when moved towards the interior of the Ad5 DNA molecule (Hearing et al., 1987).

By using mutated versions of the packaging signal, it is possible to create helper viruses that are packaged with varying efficiencies. Typically, the mutations are point mutations or deletions. When helper viruses with low efficiency packaging are grown in helper cells, the virus is packaged, albeit at reduced rates compared to wild-type virus, thereby permitting propagation of the helper. When these helper viruses are grown in cells along with a virus that contains wild-type packaging signals, however, the wild-type packaging signals are recognized preferentially over the mutated versions. Given a limiting amount of packaging factor, the virus containing the wild-type signals are packaged selectively when compared to the helper. If the preference is great enough, stocks approaching homogeneity should be achieved.

b. Retrovirus

The retroviruses are a group of single-stranded RNA viruses characterized by an ability to convert their RNA to double-stranded DNA in infected cells by a process of reverse-transcription (Coffin, 1990). The resulting DNA then stably integrates into cellular chromosomes as a provirus and directs synthesis of viral proteins. The integration results in the retention of viral gene sequences in the recipient cell and its descendants. The retroviral genome contains three genes—gag, pol and env—that code for capsid proteins, polymerase enzyme, and envelope components, respectively. A sequence found upstream from the gag gene, termed Ψ, functions as a signal for packaging of the genome into virions. Two long terminal repeat (LTR) sequences are present at the 5’ and 3’ ends of the viral genome. These contain strong promoter and enhancer sequences and also are required for integration in the host cell genome (Coffin, 1990).

In order to construct a retroviral vector, a nucleic acid encoding a promoter is inserted into the viral genome in the place of certain viral sequences to produce a virus that is replication-defective. In order to produce virions, a packaging cell line containing the gag, pol and env genes but without the LTR and Ψ components is constructed (Mann et al., 1983). When a recombinant plasmid containing a human cDNA, together with the retroviral LTR and Ψ sequences is introduced into this cell line (by calcium phosphate precipitation for example), the Ψ sequence allows the RNA transcript of the recombinant plasmid to be packaged into viral particles, which are then secreted into the culture media (Nicolau and Rubenstein, 1986; Temin, 1986; Mann et al., 1983). The media containing the recombinant retroviruses is collected, optionally concentrated, and used for gene transfer. Retroviral vectors are able to infect a broad variety of cell types. However, integration and stable expression of many types of retroviruses require the division of host cells (Paskind et al., 1975).

An approach designed to allow specific targeting of retrovirus vectors recently was developed based on the chemical modification of a retrovirus by the chemical addition of galactose residues to the viral envelope. This modification could permit the specific infection of cells such as hepatocytes via asialoglycoprotein receptors, should this be desired.

A different approach to targeting of recombinant retroviruses was designed in which biotinylated antibodies against a retroviral envelope protein and against a specific cell receptor were used. The antibodies were coupled via the biotin component by using streptavidin (Roux et al., 1989). Using antibodies against major histocompatibility complex class I and class II antigens, the infection of a variety of human cells that bore those surface antigens was demonstrated with an ecotropic virus in vitro (Roux et al., 1989).

c. Adeno-associated Virus

AAV utilizes a linear, single-stranded DNA of about 4700 base pairs. Inverted terminal repeats flank the genome. Two genes are present within the genome, giving rise to a number of distinct gene products. The first, the cap gene, produces three different virion proteins (VP), designated VP-1, VP-2 and VP-3. The second, the rep gene, encodes four non-structural proteins (NS). One or more of these rep gene products is responsible for transactivating AAV transcription.

The three promoters in AAV are designated by their location, in map units, in the genome. These are, from left to right, p5, p19 and p40. Transcription gives rise to six transcripts, two initiated at each of three promoters, with one of each pair being spliced. The splice site, derived from map units 42–46, is the same for each transcript. The four non-structural proteins apparently are derived from the longer of the transcripts, and three virion proteins all arise from the smallest transcript.
AAV is not associated with any pathologic state in humans. Interestingly, for efficient replication, AAV requires "helping" functions from viruses such as herpes simplex virus I and II, cytomegalovirus, pseudorabies virus and, of course, adenovirus. The best characterized of the helpers is adenovirus, and many "early" functions for these viruses have been shown to assist with AAV replication. Low level expression of AAV rep proteins is believed to hold AAV structural expression in check, and helper virus infection is thought to remove this block.

The terminal repeats of the AAV vector can be obtained by restriction endonuclease digestion of AAV or a plasmid such as p201, which contains a modified AAV genome (Samulski et al., 1987), or by other methods known to the skilled artisan, including but not limited to chemical or enzymatic synthesis of the terminal repeats based upon the published sequence of AAV. The ordinarily skilled artisan can determine, by well-known methods such as deletion analysis, the minimum sequence or part of the AAV ITRs which is required to allow function, i.e., stable and site-specific integration. The ordinarily skilled artisan also can determine which minor modifications of the sequence can be tolerated while maintaining the ability of the terminal repeats to direct stable, site-specific integration.

AAV-based vectors have proven to be safe and effective vehicles for gene delivery in vitro, and these vectors are being developed and tested in pre-clinical and clinical stages for a wide range of applications in potential gene therapy, both ex vivo and in vivo (Carter and Flotte, 1996; Chatterjee et al., 1995; Ferrari et al., 1996; Fisher et al., 1996; Flotte et al., 1993; Goodman et al., 1994; Kaplitt et al., 1994, 1996; Kessler et al., 1996; Koebel et al., 1997; Mizukami et al., 1996).

AAV-mediated efficient gene transfer and expression in the lung has led to clinical trials for the treatment of cystic fibrosis (Carter and Flotte, 1995; Flotte et al., 1993). Similarly, the prospects for treatment of muscular dystrophy by AAV-mediated gene delivery of the dystrophin gene to skeletal muscle, of Parkinson's disease by tyrosine hydroxylase gene delivery to the brain, of hemophilia B by Factor IX gene delivery to the liver, and potentially of myocardial infarction by vascular endothelial growth factor gene to the heart, appear promising since AAV-mediated transgene expression in these organs has recently been shown to be highly efficient (Fisher et al., 1996; Flotte et al., 1993; Kaplitt et al., 1994, 1996; Koebel et al., 1997; McCown et al., 1996; Ping et al., 1996; Xiao et al., 1996).

d. Other Viral Vectors

Other viral vectors may be employed as expression constructs in the present invention. Vectors derived from viruses such as vaccinia virus (Rigdeway, 1988; Baichwal and Sugden, 1986; Coupar et al., 1988) canary pox virus, and herpes viruses may be employed. These viruses offer several features for use in gene transfer into various mammalian cells.

B. Non-Viral Transfer

Several non-viral methods for the transfer of expression constructs into cultured mammalian cells are contemplated by the present invention. These include calcium phosphate precipitation (Graham and Van Der Eb, 1973; Chen and Okayama, 1987; Rippe et al., 1990) DEAE-dextran (Gopal, 1985), electroporation (Tur-Kaspa et al., 1986; Potter et al., 1984), direct microinjection (Harland and Weintraub, 1985), DNA-loaded liposomes (Nicolaou and Sene, 1982; Fraley et al., 1979), cell sonication (Fechheimer et al., 1987), gene bombardment using high velocity microprojectiles (Yang et al., 1990), and receptor-mediated transfection (Wu and Wu, 1987; Wu and Wu, 1988).

Once the construct has been delivered into the cell the nucleic acid encoding the therapeutic gene may be positioned and expressed at different sites. In certain embodiments, the nucleic acid encoding the therapeutic gene may be stably integrated into the genome of the cell. This integration may be in the cognate location and orientation via homologous recombination (gene replacement) or it may be integrated in a random, non-specific location (gene augmentation). In yet further embodiments, the nucleic acid may be stably maintained in the cell as a separate, episomal segment of DNA. Such nucleic acid segments or "episomes" encode sequences sufficient to permit maintenance and replication independent of or in synchronisation with the host cell cycle. How the expression construct is delivered to a cell and where in the cell the nucleic acid remains is dependent on the type of expression construct employed.

In a particular embodiment of the invention, the expression construct may be entrapped in a liposome. Liposomes are vesicular structures characterized by a phospholipid bilayer membrane and an inner aqueous medium. Multilamellar liposomes have multiple lipid layers separated by aqueous medium. They form spontaneously when phospholipids are suspended in an excess of aqueous solution. The lipid components undergo self-rearrangement before the formation of closed structures and entrap water and dissolved solutes between the lipid bilayers (Ghosh and Bachhawat, 1991). The addition of DNA to cationic liposomes causes a topological transition from liposomes to optically birefringent liquid-crystalline condensed globules (Radler et al., 1997). These DNA-lipid complexes are potential non-viral vectors for use in gene therapy.

Liposome-mediated nucleic acid delivery and expression of foreign DNA in vitro has been very successful. Using the β-lactamase gene, Wong et al., (1980) demonstrated the feasibility of liposome-mediated delivery and expression of foreign DNA in cultured chick embryo, HeLa, and hepatoma cells. Nicolaou et al., (1987) accomplished successful liposome-mediated gene transfer in rats after intravenous injection. Also included are various commercial approaches involving "lipofection" technology.

In certain embodiments of the invention, the liposome may be complexed with a hemagglutinating virus (HVI). This has been shown to facilitate fusion with the cell membrane and promote cell entry of liposome-encapsulated DNA (Kaneda et al., 1989). In other embodiments, the liposome may be complexed or employed in conjunction with nuclear nonhistone chromosomal proteins (HMG-1) (Kato et al., 1991). In yet further embodiments, the liposome may be complexed or employed in conjunction with both HVI and HMG-1. In that such expression constructs have been successfully employed in transfer and expression of nucleic acid in vitro and in vivo, then they are applicable for the present invention.

Other vector delivery systems which can be employed to deliver a nucleic acid encoding a therapeutic gene into cells are receptor-mediated delivery vehicles. These take advantage of the selective uptake of macromolecules by receptor-mediated endocytosis in almost all eukaryotic cells. Because of the cell type-specific distribution of various receptors, the delivery can be highly specific (Wu and Wu, 1993).

Receptor-mediated gene targeting vehicles generally consist of two components: a cell receptor-specific ligand and a DNA-binding agent. Several ligands have been used for receptor-mediated gene transfer. The most extensively char-
acterized ligands are asialoorosomucoid (ASOR) (Wu and Wu, 1987) and transferring (Wagner et al., 1990). Recently, a synthetic neoglycoprotein, which recognizes the same receptor as ASOR, has been used as a gene delivery vehicle (Ferkol et al., 1993; Perales et al., 1994) and epidermal growth factor (EGF) has also been used to deliver genes to squamous carcinoma cells (Myers, EPO 0273065).

In other embodiments, the delivery vehicle may comprise a ligand and aliposome. For example, Nicolau et al. (1987) employed lactosyl-ceramide, a galactose-terminal asialyl-

In another embodiment of the invention, the expression construct may simply consist of naked recombinant DNA or plasmids. Transfer of the construct may be performed by any of the methods mentioned above which physically or chemically permeabilize the cell membrane. This is applicable particularly for transfer in vitro, however, it may be applied for in vivo use as well. Dubensky et al. (1984) successfully injected polyomavirus DNA in the form of CaPO_4 precipitates into liver and spleen of adult and newborn mice demonstrating active viral replication and acute infection. Benvenisty and Neshif (1986) also demonstrated that direct intraperitoneal injection of CaPO_4 precipitated plasmids results in expression of the transfected genes. It is envisioned that DNA encoding a CAM also may be transferred in a similar manner in vivo and express CAM.

Another embodiment of the invention for transferring a naked DNA expression construct into cells may involve particle bombardment. This method depends on the ability to accelerate DNA coated microprojectiles to a high velocity allowing them to pierce cell membranes and enter cells without killing them (Klick et al., 1987). Several devices for accelerating small particles have been developed. One such device relies on a high voltage discharge to generate an electrical current, which in turn provides the motive force (Yang et al., 1990). The microprojectiles used have consisted of biologically inert substances such as tungsten or gold beads.

8. Formulations and Routes for Administration to Patients

Where clinical applications are contemplated, it will be necessary to prepare pharmaceutical compositions—expression vectors, virus stocks, proteins, antibodies and drugs—in a form appropriate for the intended application. Generally, this will entail preparing compositions that are essentially free of pyrogeics, as well as other impurities that could be harmful to humans or animals.

One will generally desire to employ appropriate salts and buffers to render delivery vectors stable and allow for uptake by target cells. Buffers also will be employed when recombinant cells are introduced into a patient. Aqueous compositions of the present invention comprise an effective amount of the vector to cells, dissolved or dispersed in a pharmaceutically acceptable carrier or aqueous medium. Such compositions also are referred to as inocula. The phrase "pharmaceutically or pharmacologically acceptable" refer to molecular entities and compositions that do not produce adverse, allergic, or other untoward reactions when administered to an animal or a human. As used herein, "pharma-ctually acceptable carrier" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the vectors or cells of the present invention, its use in therapeutic compositions is contemplated. Supplementary active ingredients also can be incorporated into the compositions.

The active compositions of the present invention may include classic pharmaceutical preparations. Administration of these compositions according to the present invention will be via any common route so long as the target tissue is available via that route. This includes oral, nasal, buccal, rectal, vaginal or topical. Alternatively, administration may be by orthotopic, intradermal, subcutaneous, intramuscular, intraperitoneal or intravenous injection. Such compositions would normally be administered as pharmaceutically acceptable compositions, described supra.

The active compounds also may be administered parenterally or intraperitoneally. Solutions of the active compounds as free base or pharmaceutically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial an antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
As used herein, "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.

For oral administration the polypeptides of the present invention may be incorporated with excipients and used in the form of non-ingestible mouthwashes and dentifrices. A mouthwash may be prepared incorporating the active ingredient in the required amount in an appropriate solvent, such as a sodium borate solution (Dobel's Solution). Alternatively, the active ingredient may be incorporated into an antiseptic wash containing sodium borate, glycerin and potassium bicarbonate. The active ingredient also may be dispersed in dentifrices, including gels, pastes, powders and slurries. The active ingredient may be added in a therapeutically effective amount to a paste dentifrice that may include water, binders, abrasives, flavoring agents, foaming agents, and humectants.

The compositions of the present invention may be formulated in a neutral or salt form. Pharmaceutically-acceptable salts include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.

Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. The formulations are easily administered in a variety of dosage forms such as injectable solutions, drug release capsules and the like. For parenteral administration in an aqueous solution, for example, the solution should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration. In this connection, sterile aqueous media which can be employed will be known to those of skill in the art in light of the present disclosure. For example, one dosage could be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, "Remington's Pharmaceutical Sciences" 15th Edition, pages 1035–1038 and 1570–1580). Some variation in dosage will necessarily occur depending on the condition of the subject being treated. The person responsible for administration will, in any event, determine the appropriate dose for the individual subject. Moreover, in human administration, preparations should meet sterility, pyrogenicity, general safety and purity standards as required by FDA Office of Biologies standards.

9. EXAMPLES

The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

EXAMPLE 1

Patients and Families

Patients were identified through the Department of Ophthalmology at the University of Iowa or by collaborating investigators at other institutions. Signed, informed consent was obtained from each patient prior to the collection of a sample of whole blood (5 to 10 ml) using protocols approved by the Institutional Review Board at the University of Iowa.

DNA isolation

Genomic DNA was isolated from whole blood according to methods that have been published previously. YAC DNA was isolated using the DNA-Pure yeast genomic kit (CPG, Inc.). BAC DNA was prepared via an alkaline lysis protocol as implemented in the Wizard Plus Miniprep Kit (Promega) with the following modification to the protocol. Instead of loading the supernatant onto a vacuum column, it was precipitated with a 2× volume of absolute EtOH. In addition, 150 μl volumes were used for the commercial solutions in place of the 200 μl volumes suggested in the protocol. The precipitated DNA was then washed with 70% EtOH and dried. The DNA pellet was then resuspended in 50 μl of ddH₂O. Finally, plasmid DNA was prepared using a Wizard Plus Miniprep kit (Promega) following the recommended protocol. Culture sizes for DNA preparation from YACs, BACs and plasmids were 1.5 ml of the appropriate media and antibiotics for each construct.

Marker Typing

PCR amplification for the analysis of short tandem repeat polymorphisms (STRPs) was performed using 20 ng of genomic DNA in 5 μl reactions containing 0.5 μl of 10X PCR buffer [100 mM Tris-HCl (pH 8.8), 500 mM KCl, 15 mM MgCl₂, 0.01% gelatin (w/v)], 200 μM each of dATP, dCTP, dGTP and dTTP, 2.5 pmol of each primer and 0.2 units of Taq polymerase (BMB, ISC). Samples were subjected to 35 cycles of 94°C for 30 sec, (30, 52, 55 or 57°C as required) for 30 sec and 72°C for 30 sec. Amplification products were electrophoresed on 6% polyacrylamide gels containing 7.7 M urea at 60 W for approximately 2 h. The bands were detected by silver staining. Bassam (1991).

Marker typing for physical mapping was performed on 2% agarose gels using a PCR reaction size of 10 μl. Reaction conditions were as described above with the following exceptions. For markers that proved difficult to amplify using the standard Taq polymerase, the inventors substituted an equal amount of AmpliTaq (ABI) along with an initial incubation of the PCR mixture at 94°C for 10 minutes. For PCR reactions involving YAC, BAC or plasmid DNA, 1 to 2 ng of DNA was utilized as template. For colony PCR, a small number of cells were inoculated into 20 μl of ddH₂O. One μl of this suspension was used as template for the PCR reaction.

Oligonucleotide primers for the STRPs were obtained as MapPairs (Research Genetics or Integrated DNA Technologies). The custom primers required for this study were designed using the PRIMER 0.5 program and synthesized.
commercially (Research Genetics). Size standards for the 2% agarose gels were 100 bp ladder (Gibco/BRL) and for the denaturing acrylamide gels a 50 bp ladder (Gibco/BRL). For the 0.8% agarose gels, lambda DNA digested with Styl was used as a size marker.

YAC, BAC and cDNA Identification

Initially, YACs were identified by searching a database at the Whitehead Institute/MIT Genome Center (http://www-genome.wi.mit.edu) (Hudson et al., 1995) with STSs known to be in the 16q21 region. Subsequently, YACs and BACs were identified by a PCR-based screening assay of pooled libraries (Research Genetics) using various STSs within each region. ESTs were identified by a BLASTN search of the public dbEST database available through a web interface NCBI. Alsulaim & Lipman (1990).

Gene Identification and Characterization

Raw SCF files from ABI 373A and 377 sequencers were imported directly into the Sequencer v3.1 program (GeneCodes). Contigs were generated by comparing all fragments in a project with the parameters of at least a 50 bp overlap in sequence with a 80% level of homology. Genomic sequence of BACs from the 16q21 region was submitted to the BLAST server at NCBI for a BLASTN analysis on both the NR and dbEST databases. Alsulaim & Lipman (1990). Any region which gave a significant score (p<10^{-5}) was also submitted for a BLASTX screen of the SWISS-PROT database. EST sequence was obtained from GENBANK and SCF files from the WashU-Merck ftp site (ftp://genome.wustle.edu).

Sequencing Plasmids and PCR Products

PCR products for sequencing were amplified in a 50 μl reaction size and purified using the Quiagen PCR Clean-up kit (Promega). 500 ng of plasmid DNA (in 4.5 μl) or 4.5 μl of purified PCR product was used as template for a sequencing reaction. One μl of primer (20 pmol) and 4.5 μl of terminator sequencing mix (Amersham) was added for a final reaction size of 10 μl. Cycling conditions were performed as specified by the manufacturer. The sequencing reactions were precipitated in the presence of linear acrylamide and resuspended in 2 μl of loading buffer. The reactions were analyzed on an ABI 377 using a run time of 3 h.

Mutation Detection and Confirmation

Mutation detection was performed using single strand conformation polymorphism (SSCP) analysis and direct sequencing of PCR products. PCR products were electrophoresed on SSCP gels (5 ml glycerol, 5 ml 5xTBE, 12.5 ml 37.5:1 acrylamide/bis and 77.5 ml ddH2O) for 3 to 4 hr in 0.25xTBE at room temperature. Gels were silver stained as described above. Abnormal variants were sequenced and compared to a control sample to detect any changes from that of the normal sequence. Mutations were confirmed by amplification-refractory mutation system (ARMS) analysis. Newton (1989).

Northern Blot Analysis

Human Multiple Tissue Northern (MTN) blots I and III and Human Fetal MTN Blot II were obtained from Clontech (San Francisco, Calif.). The blots were hybridized with a 300 bp DNA probe derived from the 3' UTR of the human NGVN gene. The probe was amplified by PCR using the NGVN-forward (5'-AATGACTTGGTGTATGTTGAC-3') and NGVN-reverse (5'-AATCAATGAGGCATCITCGA-3') primers. The probe was labeled with 32P-dCTP using Ready-To-Go DNA Labeling Beads (Amersham Pharmacia Biotech, Piscataway, N.J.). Hybridization and autoradiography were performed as described previously. The blots were stripped of radioactivity and re-hybridized with a cDNA probe for β-actin (Clontech, San Francisco, Calif.) to assess equal loading of the RNA.

EXAMPLE 2

Clinical Data

The clinical features of the large Bedouin kindred (pedigree 1) have previously been described. Briefly, all of the cardinal features of BBS were present in at least some of the members of this family. None of the patients had spastic paraplegia, colobomas or deafness, diagnostic features of Laurence-Moon, Biemond and Alström syndromes, respectively. Pedigree 2 consisted of four affected individuals of Kurdish ancestry, all of which had at least three of the cardinal features of BBS syndrome. Within the two families there was a clear dichotomy between affected and unaffected individuals in that none of the unaffected individuals had any of the features of Bardet-Biedl syndrome. Affected individual from both families had very similar distributions of polydactyly, usually affecting both upper and lower extremities. All but one patient had polydactyly affecting at least three limbs, and the exception had two limb polydactyly. Obesity was more apparent in kindred 2 compared to kindred 1. Hypogonadism was apparent in male members of both families. Two patients in family 1 had unilateral renal hypoplasia. Retinal degeneration was a striking feature of the disorder in both families. All affected probands used in this study had at least three of the cardinal features of BBS. The minimal criteria for inclusion in the study were the diagnostic features of obesity, polydactyly, and pigmentretinopathy.

Definition of Critical Interval by Genetic Analysis

In 1993, linkage studies and haplotype analysis of a large inbred Bedouin kindred mapped the BBS2 locus to an 18 cM region within 16q21 flanked by the markers D16S419 and D16S265. Analysis of additional genetic markers within this region allowed the critical interval to be narrowed to approximately 6 cM. This proved to be the best estimate of the critical interval that was possible based upon the genetic information provided by the affected individuals in this family. As BBS is a highly penetrant disorder, it was decided that the study of unaffected individuals within the pedigree might allow for the further refinement of the critical interval with a high level of confidence in the results.

One of the unaffected individuals from the Bedouin pedigree was found to have a recombination event at the distal end of the critical interval that narrowed the distal flank to a region within the BAC RP.11-132E5. However, no additional refinement was possible for the proximal flanking region using information from unaffected individuals from the pedigree. Over 40 additional DNA samples were obtained from unaffected members of the Bedouin tribe that was segregating the BBS2 locus in an attempt to further refine the critical interval. Given the high penetrance of BBS, the detection of a region containing homozygosity for the affected haplotype in an unaffected individual would strongly suggest that the BBS2 gene would be excluded from the region. Analysis of these additional samples yielded an unaffected individual who had inherited the affected haplotype in the homozygous state at the proximal end of the critical region. This allowed the investigators to exclude the BBS2 gene from a region that was proximal to
D16S408. The refined critical interval included an approximately 2 cm region between the markers D16S408 and 152e5-CA.

Physical Mapping

To facilitate the cloning and characterization of the BBS2 gene, the inventors constructed a physical map of the critical interval. An initial physical map that was based on YAC clones allowed for low resolution localization of genetic markers and candidate genes within the critical interval. Once the genetic interval was refined to the smallest size possible, the physical map was converted to one that was based on BAC clones. The smaller size of the BAC clones allowed for higher resolution mapping of genetic markers and candidate genes within the interval. Radiation hybrid mapping using the Stanford G3 mapping panel was used to confirm the order obtained from the BAC-based physical maps as well as to anchor this region within the Stanford chromosome 16 G3 radiation hybrid map.

Candidate Gene Identification

The BAC-based physical map was used to select a subset of BACs for sample sequencing at 1X coverage. The sequence information obtained from sample sequencing was combined with that available from the public sequence databases and used for the identification of candidate genes for BBS2. BLASTN analysis was performed against the nr and dbEST databases that are maintained by NCBI. This allowed the inventors to identify a number of unique genes and UniGene EST clusters. Over 30 unique genes or EST clusters were identified, not including the multiple metallothionein genes that are known to map within the region. The genes were prioritized for mutation screening based on criteria including (i) availability of known cDNA and/or genomic sequence, (ii) known expression pattern of the gene consistent with the BBS phenotype and (iii) the availability of any functional information. Although the use of information from unaffected individuals to narrow the critical interval was postulated to be reliable, an attractive candidate gene that mapped within the more conservative interval defined by an "affected-only" analysis was not strictly ruled out, but deemed to be of lower priority for analysis.

Mutation Screening of Candidate Genes

A second inbred pedigree consisting of 4 affected individuals was also found to be linked to the BBS2 locus. Genotyping of DNA from the three affected individuals from whom DNA was available for demonstrated that all were homozygous for the same haplotype. This haplotype was not found in the homozygous state in any of the unaffected individuals in the family. The affected haplotype was found to be different than that segregating within the large inbred Bedouin family suggesting that the mutation in each family would likely be different.

The availability of two inbred BBS2 pedigrees with likely independent mutations allowed the inventors to conduct a sequencing-based mutation screen of BBS2 candidate genes. PCR amplicons that covered the coding sequence and consensus splice sites for each candidate gene were amplified from genomic DNA from an affected individual from each of the two BBS2 pedigrees, and the amplification products were directly sequenced. The DNA sequence generated from the two samples were compared with each other as well as to sequence available in the public DNA sequence databases. Fifteen candidate genes were screened without finding any evidence for pathological variants.

NGVN Gene Structure and Expression Profile

UniGene EST cluster HS.24809 was selected for analysis based on the suggestion of a broad expression pattern and on map position within the narrowest candidate interval. The UniGene cluster contained 194 ESTs as well as 6 mRNA sequences. When these sequences were assembled into contigs, two distinct, unique contigs were created. Both contigs were found to map to the same BAC (RP_11-5A3) that was located within the BBS2 critical interval on chromosome 16.

One of the contigs was found to contain an open reading frame of 1461 bp. Partial gene structure could be determined for this genes which yielded 9 exons for analysis. The second contig was found to contain an open reading frame of 2163 bp. The complete gene structure was ascertained for this gene, now referred to as negevin (NGVN). Comparison of cDNA sequence with genomic sequence revealed a total of 17 exons. Both genes were screened for mutations. While the mutation screen of the first gene produced no evidence of pathologically significant variants, a number of mutations were detected in the NGVN gene.

NGVN was amplified from a human fetal cDNA library and sequenced to confirm the cDNA sequence that was predicted from the EST contig. Sixty-six of the 193 ESTs from UniGene cluster HS.24809 were assigned to the NGVN contig. The tissue distribution of these ESTs suggested that NGVN was a widely expressed gene. Northern blot analysis confirmed the broad expression pattern of NGVN and revealed a NGVN mRNA size estimate of approximately 3.0 kb. This size estimate agrees well with the size predicted from the genomic DNA sequence. A minor Northern blot band of smaller molecular weight was apparent in trachea tissue, suggesting alternative splicing.

NGVN Mutations

Mutation screening of NGVN produced strong mutation candidates in both of the linked BBS2 families that were part of the initial mutation screen. The smaller BBS2-linked family was found to harbor a 1 bp deletion in exon 8 (940delA). The mutation was found in the homozygous state in all three of the affected individuals, and was not found in the homozygous state in unaffected family members. The frameshift has not been detected to date in any other family or proband that has been examined, or in 96 control individuals.

Two sequence variants were detected in the large, inbred Bedouin BBS family. An A to G transition at nucleotide position 367 (Ile123Val) was detected in exon 3. Ile123Val is conservative and thus was not judged to be responsible for the BBS phenotype in the family. A second variant, a T to G transversion, was found at nucleotide position 224 (Val75Gly) in exon 2 that produced a non-conservative amino acid change. This variant is postulated to be the disease causing mutation in this family. Both DNA sequence variants segregate with the BBS phenotype within the family in that all affected individuals were homozygous for the sequence variant, all obligate carriers (parents of BBS patients) were heterozygous for the variant, and no unaffected individuals were homozygous for the variant.

The detection of mutations in the two BBS2 pedigrees prompted the inventors to sequence the NGVN gene from a
panel of 18 unrelated BBS probands in an attempt to identify additional mutations in NGVN. A 1 bp insertion (1206insA) was observed in exon 10 in the homozygous state in a single proband (BB31-1). The insertion results in a frameshift that predicts premature termination of translation five amino acids downstream from the insertion. One proband harbored an exon 8 nonsense mutations at codon 275 (Arg₂₇₅Stop) in the homozygous state. A second exon 8 nonsense mutation (Arg₂₇₅Stop) was found in the heterozygous state in another proband. In all, mutations were observed in 3 of 18 unrelated BBS probands.

In addition to the mutations described above, other sequence variants were found that are likely to be benign sequence variations. The conservative Ile123Val change was found in the heterozygous state in two of the probands (BB1-1 and BB55-1) as well as in control individuals. Furthermore, an A1413C transversion resulting in a synonymous codon change was observed in one proband (BB55-1).

Evolutionary Conservation

Homology screening of NGVN against the public sequence databases demonstrates that NGVN has strong sequence homology to genes from a number of other organisms. Sequence for the mouse orthologue for NGVN was obtained by PCR from a 17 day fetal mouse cDNA library to supplement the sequence that was available from GenBank. The mouse gene is 90% identical and 95% similar to the human gene within the coding region at the protein level. Sequence for the rat and zebrafish orthologues of NGVN were obtained using the same methodology as was employed to ascertain the sequence for the mouse orthologue. The rat orthologue was found to be 89% identical and 94% similar at the protein level. The zebrafish orthologue was found to be 74% identical and 84% similar. A reduced level of homology was found for organisms such as C. elegans, Chlamydomonas and Trypanosoma (30 to 46% identical; 49 to 57% similar).

In order to further investigate the disease causing nature of the exon 2 Val75Gly variant, sequence was obtained from a number of organisms to determine the level of sequence conservation within this region. Valine was found to be present in the human, bovine, rabbit, rat, mouse and zebrafish. In C. elegans, Trypanosoma and Chlamydomonas, the conservative substitution of isoleucine was found at this position. There is a high level of conservation at a number of locations within this region as well as within the region surrounding the Ile75Val variant in exon 3. However, the isoleucine at codon 123 shows a lower level of conservation, consistent with its postulated assignment as a likely benign sequence variant.

Lack of Homology to MKKS and Other Known Genes

As the BBS6 gene, MKKS, has been provisionally identified as a chaperonin, the inventors attempted to identify homology between NGVN and known chaperonin or chaperonin-like genes. No homology was found to any genes with known function by both BLAST analysis or by searching for functional domains within NGVN.

All of the composition and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

REFERENCES

The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference:

U.S. Pat. No. 3,817,837
U.S. Pat. No. 3,850,752
U.S. Pat. No. 3,939,550
U.S. Pat. No. 5,996,545
U.S. Pat. No. 4,196,265
U.S. Pat. No. 4,275,149
U.S. Pat. No. 4,277,437
U.S. Pat. No. 4,366,241
U.S. Pat. No. 4,472,509
U.S. Pat. No. 4,554,101
U.S. Pat. No. 4,664,911
U.S. Pat. No. 4,683,195
U.S. Pat. No. 4,683,202
U.S. Pat. No. 4,786,600
U.S. Pat. No. 4,792,447
U.S. Pat. No. 4,800,159
U.S. Pat. No. 4,873,191
U.S. Pat. No. 4,883,750
U.S. Pat. No. 4,946,773
U.S. Pat. No. 4,988,617
U.S. Pat. No. 5,712,097
U.S. Pat. No. 5,045,451
U.S. Pat. No. 5,190,856
U.S. Pat. No. 5,270,184
U.S. Pat. No. 5,279,721
U.S. Pat. No. 5,324,631
U.S. Pat. No. 5,494,810
U.S. Pat. No. 5,496,699
U.S. Pat. No. 5,578,706
U.S. Pat. No. 5,633,365
U.S. Pat. No. 5,639,611
U.S. Pat. No. 5,665,549
U.S. Pat. No. 5,686,072
U.S. Pat. No. 5,712,124
U.S. Pat. No. 5,733,733
U.S. Pat. No. 5,733,752
U.S. Pat. No. 5,744,311
U.S. Pat. No. 5,747,255
U.S. Pat. No. 5,767,072
GB Application 2 202 328
EPO No. 320 308,
EPO No. 329 822,
PCT/US87/00880
PCT/US89/01025
WO 84/03564
WO 88/10315
WO 89/06700
WO 90/07641
Miller et al., *PCT Application* WO 89/06700
Myers, EPO 0273085
<160> NUMBER OF SEQ ID NOS: 3

<210> SEQ ID NO 1
<211> LENGTH: 2166
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 1

atgcgtgctc ctggtctac cctgaaactg cgcccaaaaa taagcacccc aatgyttggc 60
ataggctgct acagagggaac tcacccgtag atggagcccg ccaagcaaaac gggaaggttt 120
tttatcata atctccttat aaggaacag cttgctcagt ctcgagttgct ttcgagggc 180
ccttggaat ctgatgtgac tcctctcaac atacaccgat tgtcagctgct tggctagcga 240
ggctaatgag acgctagct tggcttaggat gcccctttaag gggtgagcaca gactaatctt 300
tggctttatg atgtttcaca tatttcggag tggctttaca gaggagctag aagaggggac 360
aatgcagaag tgcgtgagga atggagggag aagcccctcc cttgcttgct ttagtctgg 420
aatgtgctgc tcacaggttt ccaactgtaa ggaagttgct tcctctctctttaagcgt ggtacctgga 480
gacaattgta attctctctc atggtctgaa tttgtagttg cggagctatc aaaggtctgct 540
gttggcttg agtgattggt ttaaataggg gcagatgattg ggcgaaatgtt 600
acaggaacag atgagtaaag ccttcctttta gcaatttgat gcagctagtt tggctttgat 660
ccttcatag acacgctgga agtttagac aaaaacatcct gcatacttgtg aatttactag 720
aattatctga ccctcctcag ctcttctcttt gcccctttaat ctaggtgatg gactgactg 780
ataaattgtgc gtcctaggtg gaaagttggt gcctgagttg agcagagtgg gggcgctagc 840
tttaagccaa attttcatc tcacattgct gcacgggctg gctggtgttg cgagttgatt 900
ggcacatacg agtaattctg cttcagcagat gttgggagaa ttcgggggta cttgctgtgg 960
acgctcagga tgaggggcca cctctctcag acagctcgcag ggccgagacc gacggggag 1020
cgtgctgtag agagagcagaa ttcgggtgct gacagcagta aaattgaga 1080
gotgaattttg caagctcctact cagagggcgt ggttgggtcagt gggcgagata cccggaatga 1140
acccagttcc acaacagctc cttctcagac cttggagagt cagccaaaac gctgctacta 1200
gaattgcca tttcttcac tcattcactc atacagagat cgatttcttg ttttctgaga 1260
ggaatttctt cagttgagaa ccaagctgta cctcagacca ttcgcaacct cttcagttcc 1320
atcagctcct caatttgtgctc ttccaaaaagat gcctcttggt atctctgtcct cagagggc 1380
gtggggctca gacagcagac ccacattccat gttttttttt gcagcagaca gcctcttgtg 1440
ttctctatgt atgcggcgat cagctcctcag cttgcagcttg agccacatct taattgttac 1500
tttaaccttg cagagagcggt cagaggttgg gttggagagcc ttctctgtta 1560
cgaagaaaa ctcagctctca gcctgcttac tttcgagtct tttgcttgctt ttctgctttt 1620
ggctgagcag tgcataaaaa aaaaacctc agtagggaga tttctttaaa tattgtcatt 1680
atagttgagc cttcagcagat cagctcagct ttttgctttt tgaagacccat 1740
caggtaggc ctagttcttc gttctcattt ggagaaaaac gcctgcttgtg ttttatttgtt 1800
gttggacttc aacgctagac cttgcagcagat cgtgctcttg cgggggacat gcacaaatct 1860
atcagctcct caatttgtgctc ttccaaaaagat gcctcttgtg cagagggc 1920
agacgtagct ctagctacctt ctagctacctt ctagctacctt 1980
cgtgtacca atccaccaag gctggtggga aaccccaagc cagaatataa agcaatttca 2040
AGAGCAAGTC GCTGCGGTT TGGAAACCA AGAACCAGG TGATCACTG TTGCGGAT
GCATTCGAE GCATCAGCT CACCAAGCT TTCAAATCA TCGAGTGGG GCAAGCTTCT
TCTTAG

<210> SEQ ID NO 2
<211> LENGTH: 721
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 2

Met Leu Leu Pro Val Phe Thr Leu Lys Leu Arg His Lys Ile Ser Pro
1 5 10 15
Arg Met Val Ala Ile Gly Arg Tyr Asp Gly Thr His Pro Cys Leu Ala
20 25 30
Ala Ala Thr Glu Thr Gly Lys Val Phe Ile His Asn Pro His Thr Arg
35 40 45
Asn Gln His Val Ser Ala Ser Arg Val Phe Gln Ser Pro Leu Glu Ser
50 55 60
Asp Val Ser Leu Leu Asn Ile Asn Gln Ala Val Ser Cys Leu Thr Ala
65 70 75 80
Gly Val Leu Asn Pro Glu Leu Gly Tyr Asp Ala Leu Leu Val Gly Thr
85 90 95
Gln Thr Asn Leu Leu Ala Tyr Asp Val Tyr Asn Ser Asp Leu Phe
100 105 110
Tyr Arg Glu Val Ala Asp Gly Ala Asn Ala Ile Val Leu Gly Thr Leu
115 120 125
Gly Asp Ile Ser Ser Pro Leu Ala Ile Gly Gly Asn Cys Ala Leu
130 135 140
Gln Gly Phe Asn His Glu Gly Ser Asp Leu Phe Trp Thr Val Thr Gly
145 150 155 160
Asp Asn Val Asn Ser Leu Ala Leu Cys Asp Phe Asp Gly Asp Gly Lys
165 170 175
Lys Glu Leu Leu Val Gly Ser Glu Phe Asp Ile Arg Val Phe Lys
180 185 190
Glu Asp Glu Ile Val Ala Glu Met Thr Glu Thr Glu Ile Val Thr Ser
195 200 205
Leu Cys Pro Met Tyr Gly Ser Arg Phe Gly Tyr Ala Leu Ser Asn Gly
210 215 220
Thr Val Gly Val Tyr Asp Lys Thr Ser Arg Tyr Thr Arg Ile Lys Ser
225 230 235 240
Lys Asn His Ala Met Ser Ile His Ala Phe Asp Leu Asn Ser Asp Gly
245 250 255
Val Asn Glu Leu Ile Thr Gly Thr Ser Asn Gly Lys Val Asp Ala Arg
260 265 270
Ser Asp Arg Thr Gly Val Ile Phe Lys Asp Asn Phe Ser Ser Ala
275 280 285
Ile Ala Gly Val Val Gly Asp Tyr Arg Met Asp Gly His Ile Gly
290 295 300
Leu Ile Cys Cys Ser Val Asp Gly Glu Ile Arg Gly Tyr Leu Pro Gly
305 310 315 320
Thr Ala Glu Met Arg Gly Asn Leu Met Asp Thr Ser Ala Glu Gly Asp
325 330 335
Leu Ile Arg Glu Leu Ser Gln Lys Lys Gln Asn Leu Leu Leu Glu Leu
Arg Asn Tyr Glu Glu Asn Ala Lys Ala Glu Leu Ala Ser Pro Leu Asn
340
345
350
Glu Ala Asp Gly His Arg Gly Ile Pro Ala Asn Thr Arg Leu His
355
360
365
Thr Thr Leu Ser Val Ser Leu Gly Asn Glu Glu Thr Ala His Thr
370
375
380
Glu Leu Arg Ile Ser Thr Ser Asn Arg Thr Ile Ile Arg Ala Val Leu
385
390
395
400
Ile Phe Ala Glu Gly Ile Phe Thr Gly Glu Ser His Val Val His Pro
405
410
415
420
425
430
Ser Ile His Asn Leu Ser Ser Ser Ile Cys Ile Pro Ile Val Pro Pro
435
440
445
Lys Asp Val Pro Val Asp Leu His Leu Lys Ala Phe Val Gly Tyr Arg
450
455
460
Ser Ser Thr Glu Phe His Val Gly Ser Thr Arg Gln Leu Pro Arg
465
470
475
480
Phe Ser Met Tyr Ala Leu Thr Ser Leu Asp Pro Ala Ser Glu Pro Ile
485
490
495
500
505
510
Ser Tyr Val Asn Phe Thr Ile Ala Glu Arg Ala Gln Arg Val Val Val
505
510
515
520
525
Trp Leu Gly Gln Asn Phe Leu Pro Glu Asp Thr His Ile Gln Asn
530
535
540
Ala Pro Phe Glu Val Cys Phe Thr Ser Leu Arg Asn Gly Gly His Leu
545
550
555
560
His Ile Lys Ile Lys Leu Ser Gly Glu Ile Thr Ile Asn Thr Asp Asp
565
570
575
580
585
590
Ile Glu Asp Leu Ala Gln Val Glu Ala Asp Phe Pro Val Tyr Phe Glu Glu
595
600
605
Lys Leu Ser Ala Asp Met Ala Asp His Ser Asn Leu Ile Arg Ser Leu
610
615
620
625
630
635
640
Lys Val Gly Ala Glu Ala Arg Leu Met Arg Met Lys Thr Met
645
650
655
660
665
670
Gly Tyr Lys Ile Arg Cys Asn Asn His Thr Glu Leu Leu Gly Asn Leu
670
675
680
685
690
695
700
Asn Asn Ile Ala Thr Leu Phe Lys Ile Met Arg Val Gly Thr Ala Ser
705
710
715
720
725
Ser

<210> SEQ ID NO 3
<211> LENGTH: 45839
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 3

gacttggtgc tctaaaggtg cggaaatctgtg aggaaagcaca atatacaaga aactaattgtg 60
tagtaagacg ttgattggtaa aaaaattttagg gaaagattcct ctggctcaaa aagcoctgaa 120
gcacttcca ttcgtaaccc ttgctccct ccagtaaaac gggagagagc acaactaatgt 180
cctgtgacttag gcataaagag cacaacacaa agctttttttt atatatgctg cttctcaaac 240
gcttctcagt tataacact ctcgattccaa atggtatct ggtgctgagc gacgctgcta 300
ccttcacaca gacccagagtt ttaatgaaggg gacgattttcg aaggtggtgg gacagtgatt 360
gggtacccag tgagatagagt ggaggcaacta gacaacagca cagtggaaac ttgctggtgc 420
cctagctccttg agggaaagag agacacaggt ggccacctag ggcoccaaggg aaggttgggt 480
agagttggag gatgtgccca acagagacagc ttggtggttag taggagatag cattaaacccgtc 540
caaatatata cccacagcgc gaaaggaatt ctaaattctt ccacaaagcc cctcaaac 600
tactgacta ccggccatcg aatgtgcca ggtggtcttt ctcagcaata cgaagcagac 660
agagagagaga gggagtattc gngaggtgaa atggagataa aacaaacaccacta 720
cctacagtg ggagggtcctt aagaaaaagtt tattatcatt cagacacaat acatattttt 780
tttttttttttt tgcagagtgg gttctgccctt ctctccacgg ctggactgca ctgtgctgac 840
cctgccaccc tcgaaccttc acctccgccg gcacacctag ttcacagcttt cagctctctg 900
agtagcgggggattcacacgcttgctgca cccacoacta atattttaggt tttattagtg 960
gacgggttctt cccatagttgcccaagcgttgcttacttgaa cagctcctct 1020
tctggygtcct cccagccagt gggaggatg ctggaggcc caagccctgy gagtgctccg 1080
acacacccata gatgtgcaagt gatttccatt taatgtagt ggttcacctct tagtccacctt 1140
tccacacat cttcccaaga tattttacag gttgtctacct cgtbaattca gggccacggaa 1200	tgacacctgg cttccactgg gggtggaagca agggcgtagag agggcgctcgc ccacagtttg 1260
tgtcggtgag ggtgtcctgg acacgtcggttg ctgtgccctc ttggtgctgaagtttccc 1320
tgaaaaacctg cagaaaaacc ccaaatcacaag ccggccctgg gaggctgccc cagggtgcgg 1380
tyttgggctg tataaagcttt ctgagaggctt gcagctgatcata cttgttcttt gtcagggcct 1440
tggcccttttt ctggcaacac tagatatca ggggttctgg ggtctctct ggggtgggtggt 1500
ggagcagctac taacctgctc ttcagtgctgt ttccctccca cttccatggg atatgtggtg 1560
gttggggatt gattttgggg ttgattgcttt ttgtgcattca taatgtgggg atataataat 1620	taacctcttc acatgctatt tggcaagactt gacagactata tacagtaaa gaaatttagca 1680
gtcgctggag tagaagtgcc tcaactatagg ttagtttatc ttagatcttg tagtctttttc 1740	ttacctgagc gaccagagag ctccaggcgg cccacagccac caagacagcc ttecaacag 1800
ttggagataa gatgcaagagc gtaagatggag gcaccccgctg agggactgc 1860
tteataggga ggtggggagca ttcgacttactacctagttc tccggaacggag 1920
tccagagatag cggagggtgg ggacagttccttt cccatgctgg cggagggtgg 1980
tccagagatag cggagggtgg ggacagttccttt cccatgctgg cggagggtgg 2040
ttggggattt cccgacccct cttcctgctt gatgtggcga ggtgctcaaa ttcgatgttg 2100
tttccagagc gtcagaaactc cttcaatcggtct gttttttttt ttaaatccaa maagacaccag 2160
agggctgtgg agggctgcttg cttgagttct cccagacatc acacagacac ccgctcttac 2220
actattttat taaactgatt acgtgtgaata gcggctgcttc gttggtccttt gttgtatact 2280
taaaaattag ataaactcagtt cccagtgcata ggtgggtcgt gcgtgtcatt gttgtatact 2340
-continued

tcagctctttt ggaggcggcga ggaaatgtgga tcagcaggttc egaagtttcaaa gaccaacctg 2400
gcagaagatgg tcagacccctg tctctactaa aatcacaata attagcggggt ctggyttgcca 2460
gtcacacttga atctccagatg ctgggagggc tcagggcgaa gaattgcttgg aaccgcggg 2520
tggaggtggc agtggacccaa gatctgtgcca ctgcaacactg ctcaacgctcg ggagacagaa 2580
tgtaactccaa tcctagggaa caacaacaatt aaacatcaga caacccaaaa caacttaccaag 2640
tgcataaaaga aaaaagcaga agtcctctct caggtgggctt cctggtccaa actotgcctctt 2700
caggggttgcc ctggaggtgct ctggaggttctt ctaggctggg ggcctctcct ccgtgctctcc 2760
cttcagggcttttaacctcagtttgcggccttgcgactct gtttgctaca cctgcacccac 2820
	tcctgctgac attaaggctg gcgaattccctt gttttgctaca cctgcacccac 2880
	ggtaggtggccc aaaaagagcaatacgagtttc gagacagttc 2940
	caacattcgg aaaaaaagtgcaatcagtc aggaaagggg 3000

tcagcagccg caacgacgca aacccgttggc aatcagctgca agtagttttt ccaacttcag 3060
tgcagacggag cagcaaggttg cagaggttttt ggggggtgtgc tgaatttcag 3120
tgacagtggcg gaggcaagac aatcagctgca ctaggctgtag ctgggttggcc 3180

tgtgggcttggc aacccgacgca aatcagctgca ctaggctgtag ctgggttggcc 3240
tgatagctgtc cggcgagtttc ggggggtggtgc tgaatttcag 3300

tctgcttcag ccatttggcgc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 3360
tctgccttacg caggcaagac aatcagctgca ctaggctgtag ctgggttggcc 3420
tcgggctggt gcgggtttggc cggcgagtttc ggggggtggtgc tgaatttcag 3480

tctgttcag ccatttggcgc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 3540

tctgcacgccc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 3600

tctgcacgccc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 3660

tctgcacgccc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 3720

tctgcacgccc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 3780

tctgcacgccc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 3840

tctgcacgccc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 3900

tctgcacgccc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 3960

tctgcacgccc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 4020

tctgcacgccc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 4080

tctgcacgccc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 4140

tctgcacgccc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 4200

tctgcacgccc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 4260

tctgcacgccc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 4320

tctgcacgccc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 4380

tctgcacgccc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 4440

tctgcacgccc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 4500

tctgcacgccc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 4560

tctgcacgccc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 4620

tctgcacgccc cagcaacggg aatcagctgca ctaggctgtag ctgggttggcc 4680
cgtcagtaga gttcaacccg caggagtaaa ttactgcgt gggaaacaac cgcaccgccg 7140
gccacgcgg gttcacaact cgcacgcgca aaagggcgcg aggtctacc cgcacagcnc 7200
agaagcgocg gccgaagcgcc cgccgagcgc caaaaaagcg gacggctgcc gggocgcggc 7260
agggaggcga gcggtaacct gacgaggctc gtccggagct gtctgctcgc gcggcttggg 7320
cggctggggc ccgccagcta gcgtcctgcc ggccccgcttg agggcacgctg 7380
cggtgggttt ggctcagctt tcacaacctg ctctratcag ggcocgcctat agctgtgtgg 7440
ccttgcgctca cctgaaact gcgcacaaaa atacgccccg gaaatgtggcg ctacaggcg 7500
tacgcggyga ccataccctg gcctgggcgc gcacaccaca aggccccagt aagccggc 7560
accgcggagg ggccggccga ccaaggtccc ccgccagccc ccgggcacgg 7620
tcccgctccc tctccgaccc cgccccccagcg ccgctttgga ccggcaccggc 7680
ccttgctgcct ccatcctcgac gaggacagtg ggtcttcagg ggaagagctt tctgtcagg 7740
tggcgcttt tctcgttcag gcgacactga gtcaggcagag gtcgggttcgg cttgaatatag 7800
ggcgcatgga aagagctcgtc cctcctgagg aggatggtggt gttcgggtta gcagctataa 7860
cgcaccccg attggagcgg ggggctcttg gttgctcacc ggaactcggg atatcctctga 7920
ccttcgaccc cttgctccct tctcttcttttttttcttttgagcg aagctggagc cttggcaga 7980
tgcgccgcgg gcgggtgctgc gttggcgcca ttcggtgctct gctgctctgc gcggcttcgg 8040
gtcgctgcga tctccgctccc ccgcagcttg atcgatctgc gattacggc ggcgcagccc 8100
agcctggct ctttgctttgt aaaaagtta gctggggtgg cgggtactgg gggatcctg 8160
gtcggacat ccctcctgaa ggtgatgttc ctcgctgcgg ttcgctgagct actaggctta 8220
cggggaggc ccactggcctgg ccgcatggta cagagccagg cagaaaaaga 8280
gcatacaca aaataactac tctaaattgg actttgtgat cttgcgggct atagcctgtaatg 8340
tctctgcccc taaaaaccatt actacttgtt atggttttac ttggtgctag tctgtgcaagc 8400
gatgtgaccc gcggatatgg aaagaagcgtt cttgggtact cttctctaaac 8460
cacccctctgt tataaatattt gagacagctga tgtaaaagag gtcctcttcct gagaactgtc 8520	tagctgcaag aagccagcttg cccagctccc cgggatggta cggaggcgct 8580
ccccacacac aagggtagtc gggacacgg ccagctactt aacgtttaa aaaaatataa 8640
taagactctgc atccgctca ggggctggce cagcgcctgc ctctcattgt gcagcttgctg 8700
ggtggttgac gggtcgtggt ttggctttttt atctctgtaat gttggtttctt gtttctttta 8760
gtagataa ctggtgtcga tgcgtgttta aaaagttaat acagcttaag ggtgctgtag 8820
ataagtgctg cctcaagctg tgcagccttg atttctttt gttggtttca ctctcttttttta 8880
cattgtaattgc ggttgtctct caaggttgttc tctagtctcttag gattaaatg cttgatggg 9000
tgcgcttacat tctgttatgtt aagagctcctg cggttgcttc aaccacgct 9060
tcggcagaat cccatgatgg ctctgccatt ctcgaggtgc gggctgagtc 9120
ataagccccg gcggcctcgg ccggtgccag caggagctctg gcaacccggct tacctctaa 9180	ggctgccgct gactgtgccc cttataccca gcggctttgg aggctggagc gcgcagcttg 9240
tcggaggtcc gcggctgctga caccacccgg cggaggtgtg cagagctcgc cttcctctaa 9300
tccgagagat cctgtctgag cggctgagat ctcctgttggt gacggaggtgc 9360
gcggagagat caaccaaccg cttgaggtgg cggccggcgg cttgcctcctg 9420
cactocagcc tgggcaacag aqtgagactc gtgcctcasa aaaaadaaa aagaactgac 9480
aactgcacaa aagaactcctc tgtgtcgtct gcgtgagcttg ctagcagat tataaatgg 9540
gctgaaata tccctatgtgtatttactcag cccctattt gaggctgactc tattggtcg 9600
ggctttctct tcgtgcattgg aagaatggac agaacaatitg ttggccttttg 9660
gagacatta cttgcagaggg gaaaccaagt agtaaactgga atagcgaagt ttttctcatg 9720
gagaaasaaga taattggactc cgtgtgatgc ggaacgttgg ggtttagcaca gtgcggcagc 9780
tgcctcataa taacattttgaa gagaactctg aggaaccaag cttcgtcgagat 9840
ttggtggtata aggcccttgtc aggccagggct atctgagctc tggagtgggtg 9900
atagcctggt tgttttcagcg gacoactcag aagcgcgtgc gcggcagagc caggtggt 9960
ggcctgtagg cagacaacag cccagctata ttagcccttg tgggccttgg gcacactcct 10020
tgttttata ctagaagtct taggaagctoc ctgggaattt tggatctaatg ggtgtgctgg 10080
tttggtttat gttttagata aaggtacact gcgtgatagtgc tggagaccaag tgcctcctgtg 10140
agggagatga ggaggagcctc tgttcaggat gcagcagcaag tggcgcctctg 10200
gggccctcct gattagagtc tgaacccatt gcggacgcag tgaacgctta tgggaggtgt 10260
gggtgcgaaa atgaaggacatgc atataataa atataaata ataatataaag gaggctcctct 10320
ttgctctgtgt aactggagatg atcttcttggt ttcagcctcgc ttagcactgaa taaaagtt 10380
tgcacgtgcag ttatatcttt cagcagctaa aagaatagtgt gatattttact gatcogcgta 10440
atgcaatga tatatatctct taaaagacta taaaacactct cactcaggtt taaaagctcg 10500
atgtctgaaaa cccggccgctt atcccttccg cttggcctctt tggtgaaaca tggagctcag 10560
tcgagcctct aagcagataa tttttactat aagcactctc gtgcgctcatt gcggcggcagc 10620
cacctcgactc cccagacttc tgggaactctg agggcgcagc tgcacagctg tgtaggtgt 10680
cgacaaacac ctcgctcaact gaaaccctgt atotactaaa aatacaaaat ttagctgggc 10740
gtgtgggcag accctggttga cccctgtgttt tgcgggactct gaggcagagtagcctgctg 10800
aaccggagg cagacggtgtgc agtgagctga ggttgcaaca cctgctactc caagtgggca 10860
tgapacagag cctcgctcata taaaaactata ataatataa ataatatctc tggagcgggt 10920
aatattagag tttctctcgg ggacacttct ttcgtcactg gtatgccttt ggggtgcggt 10980
aatattattg tgggtgtcag aacccttcag ctcctcctcg tagaagacaa aataggaagt 11040
cttggaaagc cttggaggtgc gttttttggct cgtatgactc agatgggttt tttttttctt 11100
ctctgaaagga cagacggtac ttcgtgactc cttggggctgg ctcttctttgg tggcagagc 11160
gaactggggg aagatctgga cttggacactc ctttggtatc ttcacacaa tcgcctcttg atcgacaggctc 11220
ttcacgtcctgc gttaggaacct aatagggttc cctgctatgc tcctatggctg 11280
cagctatagt gttcttctgaa aatattagtt gccactaagc tggttatgat aaaaaaaat 11340
ggtatgggta cttggttggtg aggacactca gctgttgctagt atttttttactg 11500
taatattttg tctatcttgcatt aatagaatgcc gtagctagcc tcgtcctgtactg 11560
agactgcaact gcctggctcct gacgctgtca cagcgccttc aagcttcttc accttattgg 11620
atgcaagagg cttggaggtgc gttttggcttt cctgcttctag tgcctatggt 11680
aggtgtcttt cccatcactc gcctggctcag gtcgctcagc aacttcttattc ttcctttg 11740
agactgctgc gctgtttcagtg gttgttgacat tgggctgatg aagctggctc 11800
tgatacctca gatactcctt gtataccttg gtoctgcgaa ggggtcagc 11880
attccocctoc gcaaacctct ttacctgccc tggggagtct gttgcocccc ttaaacagtc 11940
attatatagt ccaacccacgt tttttacaggt tgaagcttcg gaaagttggaa taatattatg 12000
agactctctc attaatttc tctgtagttca aacgcttgaa ttattttact tgggctaat 12060	
tacttagtct tataaaaacttg tgaacgcctt caagaccttt gattttgcatg 12120
actcggctta ggtttgctgaa acaagtttaac taactacgacg accatttttaa ggtctagggaa 12180
tgtcttacat aggtgcttgg aagaaagata ataagggaa agttagttct gtttctcag 12240
actttctttgg tgtgttgcccac tcaacattgaa ggttgactcga gctatttcta ggttgacgg 12300
gaaagccctct cgtccttaacg gttgcttgcag aaccgccttc gggagtctcag tgaagcttcg 12360
tgcctagctct ctgactgtct ctctgtcttgacct accgtttccc ttcaccgaagctgac 12420
ggcttcctct gatttcataaa tgcctcaggg tgtcctctgg attgaactct gtaaggtgct 12480
tttgaggttc ataggaggttc aagttgacocct gttgcttaagct gtagggttttg aataactctg 12540	
tttttttttttttaaatggta taatatttc ttaagggaa gattattgat 12600
atattttgtc caggtttttta tttacaattctttaccacgg aacgcagctgc tgggtgctatc 12660
caggtgttctct cagcctccccc tgcctctttct ttaagacatta accgacctgc 12720
cagcctgcttg aagctgacggct tattgaaaccct ctagggcggg ttttattgcttg 12780
gacagacact accctttctg ccattagattct ctaaatattct ctggatttttg ctagacacag 12840
ggcaagtata acctataaattt ctagctctct ttaattgcctc atttttttagg 12900
tttgtaaagcg attcattacat ctatattttt cctggtggttt gtttagcttg 12960
ttaaaccgct gggagtcttt cttgtaaacat ctygattttagt actgtggacatt ttattttttt 13020
ggttattggct gtagatttctct ttcgctgtctcg cggactttact tctgctggattgta 13080
tactgacact tgcctacagc tggctgactat tgcctcgttg cttggtgaccg ccaatgac 13140
gttgcaatgt gcgtgctgta ctcgaattgct tattaagcttg tttaagctggctg 13200
cggctccctct acagctctctt accaaactctgacattatctc attactgtgagctt gtaacagaa 13260
agataaagac gtaaaagatg taagagcccct tttattttt ttaaacatttctg aagctggcct 13320
aactgttgag tgttttattg ccgatccctttt aaccgactttg cagtaatcctc ttttctttgtg 13380
aatttggtggc ataattcata attgtctgctg cttatttttattt gttttttatttt 13440
agatattgatt cagttgtacag actacccctct ttaaaattgacttccagtt cttgctattttg 13500
tataacgact ggtgtgatcag ctaaacctct ataattttct aaccattttt ctagacacag 13560
aacaacccctt accattagccctt tttaacccctt ccctattttct accgactttg cagaagctg 13620
taatttattttttattttttt gcctcttttttccgctttct gttgcaatgaaatgat 13680
aattaatttatta attgttttagg ttttattttt catttattatcc gttttttcatg 13740
gctgtggtgt cttgtgcagctgttgagaaccatttttg ctagcatttct gttgctattgctg 13800
gttgctatt caccactctgt tttttttttttt atgtggctcc gctatttttct 13860
ttttattttttttattttttttt ccgctttctt
gtcaccaccg ctggagcagc cttggcatgt cagccgtttt aagcggcttg aggctctggg 14220
cgcaccacgt ttcacccacct acgtctcttg agctgctgag aatacaggtg tgtacacctg 14280
caccagactct aatgtgttatt ttatatagag atagaggtct acatagtttg cagagcgtgt 14340
cgacactctg cggctgtaaag cagcctccct ggtccagcct ccacaaagctg aatagtttata 14400
gattgtaagg cagctctctc gggtgggttgg ttctgttgttc tatttttttgt gaggaggaag 14460
gcagatgtc gaaacgctcag aaccccctctg ttgagaggtc aagttttttcat ggctcttgata 14520
aacaactccc caatataaag agaagaacatt ttcacccctc cagaaaaatat tgttgtaccc 14580
catttacgct aacctactac tcctagctacg acetacttgtt ctaggtctcg tcagcttata 14640
ctgttcttcct cttggtctgc acacccacaa acaggtgtctt gcgtccttta cttctatcata 14700
atattgttaa gatataaaac tattttttttt ccttttgttct aatatattata cgggtccttct 14760
aacaactacc aataaacttt aatgagttttt cttcattttt ttttaatattt cttccatcttctc 14820
tggtgtattg cagctggcct cattttttttg ctttttatttt cattttttttt tttttttttttttt 14880
atttgccagct ttcttttatt aatagtttaa aagttttttta taggtttttttt gttttttttttttt 14940
atttttcttt gatgtgtattt ttcttttatt ttctttttttt gttttttttttt tttttttttttttt 15000
tgacactcg aacccctttg tgggtgtgtc tgcgtttttct tttacttttct cttctcttttt tgggtgtgtc 15060
tggttttacct ctggctttc ctcctttttt gcaccctttt gttttttctt gttttttttttttt 15120
tggtgtattt cttttttttttt cttttttttttt cttttttttttt cttttttttttt cttttttttttttt 15180
gacactctgg gacccactttttt gtttccatttt ttttttttttt ttttttttttt tttttttttttttt 15240
tggtgtattt ttctttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttttttt 15300
tggtgtattt ttttttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttttttt 15360
ttcttttttt ctttttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttttttt 15420
tggttttacct gcgggttattt ctttttttttt ttttttttttt ttttttttttt tttttttttttttt 15480
tggttttacct gcgggttattt ctttttttttt ttttttttttt ttttttttttt tttttttttttttt 15540
ttcttttttt ctttttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttttttt 15600
ttcttttttt ctttttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttttttt 15660
ttcttttttt ctttttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttttttt 15720
nttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttttttt 15780
nttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttttttt 15840
nttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttttttt 15900
nttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttttttt 15960
nttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttttttt 16020
nttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttttttt 16080
nttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttttttt 16140
nttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttttttt 16200
nttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttttttt 16260
nttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttttttt 16320
nttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttttttt 16380
nttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttttttt 16440
nttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttttttt 16500
nttttttttt ttttttttttt ttttttttttt ttttttttttt ttttttttttt tttttttttttttt 16560
-continued

tctaacgcgt tggccccagt cgttcttctc tctctttttg acaataaat cacttgytct 16620
tggttaatac atcccagag caagcgcctg gtgtcttccag gcagacggag aggccgaga 16680
ggtgtaaaga tgggtttttg cagctctatt caaggttctta tgaatgctgo ctaagtctt 16740
gaaaccatta tgaattattg ttttcaatct tggccacagt ttttgagaa tcaaatggtt 16800
ttggagatgt gttgattag tcagccattc tggattctgg ataaagctctctt 16860
tggagcagtta gtagggtgtga cgttcgcttgct tgggacacga cttgccccctctcgccgctt 16920
gggccacctg ctcctgcttgg tgaacacgccc ttcctaatctg agggccgatctt 16980
ccaggggcc tttcagacag ctcagggaa taacagtcttc tggcaagatg tgcagctccc 17040
atgaggggti aaaaagcgcttca tctcaaagctt gattgaact ctggtacccc 17100
cccattaggg gaggctcttccc gacgccatga ggtttaggcc gttgctgacac tgggacgca 17160
ggagcgctt gcaaatctac ctgcaatattg tgggttgcttg tggagctaatg 17220
catattctt ctcagccatg tattatat tcgctccagc ttcctcttgg atctcgagat 17280
atttctcgcg gacttttatt ggaagacagcg atggtgctct tcagctcagca acaaggtata 17340
agagctccaa ctcctgcgct tggataacag gacgagatgc atgctagact gctcagtcac 17400
acatacgcttg aagacttaacg ctcctccagtc aacccggtgg tggattag ataaagcgat 17460
gggggggggc acgacgacag gtaagttgatt gtaagaaag acataaaaaa ctaaattaaaa 17520
atatattttg aaaaaagctg ttaataaag gagaaatttt gctataattg gaatacatata 17580
agcgattttt ttttaagtgc ttaatactgc aaaaaaatggtaaatc agtttatagt 17640
taatattttg atgctctcagc ttcgctccagc ttcctcttct catatgcgtt 17700
taaaacctg ctcagcctag gaaatatatt tattatctc atagaggg aacaattgtg 17760
ttggatggtt tcggacttt gttggtttgg tggagccaga gttttacctg ctaaacaggg 17820
cgccctgctg gtgctgcttgct gcggcttgac ctccttctcc actccctcca ttcctcttct 17880
tggccagtct gacgctctcg agtacggtg aggcaagcag cacgcccaag cgcgttggtta 17940
atitattttt ttttaatagg gcgggggtttt cccatgtttggc gcaagcttgctg tgcgagccctc 18000
cacgctccaa tggctactgcgtc ccctccttgc ccccaacggt tgggggtact agggtggacc 18060
cagggcgct ctctttttag ttaagctctc tgcagttgtg ctgcggcttact gcagcctatt 18120
gtgaagctttt gaaaccatatc gccccctctc ccctcctcag ttgaaaagat 18180
tgcctacatt atatattttt tttttaatattc tgcctccatt ctggtgctct ttgggtcttt 18240	ttctgatatt atctttgataacctgagact cttggtttagg ataaacccat tgaatcgcag 18300
tctagatatt ttttccatat ccaaggtttcttgcttctcagctgctcttttc atgggaatatcc 18360
tctagatatt cgttctatg ggtttgagc gcaagcttggt ggagctcagcg gtcggccagt 18420
agctggacac cgcggcgggcc aacataacaac gccacataac tcaaaaaat tattaaaaaa 18480
tgagagagct caagcctgtc gcaagctgac cgttctttgct gcgagagagcttcgctgctctg 18540
ggctgccactg agccagagcg cttggaagcc ctcgctatgt cgtacagcgcc aacgcttgctc 18600
cccccccccccccc cccacaccag cctcctccat cccacatattcccccttccttcttct 18660
ggatgtcat tggcacgaaaa aataaggaat cgtagcataa aataagagaaa acaacttatac 18720
gttagacaagg gagaaaaatg acaaaaaa aagagaaaaa ccaactatac aagattacactt 18780
gggggggggc cgcgtggttct gttctctctgt tggagcttaaatg ggcagcagtttaacc 18840
gcctagttt gccttcttggct gtaaagggag aagggggagc ctggaggagcttcctctcttc 18900
atcagaatgg tgggatattg caaaaattag ttatgtgtaa ttagggagct tgtatcagaa 18960
aagotggag ggctactctt caaactggac cttggcacct tgtctttaaa ttaacttgctt 19020
cattgcact ataaagcttg ctaaagaggg ttaaacttcct ttttcctctaa ctataanagg 19080
agacaaaaag caacaacact acacctgctg acagctgctt ccaatggattt ttaactgcta 19140
tctctacga agactgttaa gtttattatt agtctcaact taaccttttat atattcactag 19200
ttagcttagt gttaaatgact agttggtgag gagaagagaa ttaaagaggg asaatgggtgc 19260
caaagaggac agttcttggga tacagctggc cagagcgggag atagcttgccg tgaatcttgcc 19380
tcactgaacct ctcgaccttc ccaggttcaag tgctttctct gcagtcagct cccaggttca 19440
tgagactttacacct gcggcctgca acctgcggcta gttttattttt gttataaatt taggtgctggg 19500
gtttgctcta gttggcctgc agcttattatt gcagttgcac cctagttctgc cccaggttca 19540
agctccacaa aagttggagc ttacagccat gcagcctgcc gcagtcgcgtgg acagcttgctt 19620
ttgctgtgtat gtgtctttctg aagagaggg cccagccttt tacacattttc tataaaatttct 19680
tttaaggggt ttagccacctccccacacc cccccacacc cccccacacc cccccacacc 19740
ataggttgct tgttccagacct ctcattatat cttccattctc ctttctttttt ctttctttttc 19800
tctttttgt tgactttctc agatatttgt gatatttatt gcctttcttaa aagtttctttt 19860
gaggtcagt acacttcttg caacacccttt tctataaccc ttagaaagag ggacaagagac 19920
tgagtttggt ttagggattg gaggagactt gttatttttc tcatcattttt cggctttttttt 19980
cggctactctt ccagcgattg tagaacagtct ggcctaaaag acaccaaaat cccccacacc 20040
tgagactttgc aacattcgctc ctctttttttt ctctttttttt ctctttttttt ctctttttttt 20100
tcactagctc aatgcagcct tccagcattc aaatgattgc gctggtattg gatagcttctc 20140
aagtatctgt attgtaagga gataacattc aatgtaagga gataacattc aatgtaagga 20200
tctttggttctc ataggtttttt ctaacgtagtgtt tagattttttt gtagattttttt 20260
aattacattc atttcttctg ctttttacta cttttttttt cttttttttt cttttttttt 20340
cagaatgga aagttttttt gctttttttt cttttttttt cttttttttt cttttttttt 20400
aagttttttt tcgacatgct cttttttttt cttttttttt cttttttttt cttttttttt 20480
agcactggtta aatgctttttt tctttttttt gctttttttt cttttttttt cttttttttt 20540
ttcagttgct ctgcctttttt cttttttttt cttttttttt cttttttttt cttttttttt 20600
aacaagata ctgaagagctt gagaagttgc gtgtttttttt cttttttttt cttttttttt 20680
gtgaagactt tttttatttt tgaactgagct ggtttttttt cttttttttt cttttttttt 20740
agcctttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 20820
aacctttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 20880
atagccactt cagagagctg acagctttgtc tagagagagc gacaggccctt ccaccgcttg 20940
gagttttttt gctttttttt cttttttttt cttttttttt cttttttttt cttttttttt 20980
tcgcgtttttt ctctttttttt cttttttttt cttttttttt cttttttttt cttttttttt 21000
aagtattttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 21060
gagcctttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 21120
tcattttttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 21180
aattttttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 21240
tttttttttttt cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 21300
<table>
<thead>
<tr>
<th>Line</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>gcacagtgc gcgctcata aatotcatt ttaagtgtat gtcacctttt atcacttttta</td>
</tr>
<tr>
<td>96</td>
<td>agatcatttt gttttcgatg acatatttat tttttttgtc ttcctcttgg aatgaggaat</td>
</tr>
<tr>
<td></td>
<td>cttgagaggt agagagcgtc tctaaggtat ctaagatgc ttcattttttg gagaggacctc</td>
</tr>
<tr>
<td></td>
<td>ttaagcgtt tgttgataaa ggtgctgttg tyagaacgctg ggtcaacttc gtatgcttctg</td>
</tr>
<tr>
<td></td>
<td>aaactcagat tcaacatact tttacatttt atataataa aagatacata tttatatag</td>
</tr>
<tr>
<td></td>
<td>agcttacatt ttaaacgtac ttcagttgcttg gcggctcgttg tgtatatagt taacctcatt</td>
</tr>
<tr>
<td></td>
<td>agcctctag tataccacta gggatattgt atctgctaaatt cttgctttgcttg</td>
</tr>
<tr>
<td></td>
<td>aacaacaagc aaaaagcaca aytgtaagaa acttagacat gttgtaacact gctgtggat</td>
</tr>
<tr>
<td></td>
<td>gttacgctgca gagaagtatt ctcgtacctga ggcacacgcttt acatagagcct</td>
</tr>
<tr>
<td></td>
<td>cattgtgtga aggcctaatga aaaaagcagt ttaataaaa aqagggagact aacagttgtt</td>
</tr>
<tr>
<td></td>
<td>ggagtttattt ggctttcctct tggccgacag cagctctagg tcttccttga ggaatttag</td>
</tr>
<tr>
<td></td>
<td>ggcctcttgt actacatagt aataactgcga gtaactatg caaattttaac gaattttatat</td>
</tr>
<tr>
<td></td>
<td>tttaaaaatttt gtctgttattt aaacatatgtg ctaaaagcccc aactaatcctt</td>
</tr>
<tr>
<td></td>
<td>tgtatagttc gttgtcagtt gacgacactgt ggagagcttt cttttaaggg aatttttcccc</td>
</tr>
<tr>
<td></td>
<td>ctaaagatcg cgtgtgtgata ggagagcact aacaggtagg tggccagacata ctagtactt</td>
</tr>
<tr>
<td></td>
<td>gctgctagtt gatagggagaa ataataggct gttggaaaaa atoctttaaa aagctcttttt</td>
</tr>
<tr>
<td></td>
<td>tccttttgatt tcggccaaaa ttaacagaaaa tttttctctcg agtttaagttttccgagtacactc</td>
</tr>
<tr>
<td></td>
<td>ttgcgttgaat ctttaaccggg aacatgtgag ttgatggagga aacacgagctt</td>
</tr>
<tr>
<td></td>
<td>taatttattg ctaaaaggtta tcaotgtgta tattgtggttt tttttttcttc ttttactgtt</td>
</tr>
<tr>
<td></td>
<td>gggctctcagt gcgtggacgtg gttatattgc ggccgccctt cccgacacgg actgagacgc</td>
</tr>
<tr>
<td></td>
<td>agggacgatc agcagagctc agcagagcag acaaaagtct gttgctggga ctcttacagct</td>
</tr>
<tr>
<td></td>
<td>atgacagaaaa ggcacaggtc gttgttattct gctactgtgc caggtataggg aggctactaatt</td>
</tr>
<tr>
<td></td>
<td>gttgacgacgt agacggagggg acaagcaata ttggaagaagt agatgctaat tggcaaggtag</td>
</tr>
<tr>
<td></td>
<td>tggcctcttttt gcatactgca gaaagtggag ggtatattgt cttttctctc gaaattcttt</td>
</tr>
<tr>
<td></td>
<td>ttgcaaggag ttaaactgtg aaaaatggtt gctatgtttt ttttacatgt ttttactgtt</td>
</tr>
<tr>
<td></td>
<td>cttaattattt ataggtttagg aacagctttg aagcaacctta gttgtctggtc aacagtgagg</td>
</tr>
<tr>
<td></td>
<td>agatggagtct aggacacttt aagcagcttg aactttagagt aacttggagtt</td>
</tr>
<tr>
<td></td>
<td>atatgctctg tctctcactc tgaagacagcc cagacacatc atagagtttt cttttatcctt</td>
</tr>
<tr>
<td></td>
<td>tccaaaaac aacatgtttaa aacaagcaca ctggtaaaatc atggtgtgct gcattgctttt</td>
</tr>
<tr>
<td></td>
<td>actgcttgaa atatcattttt aatattttttt gcataattttt atgcattttaaat</td>
</tr>
<tr>
<td></td>
<td>aacagggaaa tgtgtgtgtt tctctttaaa gaaactact tccaaaaagt ttaagttctg</td>
</tr>
<tr>
<td></td>
<td>atggagatca gcgtgcactaa cccagaaaaa ggtccccgga tattttttttt caggacgag</td>
</tr>
<tr>
<td></td>
<td>tagaagcaggg gcagaattct aacatgtttt tctagctatttg taaaatcaggtt aattggagtt</td>
</tr>
<tr>
<td></td>
<td>ataatttttaa atagttgagtt gcagcaacctc gttgggttttt tttgacgaggtt</td>
</tr>
<tr>
<td></td>
<td>ttagattattt ttcgttttgtt gttgactcag tggagaactgg gttgggttttt gttggcaggtt</td>
</tr>
<tr>
<td></td>
<td>aatggcagct aatgtcatgtg ggcacacgccagtttggggc caccacaattttagga cggcaattccc</td>
</tr>
<tr>
<td></td>
<td>gggtggaccag ccagcttcatc gcggccctgg ggaatggacag caaaaactgt cttcagaggt</td>
</tr>
<tr>
<td></td>
<td>ttagacattc ccccacataa gttaagacat cttctacacgc ggtagagcaatt gcaccagttt</td>
</tr>
<tr>
<td></td>
<td>gcocacgttgg agctaatccttttttttttttttttt ttgagacaag ttttctctct gcctgtggct</td>
</tr>
</tbody>
</table>
actgcaagt ctgcctcgcg gttcatgcoc atctcctgt ctcaagctccc caagtagctg 26100
ggactacag ccgccaccac caaagccacg taatatatggc tatatttttg agagatagg 26160
ccccgcctgc ttcggcattgc ctctgctgtgc ctctggtctgc caacttactgc 26220
ttcggcgagtt ttgacgctctt ttttaactttt ccctggaaca acacatcactc 26280
gacygtatt gatttctttccc gaggaatttt tttcagttgct aagacagctgt gcagtagcc 26340
gctaacca cccccgagtct tcaatctgca acacatcttg cgcctccccccc ggtctccttg 26400
tgcgtctgtca ccttcgcccc gccgtctggttt acaagaggcc gtcacccccc gcactgtcacc 26460
gttcttctcag ggcagacact tagagaggg ccagagtagtct aaatatttccca tattgcccagt 26520
gatgttgtg ggccctgcgga aaccattttaa ttgtctctgc tacccaagct ttcctctgac 26580
catttttttc ctcagttgc gg aaccgggactttaa aagaaactgg aaaaaagctgt agtgaagtt 26640
aagatggttc tttttttttttt ttgtccgttg agacagctctg tagctttgcag acccagcttg 26700
gagacagct ggcaatcttc agtcacgtgc acacatcacccttctggttg gagaatctctt 26760
tctccgctcag cccctctctgt acctgagcacc cctggcccca cccactcaccg cagctttattt 26820
ttgatacttg aggagagacc ggctttggttc ccttgagttgccc ggcggctttt gacgctctga 26880
cctccgctgc cccccctcagc accgagcagc aaccgagctc ctgggggcgg ccctctctttc 26940
aagcctctgct agatgatattttttttt tttgaaggg caccctctattg coodooaattg 27000
attataactg gatttgcttaa ttgtagaattt ggtccccataa aaccacaga aattgagtg 27060
acccatttata ccaactctt caaagagct ttcacagctg gcatctgcttttt ttg 27120
aagagaatgt actctctatc ctctctttaa ccacatatta acttaactctg agtatattattta 27180
atatcgagc actcctttcc accctaactctg cttctttattttt gacgctctga 27240
cctccgctgc cccccttcagc cagcagagtt ttcacaatgtt gttcctgcacc ttccttttct 27300
aagcctctgct agatgatattttttttt tttgaaggg caccctctattg coodooaattg 27360
tttgggggt cttctctttta ccagggtgtg tttcctttttt ttttttcctgct 27420
ctccggctctgct gttccgctgacc agccggagacc cttgacagttt gacgctctga 27480
tgtctttata ttgagaggg gatacgagct cagagggctg tttccttttgc cattctctgttctctt 27540
aagcctctgct agatgatattttttttt tttgaaggg caccctctattg coodooaattg 27600
attttgaatta ttttacgacc ttaaaatagtt atgattatgttttttt tttttttttttttgSibling
taacagactc aagccatac ctgtaatcct tgtacattgc atataagact atgtcataaagt 28440
agaagactct atgtaaatct gccggctgcag ggccgggga ctaattagaa tgytacttaa 28500
gagaagagtgg ggcggcaaga aagggaaaggt gactaggttt ctgctatattt ctgggtgttg 28560
gtcgtcatc tatatttccc atcaatttta gaaaagcag ctaaactcag aagggaga 28620
actctcttct ccaagaggtcg tgtacttca taacityagg cacactaaaa aaaaagacgt 28680
cgtgtcttta aamstaggcg ttccatttct gttggcattc ttttaagygtg tgtatggtgtc 28740
gtttaacaact tcctttgctcc aagagaacct cacatttca gatgctocatt cttaagaggtg 28800
ttcaagactt ctaagacagg cggcgcaacct ctaataaaaa taaaactcag tggagagtta 28860
atgtttaata tcgaggggca tagatttctt ttttgaatattttttaa cacataggca 28920
catggaatag cggcgcaact gattttcctt gtgggttttaa ctctctgatct caaagaggtg 28980
tgggagact ctaatcgcaag gctataaaaac cagcttgtgttt tttatatatatctaatggtt 29040
taatctctggt tcttgggtct acaatatttg aacagcgggt taaatctttg taagctgttt 29100
tctgtctct cctttctcct ttctcttctt cttaattggg caggttcggg gataacgagga 29160
tccaaaaa ccatctttta gttgtgatga ttttctcttt tatactaagaa ggcaggagga 29220
tttaccttatt gtagttgagc gggaggaat ttttgaagttg tttttttttttta gagaacct 29280
tttttttttc aacactctcat atatatatat atggcataat attttgttga gtatggggaa 29340
attgcagcct tatttttatt caaaggggct cagcttgtttt ttttttattcatgtggttt 29400
atttttgctg tagtcttaaat ctcgatattg cttgggctgtg tttctctttct cctctctct 29460
gcagaagcga cttttttttt ctatatttgt gcactattaa cagaagcggg cttctgtcttt 29520
attttgaggaa tgtgaggttaa gtagttgagc tgggtttttt tttttttttttta gagaacct 29580
gaattgtgta gttatatatatt ttttttttttttttttattt
caacatagtc agacccagtc tctgcaaaaa aaaaaaaaa aaaaaaaatg gctggtgcat
aggtggctct gcgttgatgc ctagttactc aggggcaaga gttgaagaag tctctggaac
ctagggattt gaagcgacag ttagctatga tctactacat gcatcccagag cttgggctac
ag gagcaagat ctctttaaaa aatagtyggag ataatctagcg ctcacacagac ttttacatca
actatttctg tcatatttaca gcacagacac aacatttaag aatattagcc aagttgttat
cacacatgat atgcctgcaag accgggttacg atttttgttg ttttaatcttt ttggtcttctt
agggcatatat ccagcgagga ttttctgtca aatattgtac tttttatcaaa atattgacat
attttottti ttggttacgccc acagatttga tagagattta gtttcattttg cttatattttc
tttctgttct ggaggatgg caatttattt cttttggtttt aatctatattt cattatatct
aaaaccttttt ttgacttcca aaggttagtct ttcagacgca gcctcgcggg aaaaaatctaa
ttttttttttt tttttttttttttt tt
cttaaagta taataataca gataaacaca gtataataca cacaacacccct tccctgtcgc
tatgtactttt gcgtgcctttt tttctcaacc tgggggtt
ctcctttctca gctcgtgttt gcagtcgtct tccctctcct 35610
tagggcctg accttttttg gcttttttgc gggtgggct 35640
tcaagttttg tcagtgatttc gtttgcagtc ttcacatct 35670
cttaggtag gtccttggag cttcagtttg gctttttttc 35700
ttttagtag tctcttggg ttttttttct gcagtttctt 35730
ttttagtag tctcttggg ttttttttct gcagtttctt 35760
ttttagtag tctcttggg ttttttttct gcagtttctt 35800
ttttagtag tctcttggg ttttttttct gcagtttctt 35840
-continued

gttgaaatctta ttcttgaaatt ttcctgtacata ttccatggttt cgctactggct acttccattg
37920
acatatatc ttcctttttaaa aaaaatttat ttttgagcag accttttatct tgttgcagct
37980
gctgagacgc agttggtgta ttcagactgcta ctgcaacacctt ggtctagtcccc agtacagctag
38040
tttgctctac tctgctttgct gatagagggt gctacagctct aagtgccacaa aacacctaggt
38100
aaatttttttt tttttttttttt tatttttttta aagacagggg ctctcaactata tgtgccccagc tatttctaaa
38160
tctctgagtt gtgtggtttgc tttgcgggttg cttttttatat gttttttctttt ccag38220
tggcgagct tattgctatata aacacgtgcc tttggggaatttgagcatg aagtgcccttg
38280
agcccggagct ttcagagccaa ggtccggcaa aatagctatg gatgtttatc aagttttcagct
38340
atatataattt catatgcttattatcattttgtcaactatttt ctttacttcatcctttcag
38400
atatctattcttctactttcactttgcatcattt gatccattttgac attttgctttgtcctttact
38460
cttattgctt ggcagcttctct gatgttagactg cagtagggg cttgacatacg gacacagccaa
38520
ggctttttttttt tattttttattt
ttagtggaca ccctgtgaa ccocgggtgc taagatgaa mtaaaccttg gtagaggtaa 42660
caatatagc acaacacact acotgtgaag atagacgtgc ttctatatttt taataacgtta 42720
gtagtaacg tggagttaaaa acctaggttt ttaattaatg ggtgaacagtc tttatgaaaa 42780
ttaggtgttc aagagcttaatt ttggttatttat tattatatatat aatactaatatt ttttttttt 42840
aataaggca ttaggtgtaa ctttttcctaat agatctaatc cttttttctaat aaaaaattaaa 42900
gatgtaaacc ttttctgtta tgtattatat cttcctcaac caaacgaaat ggctccctgg 42960
tatttttttgta taggagaaaa caaaaattaat gggccggccac agggttattag cttgtaaatt 43020
agacacttttg gaggccacgg ccggccgcat ataagctcag gagatcggaga caactcgtgc 43080	taacagctgg aaccccgctct ctctacacaa acacaaaaaaa taagctgggct ctggtgac 43140
tcaacctgag tccagcctac ttggagggct gggccagggatttcttatta accuggtggg 43200
caggagtigct aagagctcaca ctggcgtgac gctgctctgtc caacactata 43260
cctgcctatn cacnnnncacaaaa aaaaaattatt ttggtctgag ctcagcggct ctaaactata 43320
atcttagagcc ttggcgcggg cagacgggct gcttcctcctctg gggccgag cagaaagact 43380
ggcgtgcacc caagcgtgaa cttggcctct cttcctcttact aaactaaata caaaaacata gocaggttg 43440
gtggtggacact ccctcaacac cagctgatca ggggtgtgac ggcaggaat tctgttgaacc 43500
cagagggttg cagttgcaagt gacagcaagt gcagcagtgc actccagctgc ggtggacag 43560
agcacaaacc tgcctccaaa anaaaaaaa aatgggatat tttgtttttct cttgcttttta 43620
taactcgtgaa gatggtggac aacacaaaaacttataacag gaaagctcagc ttaagttgca 43680	taactttgt gggcaagtatt ttagctgtat aacacattag cctcctaaatt ataaatgctc 43740
atattttcaatt tatttagaaa ggatttcctac atagttatgc aagggaccaag gttctttttaa 43800
tcgtgctgtct ctggcctaaa ctttcctctc ctgatctctc aacagctatct 43860
gcactaggaa aaggtttttg ggtactagtct ctaactttcag taatacagct gggaggygg 43920
tctaggcctgc tgggtgttatt ttaatctcatc tgcacccctact ggtgaaaggg ccagagttctag 43980
ggctggtgtgc ttatttttaag ccagtaccaa gataaagaag tttaagttcag ctaaagatta 44040
taacttgtaa tttttttgtg acctgctgtct ttagtaatgt aataatcaactt aaattactcttt 44100
catatggta caggtatcact ccagttcatag tataaggtacc tgtgtacag gttttaagg 44160	tggcagacac aaggttactgt gatgcatgtata ggtgctgggt aagatggagtat 44220
gtataagtgc acacgcgtaca atytttcatat ggcacaaagagagctttcatatgtaaattttct 44280
cagactgtac tgggttttgtg aagccagtacag gccctatagct gtttgctgggt gaaagagactg 44340
aagagggaaa ctgctgtctct ctctttttaaa gttgtgctgct aagtgagcat actctatttt 44400	taacattcag ttcctcatag ctaacattggc acacttgcag ggcagccgag gggaggttaat 44460
cagactgtggt gctgtgtaga aagctgtcatg tttggtccact agtagctagct ctctctctct 44520
ggaaaaaagcgccccctag 44580
tttttacct ttaaatgctgc tttagggaaga gttgagccatt tctctcctgt gatatactatctt 44640
taaattttattgataggtgcc ctggccctctt ggaggtggct aagatgcccctt caaatattaaa 44700
gccttaatt ggcctactcta tgtgaatagc tggacttatttt tguatttttattttt actatacttc 44760
taaactaatgag taataacactg atatacctag tttttttctat ctttttacatct 44820
ttaactgttaa ttcagcctac cgagggttgc ctcgaggttgcat aatcagtcgc actgcacactct 44880
gagcttgggt gccccgactgctcctc cccaaaaaaatctaaatataa aatataaataa 44940
attgctcata cagaggagga aacgtgagga taataactct cttttttcaag ttcagaggtct 45000
What is claimed is:
1. A method of diagnosing Bardet-Biedl Syndrome (BBS) comprising identifying a mutation in a NGVN polypeptide or nucleic acid.
2. The method of claim 1, wherein said method comprises identifying a mutation in a NGVN polypeptide.
3. The method of claim 2, wherein said method comprises immunologic analysis using a NGVN-binding monoclonal antibody or polyclonal antiserum.
4. The method of claim 3, wherein said immunologic analysis comprises ELISA, RIA, or Western blot.
5. The method of claim 2, wherein said method comprises identifying a mutation selected from the group consisting of Val135→Gly, Arg413→Stop, Arg415→Stop, and Ile153→Val.
6. The method of claim 1, wherein said method comprises identifying a mutation in a NGVN nucleic acid.
7. The method of claim 6, wherein said nucleic acid is a NGVN mRNA.
8. The method of claim 6, wherein said nucleic acid is a NGVN genomic DNA.
9. The method of claim 6, wherein said method comprises amplification of said nucleic acid.
10. The method of claim 6, wherein said method comprises hybridization of said nucleic acid to a labeled nucleic acid probe.
11. The method of claim 6, wherein said method comprises sequencing of a NGVN nucleic acid.
12. The method of claim 6, wherein said method comprises identifying a mutation selected from the group consisting of T223→G, C814→T, C1413→T, A867→G, A1413→C, A940del and 2200insA.

* * * * *
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In claim 12, column 114, line 43, delete “2206insA” and insert --1206insA-- therefor.

Signed and Sealed this

Third Day of October, 2006

JON W. DUDAS
Director of the United States Patent and Trademark Office