The invention provides a method to enforce face-to-face stacking of organic semiconductors in the solid state that employs semiconductor co-crystal formers (SCCFs), to align semiconductor building blocks (SBBs). Single-crystal X-ray analysis reveals π-orbital overlap optimal for organic semiconductor device applications.

3 Claims, 10 Drawing Sheets
Form a film including an organic semiconductor on a substrate

Form an active electronic device from the organic semiconductor co-crystal

BEGIN

END

Figure 3
Figure 5

handle

semiconductor building block (SBB)

handle

semiconductor building block (SBB)

recognition sites

Semiconductor Co-Crystal Former (SCCF)

Semiconductor Co-Crystal Former (SCCF)
Figure 6
Figure 7
Figure 8
Figure 9
APPARATUS AND SEMICONDUCTOR CO-CRYSTAL

BACKGROUND OF THE INVENTION

In this context, synthetic efforts to promote face-to-face solid-state stacking have focused on the functionalization of semiconductor molecules (e.g., pentacene, oligothiophene) with groups intended to direct the assembly process to the prerequisite packing. See Turbiez, M., et al., *J. Chem. Eur. J.* 2005, 11, 3742-3752; Moon, H., et al., *J. Am. Chem. Soc.*, 2004, 126, 15322-15323; and Meng, H., et al., *Adv. Mater.* 2003, 15, 1090-1093. The intermolecular forces used to promote such arrangements have thus far been relatively weak, being based on van der Waals and/or dipole-dipole interactions. The most successful implementation of this strategy has, arguably, involved pentacene, where steric effects provided by bulky substituents prevented C-H . . . p forces. See Anthony, J. E., et al., *Org. Lett.* 2002, 4, 15-18; Sheraw, C. D., et al., *Adv. Mat.* 2003, 15, 2009-2011; and MacGillivray, L. R. *CrystEngComm*, 2004, 6, 77-78. A much greater p-orbital overlap was achieved, along with a lower anisotropic resistance perpendicular to the ring system (see Anthony, J. E., et al., *J. Am. Chem. Soc.*, 2001, 123, 9482-9483), as compared to pure pentacene. However, the amount of p-orbital overlap cannot be correlated to the size and position of the functional groups, owing to a difficulty to control slipping along the pentacene short axis. See Anthony, J. E., et al., *Org. Lett.* 2002, 4, 15-18; Sheraw, C. D., et al., *Adv. Mat.* 2003, 15, 2009-2011; and MacGillivray, L. R. *CrystEngComm*, 2004, 6, 77-78. At the same time, reports have suggested a need to incorporate relatively strong intermolecular forces within such semiconductor lattices in order to suppress charge carrier scattering by lattice vibrations (See Dimitrakopoulos, C. D.; Malenfant, P. R. L. *Adv. Mat.* 2002, 14, 99-117). Collectively, these observations attest to the sensitivity of crystal packing to changes to molecular structure and create a challenge to devise methods that employ stronger intermolecular forces that control face-to-face stacking as a means to optimize the performances of organic semiconductor solids.

Currently there is a need for organic semi-conducting materials. Such materials will be useful, for example, in electrical devices, such as organic field-effect transistors, display devices, computer chips, plastic paper, and smart cards.

SUMMARY OF THE INVENTION

The invention provides organic semiconducting co-crystals, as well as devices comprising such co-crystals, and intermediates and processes useful for preparing such materials.

In one embodiment, the invention provides an apparatus comprising: an organic semiconductor co-crystal, including a source contact coupled to the organic semiconductor co-crystal, a drain contact coupled to the organic semiconductor co-crystal, and a gate contact coupled to the organic semiconductor co-crystal through an insulative layer.

In another embodiment, the invention provides an apparatus comprising: an electronic circuit; and an organic semiconductor co-crystal switch coupled to the electronic circuit.

In one embodiment, the invention provides a method comprising: forming a thin film including an organic semiconductor co-crystal on a substrate; and forming an active electronic device in the organic semiconductor co-crystal.

In one embodiment, the invention provides an apparatus comprising: a first electronic device; a second electronic device; and an organic semiconductor co-crystal to couple the first electronic device to the second electronic device.

In one embodiment, the invention provides a method for preparing a semiconductor organic co-crystal material comprising allowing the semiconducting organic co-crystal material to form from a mixture of one or more semiconductor co-crystal formers and one or more semiconductor building blocks.

In one embodiment, the invention provides a semiconductor co-crystal material prepared by a method described herein.

In one embodiment, the invention provides a semiconductor co-crystal material comprising semiconductor building blocks associated with semiconductor co-crystal formers.

In one embodiment, the invention provides an apparatus comprising: an organic semiconductor co-crystal as described herein including a source contact coupled to the organic semiconductor co-crystal, a drain contact coupled to the organic semiconductor co-crystal, and a gate contact coupled to the organic semiconductor co-crystal through an insulative layer.

In another embodiment, the invention provides an apparatus comprising: an electronic circuit; and a switch comprising an organic semiconductor co-crystal as described herein coupled to the electronic circuit.

In one embodiment, the invention provides a method comprising: forming a thin film including an organic semiconductor co-crystal as described herein on a substrate; and forming an active electronic device in the organic semiconductor co-crystal.

In another embodiment, the invention provides an apparatus comprising: a first electronic device; a second electronic device; and an organic semiconductor co-crystal as described herein coupled to the first electronic device to the second electronic device.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A is a block diagram of an apparatus including an organic semiconductor co-crystal having a source contact coupled to the organic semiconductor co-crystal, a drain contact coupled to the organic semiconductor co-crystal, and a gate contact coupled to the organic semiconductor co-crystal through an insulative layer.

FIG. 1B shows a block diagram of the organic semiconductor co-crystal, shown in FIG. 1A, including a semiconductor co-crystal former coupled to a semiconductor building block.

FIG. 2 is a block diagram of an apparatus including an electronic circuit coupled to an organic semiconductor co-crystal switch.
FIG. 3 is a flow diagram of a method including forming a thin film including an organic semiconductor co-crystal on a substrate, and forming an active electronic device in the organic semiconductor co-crystal.

FIG. 4 is a block diagram of an apparatus including a first electronic device, a second electronic device, and an organic semiconductor co-crystal to couple the first electronic device to the second electronic device.

FIG. 5 is a schematic of non-covalent enforcement of face-to-face stacking of semi-conductor building blocks.

FIG. 6 illustrates (a) SCFF(1)(2) and (b) SCFF(2)(3) (R₁=5-methyl-resorcinol; R₂=5-iodo-resorcinol).

FIG. 7 shows X-ray crystal structures of (a) 1 and (b) 2.

FIG. 8 shows hydrogen-bonded molecular assemblies of: (a) 3 and (b) 4.

FIG. 9 shows views of face-to-face stacking of 3: (a) perpendicular and (b) along the N-N axis and (c) perpendicular and (d) along the N-N axis.

DETAILED DESCRIPTION

A new approach has been discovered to control the organization of semiconductor molecules in the solid state, which enforces face-to-face π-stacking using the strength and directional property of molecular associations, such as, ionic bonds, or other non-covalent bonds (e.g. dipole-dipole interactions, hydrogen bonds, van der Waals interactions, or coordination. This approach involves co-crystallization (for co-crystals in the context of conductive organic solids, see: Thomas, G. A.; Schafer, D. E.; Wudl, F.; Horn, P. M.; Rinaldi, D.; Cook, J. W.; Glockler, D. A.; Skove, M. J.; Chu, C. W. Phys. Rev. B. 1976, 13, 5105-5110) a polyfunctional (e.g. a bifunctional) molecule, hereafter referred to as a semi-conductor co-crystal former (SCFF), with a semiconductor building block (SBB) functionalized with an appropriate recognition site, or “handle” (FIG. 5). The SCFF employs non-covalent molecular associations (e.g. hydrogen bonds) to segregate the structure of the SBB from effects of crystal packing and to enforce π-orbital overlap (see MacGillivray, L. R.; Reid, J. L.; Ripmeester, J. A. J. Am. Chem. Soc. 2000, 122, 7817-7818).

Semiconductor Co-Crystal Formers (SCFFs)

Semiconductor co-crystal formers can be used to construct organic semiconducting co-crystals. For example, the semiconductor co-crystal formers can operate by positioning two or more semiconductor building blocks such that there is appropriate orbital overlap to provide a semiconducting solid. By using the organized, solvent-free environment of the solid state, the effects of entropy and solvent can be circumvented.

The semiconductor co-crystal formers can be any inorganic molecule (e.g. a transition metal complex), organic molecule (e.g. a polyyol, a polyethylene oxide, a polystyrene), solid support, or assembly of inorganic and/or organic molecules or ions held together by non-covalent bonds (e.g. a coordination complex) that is capable of associating with the semiconductor building blocks so that the π-orbitals of the semiconductor building blocks overlap properly to provide a semiconducting material. In one embodiment the semiconductor co-crystal former comprises an aromatic ring. In another embodiment the semiconductor co-crystal former comprises an aromatic ring that is 1,3 substituted with groups capable of associating with the semiconductor building blocks polyene molecules (e.g. a 1,3-substituted phenyl ring or a 1,3-substituted naphthyl ring). In another embodiment the semiconductor co-crystal former comprises 1,3-dihydroxy substituted phenyl ring or a 1,3-dihydroxy substituted naphthyl ring.

In a specific embodiment the semiconductor co-crystal former is resorcinol (1,3-dihydroxybenzene) or a substituted resorcinol. For example, the template can be resorcinol substituted with one or more (e.g. 1, 2, or 3) (C₆H₄)alkyl, (C₆H₄)alkenyl, (C₆H₄)alkynyl, (C₆H₄)alkoxy, (C₆H₄)alkylalkoxy, (C₆H₄)alkoycarbonyl, cyano, halo, hydroxy, nitro, carboxy, trifluoromethyl, trifluoromethoxy, methyleneoxy, ary1, heteroary1, ary1(C₆H₄)alkyl, heteroary1(C₆H₄)alkyl, ary1(C₆H₄)alkenyl, heteroary1(C₆H₄)alkenyl, ary1(C₆H₄)alkynyl, heteroary1(C₆H₄)alkynyl, ary1(C₆H₄)alkylalkoxy, (C₆H₄)alkoycarbonyl, cyano, halo, hydroxy, nitro, carboxy, trifluoromethyl, trifluoromethoxy, methyleneoxy, or NRR.

In another specific embodiment the semiconductor co-crystal former is an amino-phenol (e.g. 3-amino-phenol) or an amino-hydroxy-naphthalene (e.g. 3-amino-1-hydroxy-naphthalene or 4-amino-2-hydroxy-naphthalene; wherein the phenol or naphthylene ring is optionally substituted with one or more (e.g. 1, 2, or 3) (C₆H₄)alkyl, (C₆H₄)alkenyl, (C₆H₄)alkynyl, (C₆H₄)alkoxy, (C₆H₄)alkylalkoxy, (C₆H₄)alkoycarbonyl, (C₆H₄)alkoxy, cyano, halo, hydroxy, nitro, carboxy, trifluoromethyl, trifluoromethoxy, methyleneoxy, ary1, heteroary1, ary1(C₆H₄)alkyl, heteroary1(C₆H₄)alkyl, ary1(C₆H₄)alkenyl, heteroary1(C₆H₄)alkenyl, ary1(C₆H₄)alkynyl, heteroary1(C₆H₄)alkynyl, ary1(C₆H₄)alkylalkoxy, (C₆H₄)alkoycarbonyl, cyano, halo, nitro, carboxy, trifluoromethyl, trifluoromethoxy, methyleneoxy, or NRR.

In another specific embodiment the semiconductor co-crystal former is an aminoniline (e.g. 3-aminoniline) or a diamino-naphthalene (e.g. 1,3-diaminonaphthalene or 2,4-diaminonaphthalene; wherein the phenol or naphthylene ring is optionally substituted with one or more (e.g. 1, 2, or 3) (C₆H₄)alkyl, (C₆H₄)alkenyl, (C₆H₄)alkynyl, (C₆H₄)alkoxy, (C₆H₄)alkylalkoxy, (C₆H₄)alkoycarbonyl, (C₆H₄)alkoxy, cyano, halo, hydroxy, nitro, carboxy, trifluoromethyl, trifluoromethoxy, methyleneoxy, ary1, heteroary1, ary1(C₆H₄)alkyl, heteroary1(C₆H₄)alkyl, (C₆H₄)alkynyl, (C₆H₄)alkylalkoxy, (C₆H₄)alkoycarbonyl, and wherein each ary1 or heteroary1 is optionally substituted with one or more (e.g. 1, 2, 3, or 4) (C₆H₄)alkyl, (C₆H₄)alkenyl, (C₆H₄)alkynyl, (C₆H₄)alkylalkoxy, (C₆H₄)alkoycarbonyl, cyano, halo, nitro, carboxy, trifluoromethyl, trifluoromethoxy, methyleneoxy, or NRR.

In another embodiment the semiconductor co-crystal former can comprise an association of metal ions. Certain metal ions (e.g. metal cations) are known to be attracted to each other by forces that are weaker than most covalent or ionic bonds but stronger than van der Waals bonds. See for example P. Pykkö, Chem. Rev. 1997, 97, 597-636. Such metal ion assemblies can operate as semiconductor co-crystal...
formers. In one specific embodiment of the invention, the semiconductor co-crystal former comprises an assembly of two or more metal cations. In another specific embodiment the semiconductor co-crystal former comprises an assembly of two or more transition metal cations. In another specific embodiment the semiconductor co-crystal former comprises an assembly of two or more silver or gold ions. It will be appreciated that such poly metal cation assemblies will also comprise suitable counter ions. The nature of the counter ions is not critical provided the resulting assembly is capable of orienting the SBBS. For example, the counter ions may be carboxylates, (e.g. acetates and triflates), sulfonates, or halides, or mixtures thereof. The SBBS can associate with the metal ions of the metal cation assemblies by ionic bonds, or other non-covalent bonds (e.g. dipole-dipole interactions, hydrogen bonds, van der Waals interactions, or coordination).

The following definitions are used, unless otherwise described: halo is fluoro, chloro, bromo, or iodo. Alkyl, alkoxy, alketyl, alkynyl, etc. denote both straight and branched groups; but reference to an individual radical such as propyl embraces only the straight chain radical, a branched chain isomer such as isopropyl being specifically referred to. Aryl denotes a phenyl radical or an ortho-fused bicyclic carbo- cyclic radical having about nine to ten ring atoms in which at least one ring is aromatic. Heteroaryl encompasses a radical with at least one ring of the type derived from a pyridine or pyrimidine ring. The term “alkene” includes compounds having one or more carbon-carbon double bonds. In one specific embodiment of the invention, “alkene” is defined as a chain having a atoms of chains that includes one carbon-carbon double bond.

Specific values listed below for radicals, substituents, and ranges, are for illustration only; they do not exclude other defined values or other values within defined ranges for the radicals and substituents.

Specifically, (C₁-C₆)alkyl can be methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, pentyl, 3-pentyl, or hexyl; (C₁-C₆)alkoxy can be cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl; (C₁-C₆)alkylalkoxy can be methoxy, ethoxy, propoxy, isoproxy, butoxy, isobutoxy, sec-butoxy, pentoxy, 3-pentoxy, or hexoxy; (C₁-C₆)alkenyl can be vinyl, allyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, or 5-hexenyl; (C₁-C₆)alkynyl can be ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentylnyl, 2-pentylnyl, 3-pentylnyl, 4-pentylnyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, or 5-hexenyl; (C₁-C₆)alkanoyl can be acetyl, propionyl, or butanoyl; (C₁-C₆)alkoxycarbonyl can be methoxy carbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, pentoxy carbonyl, or hexoxy carbonyl; (C₁-C₆)alkanoyloxy can be acetoxy, propionyloxy, butanoyloxy, isobutanoyloxy, pentanoyloxy, or hexanoyloxy; aryloxyl can be phenyl, indenyl, or napthyl; and heteroaryl can be furyl, imidazoyl, triazolyl, triazinyl, oxazoyl, isoxazoyl, thiazoyl, isothiazoyl, pyrazolyl, pyrrolyl, pyrazinyl, pyridyl, or (N’s N-oxide), thienyl, pyrimidinyl (or its N-oxide), indolyl, isouquinolyl (or its N-oxide) or quinolyl (or its N-oxide).

A specific resorcinol that can be used as a semiconductor co-crystal former is resorcinol, ortho[5-methylresorcinol], 4-ethylresorcinol, 4-hexylresorcinol, olivetol [5-pentylresorcinol], 4-ethylhexylresorcinol, and benzylresorcinol.

Association Between Semiconductor Co-Crystal Former and Semiconductor Building Blocks

According to the methods of the invention, the SBBS can be “associated” to the semiconductor co-crystal formers by any suitable attractive force, such as, for example, ionic bonds, or other non-covalent bonds (e.g. dipole-dipole interactions, hydrogen bonds, van der Waals interactions, or coordination). The term “associated” does not include covalent bonding.

Semiconductor Building Blocks

Typically the semiconductor building blocks include one or more aromatic ring systems. For example, the semiconductor building blocks can include one or more single aromatic rings, bicyclic, or polycyclic ring systems wherein at least one ring is aromatic. When a semiconductor building block includes more than one aromatic ring system, the aromatic ring systems can be linked directly by a covalent bond, or the aromatic ring systems can be linked by a straight or branched, saturated or unsaturated, substituted or unsubstituted carbon chain.

The properties of the semi-conducting co-crystals can be modified by selecting semiconductor building blocks with specific highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) gaps (see Michael Bendikov and Fred Wudl, Chem. Rev. 2004, 104, 4891-4945). For example, in one embodiment of the invention, molecules with low HOMO/LUMO gaps can be selected due to their ability to easily donate from HOMO or accept an electron on LUMO.

In one embodiment of the invention the semiconductor building block includes one or more aromatic rings selected from phenyl, naphthyl, pyridyl, pentacene, tetracene, anthracene, naphthalene dimide, and perylene dimide (NTCDI, NTCDI-R, PTCDI, PTCDI-PPEEB, PTCDI-PPE4ACN, and tetrachloro PTCDI-R).

In another embodiment of the invention the semiconductor building blocks include an oligothiophene or an oligoacenec. Typically the thiophene and acene oligomers comprise from about 2 to about 20 rings or from about 2 to 15 rings.

The aromatic ring systems of the semiconductor building blocks can optionally be substituted with one or more (e.g. 1, 2, 3, or 4) (C₁-C₆)alkyl, (C₁-C₆)alkynyl, (C₁-C₆)alkoxyl, (C₁-C₆)alkylalkoxyl, (C₁-C₆)alkoxycarbonyl, (C₁-C₆)alkoxycarbonyl, (C₁-C₆)alkynylalkoxyl, (C₁-C₆)alkynylalkoxyl, (C₁-C₆)alkynylcarbonyl, (C₁-C₆)alkynylcarbonyl, (C₁-C₆)alkoxycarbonyl, (C₁-C₆)alkoxycarbonyl, (C₁-C₆)alkynylcarbonyl, (C₁-C₆)alkynylcarbonyl, (C₁-C₆)alkoxycarbonyl, or (C₁-C₆)alkoxycarbonyl, and wherein each aryloxy is independently (C₁-C₆)alkyl, (C₁-C₆)alkynyl, (C₁-C₆)alkoxyl, (C₁-C₆)alkylalkoxyl, (C₁-C₆)alkoxy, (C₁-C₆)alkynylalkoxyl, (C₁-C₆)alkynylcarbonyl, or (C₁-C₆)alkynylcarbonyl.
Co-Crystallization

The co-crystallization of the semiconductor co-crystal former and the semiconductor building blocks can be carried out under any conditions that are suitable to allow for the formation of semiconducting co-crystals. Co-crystallization conditions can include precipitation, solvent evaporation, crystallization from gels, nucleation, and layering. Solvents can include organic solvents such as, but not limited to, acetone, nitrile, nitromethane, chloroform, dichloromethane, tetrahydrofuran, ethanol, and methanol. Solvent mixtures can be used. The solvent can also be water. Time for co-crystallizations can be on the order of minutes, to hours, to days, to months.

Figures

FIG. 1A is a block diagram of an apparatus 100 including an organic semiconductor co-crystal 102 having a source contact 104 coupled to the organic semiconductor co-crystal 102, a drain contact 106 coupled to the organic semiconductor co-crystal 102, and a gate contact 108 coupled to the organic semiconductor co-crystal 102 through an insulative layer 110. The organic semiconductor co-crystal 102 includes materials as described above. The source contact 104, drain contact 106, and gate contact 108 provide electrical connections to the organic semiconductor co-crystal 102. The conductivity of the source contact 104, the drain contact 106, and the gate contact 108 is a value suitable to deliver electronic signals to the organic semiconductor co-crystal 102. The insulative layer 110 is a substantial insulator in that the conductivity of the insulative layer 110 is less than the conductivity of the organic semiconductor co-crystal 102. Silicon dioxide is an exemplary material suitable for use in connection with the fabrication of the insulative layer 110 in the apparatus 100. The apparatus 100, as shown in FIG. 1A, is configured substantially as a metal-oxide semiconductor field-effect transistor. In operation, a control signal at the gate contact 108 of the apparatus 100 controls a current flow 111 between the source contact 104 and the drain contact 106. The control signal can decrease the flow of current to substantially zero between the source contact 104 and the drain contact 106. Alternatively, the control signal can increase and decrease the flow of current between the source contact 104 and the drain contact 106. The increase or decrease can be directly or inversely proportional to the control signal. Therefore, in some embodiments, the apparatus 100 functions as a switch while in other embodiments, the apparatus 100 functions as an amplifier.

FIG. 1B shows a block diagram of the organic semiconductor co-crystal 102, shown in FIG. 1A, including semiconductor co-crystal formers 112 and 113 coupled to a semiconductor building block 114. Resorcinols are exemplary materials suitable for use in connection with the fabrication of the semiconductor co-crystal formers 112 and 113. Acenes are exemplary materials suitable for use in connection with the fabrication of the semiconductor building block 114. In some embodiments, pentacene is used in connection with the semiconductor building block 114. In operation, the semiconductor co-crystal formers 112 and 113 provides a template that controls the configuration, as described above, of the semiconductor building block 114.

FIG. 2 is a block diagram of an apparatus 200 including an electronic circuit 202 coupled to an organic semiconductor co-crystal switch 204. The organic semiconductor co-crystal switch 204 includes the organic co-crystal 102, shown in FIG. 1A, and described above. The electronic circuit 202 is not limited to a particular type of circuit. In some embodiments, the electronic circuit 202 is a digital circuit. In other embodiments, the electronic circuit is an analog circuit. In still other embodiments, the electronic circuit 202 includes both analog and digital circuits. Exemplary materials suitable for use in the fabrication of the organic semiconductor co-crystal switch 204 include acenes and resorcinols.

FIG. 3 is a flow diagram of a method 300 including forming a thin film including an organic semiconductor co-crystal on a substrate 302, and forming an active electronic device in the organic semiconductor co-crystal 304. In some embodiments, forming the active electronic device in the organic semiconductor co-crystal includes forming an electronic switch within the organic semiconductor co-crystal. In some embodiments, forming the electronic device in the organic semiconductor co-crystal includes forming an optical device within the organic semiconductor co-crystal.

FIG. 4 is a block diagram of an apparatus 400 including a first electronic device 402, a second electronic device 404, and an organic semiconductor co-crystal 102 to couple the first electronic device 402 to the second electronic device 404. The first electronic device 402 and the second electronic device 404 are not limited to particular electronic devices. In some embodiments, the first electronic device 402 and the second electronic device 404 include active electronic devices such as transistors and diodes. In some embodiments, the first electronic device 402 and the second electronic device 404 include electronic systems, such as receivers and transmitters, such as radio-frequency receivers and transmitters, microprocessors, such as reduced instruction set microprocessors, and digital signal processing systems, such as analog systems. The organic semiconductor co-crystal 102 includes the semiconductor co-crystal formers 112 and 113 coupled to a semiconductor building block 114, shown in FIG. 1B, and described above. In operation, the organic semiconductor co-crystal 102 functions as an electronic interconnect, such as a wire or on board conductive trace, between the first electronic device 402 and the second electronic device 404.

The invention will now be illustrated by the following non-limiting examples.

EXAMPLES

General

The SCCF chosen was based on 1,3-dihydroxy benzene, or resorcinol, since it was determined that resorcinol could enforce face-to-face p-stacking of two SBBs based on thiophene and anthracene, namely 2,5-bis(4-pyridyl)thiophene (1) and 9,10-bis(4-pyridyl)anthracene (2) (FIG. 6). The parent SBBs (i.e. thiophene, anthracene) prefer herringbone packing, as demonstrated by experimental and computational studies.

To provide recognition sites for the hydrogen bonds, the SBBs were functionalized with 4-pyridyl-acylene terminal groups (see Della Ciana, L.; Hain, A.; J. Heterocyclic Chem. 1984, 21, 607-608). The formulations of 1 and 2 were con-
Waals surfaces of the molecular assemblies, or supermolecules (see Desiraju, G. R. Angew. Chem. Int. Ed. 1995, 34, 2311-2327), which enable each assembly to form an extended π-stacked structure.

Accordingly, a new approach to enforce face-to-face stacking of semiconductor molecules in the solid state has been discovered. Specifically, co-crystals involving SCCFs have been employed to stack SSBs in face-to-face arrangements. The use of SCCFs to stack SSBs can be used to control face-to-face stacking of larger SSBs, as well as SSBs comprising combinations of different aromatic rings. The expected semi-conducting properties of the organic co-crystals will make the materials useful in a host of electrical devices.

Example 1
Preparation of Co-Crystal 3

A closed vial containing 5 mg of 1, 4,2 mg of 5-methylresorcinol, and 1 ml of acetonitrile was heated to reflux and allowed to cool slowly. Subsequent evaporation provided single crystals suitable for X-ray diffraction analysis.

Example 2
Preparation of Co-Crystal 4

A closed vial containing 3 mg of 1, 1,9 mg of 5-iodoresorcinol, and 1 ml of a 5:1 mixture of acetonitrile:methanol was heated to reflux and allowed to cool slowly. Subsequent evaporation provided single crystals suitable for X-ray diffraction analysis.

All publications, patents, and patent documents are incorporated by reference herein, as though individually incorporated by reference. The invention has been described with reference to various specific and preferred embodiments and techniques. However, it should be understood that many variations and modifications may be made while remaining within the spirit and scope of the invention.

What is claimed is:

1. An apparatus comprising: an organic semiconductor co-crystal including a source contact coupled to the organic semiconductor co-crystal, a drain contact coupled to the organic semiconductor co-crystal, and a gate contact coupled to the organic semiconductor co-crystal through an insulating layer, wherein the organic semiconductor co-crystal includes a semiconductor co-crystal former coupled to a semiconductor building block, the semiconductor building block includes an anode, and the semiconductor co-crystal former includes a resorcinol.

2. An apparatus comprising: an electronic circuit; and an organic semiconductor co-crystal switch coupled to the electronic circuit, wherein the organic semiconductor co-crystal switch includes a semiconductor co-crystal former coupled to a semiconductor building block, the electronic circuit includes a digital circuit, and the semiconductor co-crystal switch includes an anode and a resorcinol.

3. A semiconducting co-crystal material comprising semiconductor building blocks associated with semiconductor co-crystal formers, wherein the semiconductor building block is 2,5-bis(4-pyridylthienyl)thiophene or 9,10-bis(4-pyridyl-ethyl)anthracene; and the semiconductor co-crystal former is 5-methylresorcinol or 5-iodoresorcinol.

* * * * *