United States Patent

Krieg et al.

IMMUNOSTIMULATORY NUCLEIC ACID MOLECULES

Inventors: Arthur M. Krieg, Wellesley, MA (US); Dennis Kliman, Potomac, MD (US); Alfred D. Steinberg, Potomac, MD (US)

Assignees: The University of Iowa Research Foundation, Iowa City, IA (US); Coley Pharmaceutical Group, Inc., New York, NY (US); The United States of America as represented by the Secretary of the Department of Health and Human Services, Washington, DC (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 947 days.

This patent is subject to a terminal disclaimer.

Appl. No.: 11/067,587
Filed: Feb. 25, 2005
Prior Publication Data

Related U.S. Application Data
Continuation of application No. 09/818,918, filed on Mar. 27, 2001, now abandoned, which is a division of application No. 08/738,652, filed on Oct. 30, 1996, now Pat. No. 6,207,646, which is a continuation-in-part of application No. 08/386,063, filed on Feb. 7, 1995, now Pat. No. 6,194,388, which is a continuation-in-part of application No. 08/276,358, filed on Jul. 15, 1994, now abandoned.

Int. Cl.
A61K 39/00 (2006.01)
A61K 39/38 (2006.01)
A61K 39/145 (2006.01)
A61K 39/00 (2006.01)
A61K 31/70 (2006.01)
A01N 57/18 (2006.01)
A01N 43/04 (2006.01)

U.S. Cl. 514/44 A; 514/2; 514/12; 424/184.1; 424/206.1; 424/278.1

Field of Classification Search None See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS
3,906,092 A 9/1975 Hilleman et al.
4,452,775 A 6/1984 Kent
4,544,559 A 10/1985 Gil et al.
5,023,243 A 6/1991 Tullis
5,075,109 A 12/1991 Tice et al.
5,543,152 A 8/1996 Webb et al.
5,580,859 A 12/1996 Felgner et al.
5,589,466 A 12/1996 Felgner et al.
5,593,972 A 1/1997 Weiner et al.
5,594,122 A 1/1997 Friesen
5,595,756 A 1/1997 Bally et al.
5,641,662 A 6/1997 Debs et al.
5,643,578 A 7/1997 Robinson et al.
5,646,126 A 7/1997 Cheng et al.
5,658,891 A 8/1997 Draper et al.
5,663,153 A 9/1997 Hutcherson et al.
5,665,580 A 9/1997 Crooke et al.
5,676,854 A 10/1997 Brigham
5,681,944 A 10/1997 Crooke et al.
5,693,622 A 12/1997 Wolf et al.
5,703,055 A 12/1997 Felgner et al.
5,703,057 A 12/1997 Johnston et al.
5,728,518 A 3/1998 Carmichael
5,753,613 A 5/1998 Ansell et al.
5,780,448 A 7/1998 Davis
5,785,992 A 7/1998 Ansell et al.
5,786,189 A 7/1998 Locht et al.

FOREIGN PATENT DOCUMENTS
CN 1,468,957 1/2004

OTHER PUBLICATIONS
Lin et al., BBRC, Apr. 30, 1993, 192:2:413-419.*

Primary Examiner — N. M Minnfield
Attorney, Agent, or Firm — Wolf, Greenfield & Sacks, P.C.; Gregg C. Benson

ABSTRACT
Nucleic acids containing unmethylated CpG dinucleotides and therapeutic utilities based on their ability to stimulate an immune response and to redirect a Th2 response to a Th1 response in a subject are disclosed. Methods for treating atopic diseases, including atopic dermatitis, are disclosed.

18 Claims, 19 Drawing Sheets

[No Author Listed] MSNBC News Services, Mixed results on new cancer drugs. Nov. 9, 2000. 5 pages.

Agrawal et al., Chapter 19 Pharmacokinetics and bioavailability of antisense oligonucleotides following oral and colorectal administrations in experimental animals. 1998: 525-43.

Ahlawati et al., Immunoimmunostromal profiles from two classes of Cpg ODN administered subcutaneously to healthy subjects, ICI FOCIS 2004. Poster.

Dhessha et al., Immune induction and modulation by topical ocular administration of plasmid DNA encoding antigens and cytokines. Vaccine Jul 98;16(11-12):1103-10.

Davies et al., Cpg ODN is safe and highly effective in humans as adjuvant to HBV vaccine: Preliminary results of Phase I trial with Cpg ODN 7909. Third Annual Conference on Vaccine Res. 2000; Abstract #25, No. 47.

Hopkin et al., Curbing the CpGs of Bacterial and Viral DNA. Bion. July 25, 1999; Issue 57.
Ioannou et al., CpG-containing oligodeoxynucleotides, in combination with conventional adjuvants, enhance the magnitude and change the bias of the immune responses to a herpesvirus glycoprotein. Vaccine. 2003; 21: 127-37.
Klinman et al., CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci U S A. Apr. 2, 1996;93(7):2879-83.
Kovarik et al., CpG oligodeoxynucleotides can circumvent the Th2 polarization of neonatal responses to vaccines but may fail to fully redirect Th2 responses established by neonatal priming. J Immunol. Feb. 1, 1999;162(3):1611-7.
Krieg et al., Lymphocyte activation mediated by oligodeoxynucleotides or DNA containing novel unmethylated CpG motifs. American College of Rheumatology 50th National Scientific

McHutchison et al., Early viral response to CpG 10101, in combination with pegylated interferon and/or ribavirin, in chronic HCV genotype 1 infected patients with prior relapse response. 41st Annual Meeting of European Association for the Study of the Liver (EASL). Apr. 26-30, 2006, Vienna, Austria; Submitted Abstract.

McHutchison et al., Early Viral Response to New HCV Drug Cpg 10101 Toll-Receptor Antagonist, in Combination with Pegylated Interferon and/or Ribavirin, in Chronic HCV Genotype 1 Infected Patients with Prior Relapse Response. 41st Meeting of the European Association for the Study of Liver Diseases. Apr. 26-30, 2006, Vienna, Austria. 8 pages.

McHutchison et al., Final results of a multi-center phase Ib, randomised, placebo-controlled, dose-escalation trial of CpG 10101 in patients with chronic hepatitis C virus. 41st Annual Meeting of European Association for the Study of the Liver (EASL). Apr. 30, 2006, Vienna, Austria; Presented Abstract #111.

McHutchison et al., Early clinical results with CpG 10101, a new investigational antiviral TLR9 agonist being developed for treatment of subjects chronically infected with hepatitis C virus. 12th International Symposium on Viral Hepatitis and Liver Disease (ISVHLD). Jul. 3, 2006 Paris, France; Presented Abstract 20105.

Vlassov et al., In Vivo pharmacokinetics of oligonucleotides following administration by different routes. CRC Press, Inc. Chapter 5. 1995:71-83.

Weiner et al., Immunostimulatory oligodeoxynucleotides containing the CpG motif are effective as immune adjuvants in tumor antigen immunization. Proc Natl Acad Sci U S A. Sep. 30, 1997;94(20):10833-7.

Yamamoto, [Commemorative lecture of receiving Imamura Memorial Prize. II. Mode of action of oligonucleotide fraction extracted from Mycobacterium bovis BCGK Keikakku. Sep. 1994;69(9):571-4].

Yamamoto, Cytokine production inducing action of oligo DNA. Rinsho Meneki. 1997;29(9):1178-84.

Zaitseva et al., Interferon gamma and interleukin 6 modulate the susceptibility of macrophages to human immunodeficiency virus type 1 infection. Blood. Nov. 1, 2000;96(9):3109-17.

Patent Interference No. 105,171. Regents of the University of California Opposition 5 (to Iowa Preliminary Motion 5 for judgment that UC’s claim is not enabled). Sep. 9, 2004.

Patent Interference No. 105,171. Regents of the University of California Opposition 7 (to Iowa Preliminary Motion 7 to redefine the interference). Sep. 9, 2004.

Office Communication mailed Sep. 30, 1996 for Application No. 08/386,063.
Office Communication mailed Jul. 08, 1997 for Application No. 08/386,063.
Office Communication mailed Mar. 12, 1999 for Application No. 08/386,063.
Notice of Allowance mailed Aug. 26, 1999 for Application No. 08/386,063.
Notice of Allowance mailed Mar. 13, 2000 for Application No. 08/386,063.
Office Communication mailed Mar. 15, 1999 for Application No. 08/738,652.
Office Communication mailed Dec. 06, 1999 for Application No. 08/738,652.
Office Communication mailed Jun. 01, 2000 for Application No. 08/738,652.
Office Communication mailed Aug. 26, 1999 for Application No. 08/960,774.
Office Communication mailed Apr. 28, 2000 for Application No. 08/960,774.
Office Communication mailed Jan. 05, 2004 for Application No. 09/630,319.
Notice of Allowance mailed May 18, 2004 for Application No. 09/630,319.
Office Communication mailed Mar. 27, 2006 for Application No. 09/630,319.
Office Communication mailed Sep. 12, 2007 for Application No. 09/630,319.
Office Communication mailed Sep. 8, 2003 for Application No. 09/629,477.
Office Communication mailed Mar. 9, 2004 for Application No. 09/629,477.
Office Communication mailed May 18, 2005 for Application No. 09/655,319.
* cited by examiner
<table>
<thead>
<tr>
<th>Treatment</th>
<th>0</th>
<th>EC DNA</th>
<th>CT DNA</th>
<th>LPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>min:</td>
<td>0</td>
<td>15</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>30</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>

FIG. 7
IMMUNOSTIMULATORY NUCLEIC ACID MOLECULES

RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 09/818,918 filed Mar. 27, 2001, now abandoned, which is divisional of U.S. patent application Ser. No. 08/738,652, filed Oct. 30, 1996, now issued as U.S. Pat. No. 6,207,646 B1, which is a continuation-in-part of U.S. patent application Ser. No. 08/386,063, filed Feb. 7, 1995, now issued as U.S. Pat. No. 6,194,388 B1, which is a continuation-in-part of U.S. patent application Ser. No. 08/276,358, filed Jul. 15, 1994, now abandoned.

GOVERNMENT SUPPORT

The work resulting in this invention was supported in part by National Institute of Health Grant No. R29-AR42556-01. The U.S. Government may therefore be entitled to certain rights in the invention.

BACKGROUND OF THE INVENTION

DNA Binds to Cell Membranes and is Internalized

Lymphocyte ODN uptake has been shown to be regulated by cell activation. Spleen cells stimulated with the B cell mitogen LPS had dramatically enhanced ODN uptake in the B cell population, while spleen cells treated with the T cell mitogen Con A showed enhanced ODN uptake by T but not B cells (Krieg, A. M., F. Gmelig-Meyling, M. F. Gourley, W. J. Kirsch, L. A. Chrisey, and A. D. Steinberg. 1991. "Uptake of oligodeoxyribonucleotides by lymphoid cells is heterogeneous and inducible". Antisense Research and Development 1:161).

Immune Effects of Nucleic Acids

This report indicated the possibility that the immune system may have evolved ways to preferentially respond to microbial nucleic acids.

Several observations suggest that certain DNA structures may also have the potential to activate lymphocytes. For example, Bell et al. reported that nucleosomal protein-DNA complexes (but not naked DNA) in spleen cell supernatants caused B cell proliferation and immunoglobulin secretion (Bell, D. A., B. Morrison, and P. VandenBygaart. 1990. "Immunogenic DNA-related factors." J. Clin. Invest. 85:1487). In other cases, naked DNA has been reported to have immune effects. For example, Messina et al. have recently reported that 260 to 800 bp fragments of poly(dG)*

The CREB/ATF Family of Transcription Factors and their Role in Replication

The CREB response element binding protein (CREB) and activating transcription factor (ATF) or CREB/ATF family of transcription factors is a ubiquitously expressed class of transcription factors of which 11 members have so far been cloned (reviewed in de Groot, R. P., and P. Sassone-Corsi: "Hormonal control of gene expression: Multiplicity and versatility of cyclic adenosine 3',5'-monophosphate-responsive nuclear regulators". Mol. Endocrinol. 7:145, 1993; Lee, K. A. W., and N. Masson: "Transcriptional regulation by CREB and its relatives". Biochim. Biophys. Acta 1174:221, 1993.). They all belong to the basic region/leucine zipper (bZIP) class of proteins. All cells appear to express one or more CREB/ATF proteins, but the members expressed and the regulation of mRNA splicing appear to be tissue-specific. Differential splicing of activation domain variants results in a particular CREB/ATF protein will be a transcriptional inhibitor or activator. Many CREB/ATF proteins activate viral transcription, but some splicing variants which lack the activation domain are inhibitory. CREB/ATF proteins can bind DNA as homo- or hetero-oligomers through the cAMP response element, the CRE, the consensus form of which is the unmethylated sequence TGACGTTC (binding is abolished if the CpG is methylated) (Iguchi-Arighi, S. M. M., and W. Schaffner: "CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation". Genes & Development. 3:612, 1989.).

SUMMARY OF THE INVENTION

The instant invention is based on the finding that certain nucleic acids containing unmethylated cytosine-guanine (CpG) dinucleotides activate lymphocytes in a subject and redirect a subject’s immune response from a Th2 to a Th1 (e.g. by inducing monocyctic cells and other cells to produce Th1 cytokines, including IL-12, IFN-γ and GM-CSF). Based on this finding, the invention features, in one aspect, novel immunostimulatory nucleic acid compositions.

In a preferred embodiment, the immunostimulatory nucleic acid contains a consensus mitogen CpG motif represented by the formula:

$$5'CXCGX3'$$

wherein X₁ is selected from the group consisting of A, G and T; and X₂ is C or T.

In a particularly preferred embodiment an immunostimulatory nucleic acid molecule contains a consensus mitogen CpG motif represented by the formula:

$$5'X₁CXCGX₃'$$

wherein C and G are unmethylated; and X₁, X₂, X₃, and X₄ are nucleotides.

Enhanced immunostimulatory activity of human cells occurs where X₁X₂ is selected from the group consisting of GpG, GpA and ApA and/or X₁X₃ is selected from the group consisting of TpT, CpT and CpG (Table 5). For facilitating uptake into cells, CpG containing immunostimulatory nucleic acid molecules are preferably in the range of 8 to 40 base pairs in size. However, nucleic acids of any size (even many kilobase) are immunostimulatory if sufficient immunostimulatory motifs are present, since such larger nucleic acids are degraded into oligonucleotides inside of cells. Preferred synthetic oligonucleotides do not include a GCG trimucleotide sequence at or near the 5’ and 3’ terminals and/or the consensus mitogen CpG motif is not a palindrome. Prolonged immunostimulation can be obtained using stabilized oligonucleotides, particularly phosphorothioate stabilized oligonucleotides.

In a second aspect, the invention features useful therapies, which are based on the immunostimulatory activity of the nucleic acid molecules. For example, the immunostimulatory nucleic acid molecules can be used to treat, prevent or ameliorate an immune system deficiency (e.g., a tumor or cancer or a viral, fungal, bacterial or parasitic infection in a subject). In addition, immunostimulatory nucleic acid molecules can be administered to stimulate a subject’s response to a vaccine. Further, by redirecting a subject’s immune response from Th2 to Th1, the instant claimed nucleic acid molecules can be administered to treat or prevent the symptoms of asthma. In addition, the instant claimed nucleic acid molecules can be administered in conjunction with a particular allergen to a subject as a type of desensitization therapy to treat or prevent the occurrence of an allergic reaction.
Further, the ability of immunostimulatory nucleic acid molecules to induce leukemia cells to enter the cell cycle supports the use of immunostimulatory nucleic acid molecules in treating leukemia by increasing the sensitivity of chronic leukemia cells and then administering conventional ablative chemotherapy, or combining the immunostimulatory nucleic acid molecules with another immunotherapy.

Other features and advantages of the invention will become more apparent from the following detailed description and claims.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A-C are graphs plotting dose-dependent IL-6 production in response to various DNA sequences in T-cell depleted spleen cell cultures. A. E. coli DNA (●) and calf thymus DNA (■) sequences and LPS (at 10x the concentration of E. coli and calf thymus DNA (●)). B. Control phosphodiester oligodeoxynucleotide (ODN) 3′ATGAGCTC-GACTGTGTTCTC5′ (SEQ ID NO:1) (●) and two phosphodiester CpG ODN 5′ATGACCGTTCGCT-TCTC5′ (SEQ ID NO:2) (●) and 3′TCCATAAGCTTCTGATGCT3′ (SEQ ID NO:3) (■). C. Control phosphorothioate ODN 3′GCTTAGTGATGCTG3′ (SEQ ID NO:4) (●) and two phosphorothioate CpG ODN 5′GAGAACGTTCGAACCCTCGAT5′ (SEQ ID NO:5) (●) and 3′GCTAGATCGCTGAGCT5′ (SEQ ID NO:6) (●). Data present the mean ± standard deviation of triplicates.

FIG. 2 is a graph plotting IL-6 production induced by CpG DNA in vivo as determined 1-8 hrs after injection. Data represent the mean from duplicate analyses of sera from two mice. BALB/c mice (two mice/group) were injected iv with 100 μg of PBS (200 μg of CpG phosphorothioate ODN 5′TCCATGACGTTCGCTATGCT3′ (SEQ ID NO:7) (●) or non-CpG phosphorothioate ODN 5′TCCATGACGTTCGCTATGCT3′ (SEQ ID NO:8) (●).

FIG. 3 is an autoradiograph showing IL-6 mRNA expression as determined by reverse transcription polymerase chain reaction in liver, spleen, and thymus at various time periods after in vivo stimulation of BALB/c mice (two mice/group) injected iv with 100 μg of PBS, 200 μg of CpG phosphorothioate ODN 5′TCCATGACGTTCGCTATGCT3′ (SEQ ID NO:7) or non-CpG phosphorothioate ODN 5′TCCATGACGTTCGCTATGCT3′ (SEQ ID NO:8).

FIG. 4A is a graph plotting dose-dependent inhibition of CpG-induced IgM production by anti-IL-6. Splenic B-cells from DBA/2 mice were stimulated with CpG ODN 5′TCCAGACGTTCGCTATGCT3′ (SEQ ID NO:9) in the presence of the indicated concentrations of neutralizing anti-IL-6 (●) or isotype control Ab (■) and IgM levels in culture supernatants determined by ELISA. In the absence of CpG ODN, the anti-IL-6 Ab had no effect on IgM secretion (●).

FIG. 4B is a graph plotting the stimulation index of CpG-induced splenic B cells cultured with anti-IL-6 and CpG S-ODN 5′TCCATGACGTTCGCTATGCT3′ (SEQ ID NO:7) (●) or anti-IL-6 antibody only (■). Data present the mean ± standard deviation of triplicates.

FIG. 5 is a bar graph plotting chloramphenicol acetyltransferase (CAT) activity in WEHI-231 cells transfected with a promoter-less CAT construct (pCAT), positive control plasmid (R5V), or IL-6 promoter-CAT construct alone or cultured with CpG 5′TCCATGACGTTCGCTATGCT3′ (SEQ ID NO:7) or non-CpG 5′TCCATGACGTTCGCTATGCT3′ (SEQ ID NO:8) phosphorothioate ODN at the indicated concentrations. Data present the mean ± standard deviation.

FIG. 6 is a schematic overview of the immune effects of the immunostimulatory unmethylated CpG containing nucleic acids, which can directly activate both B cells and monocyte cells (including macrophages and dendritic cells) as shown. The immunostimulatory oligonucleotides do not directly activate purified NK cells, but render them competent to respond to IL-12 with a marked increase in their IFN-γ production. By inducing IL-12 production and the subsequent increased IFN-γ secretion by NK cells, the immunostimulatory nucleic acids promote a Th1 type immune response. No direct activation of proliferation of cytokine secretion by highly purified T cells has been found. However, the induction of Th1 cytokine secretion by the immunostimulatory oligonucleotides promotes the development of a cytotoxic lymphocyte response.

FIG. 7 is an autoradiograph showing NFκB mRNA induction in monocytes treated with E. coli (EC) DNA (containing unmethylated CpG motifs), control (CT) DNA (containing no unmethylated CpG motifs) and lipopolysaccharide (LPS) at various measured times, 15 and 30 minutes after contact.

FIG. 8A shows the results from a flow cytometry study using mouse B cells with the dihydrodoramine 123 dye to determine levels of reactive oxygen species. The dye only samples in Panel A of the figure shows the background level of cells positive for the dye at 28.6%. This level of reactive oxygen species was greatly increased to 80% in the cells treated for 20 minutes with PMMA and ionomycin, a positive control (Panel B). The cells treated with the CpG oligo (TCC-ATGACGTTCGCTATGCT SEQ ID NO:11) also showed an increase in the level of reactive oxygen species such that more than 50% of the cells became positive (Panel D). However, cells treated with an oligonucleotide with the identical sequence except that the CpGs were switched (TCC-ATGACGTTCGCTATGCT SEQ ID NO:11) did not show this significant increase in the level of reactive oxygen species (Panel E).

FIG. 8B shows the results from a flow cytometry study using mouse B cells in the presence of chloroquine with the dihydrodoramine 123 dye to determine levels of reactive oxygen species. Chloroquine slightly lowers the background level of reactive oxygen species in the cells such that the untreated cells in Panel A have only 4.3% that are positive. Chloroquine completely abolishes the induction of reactive oxygen species in the cells treated with CpG DNA (Panel B) but does not reduce the level of reactive oxygen species in the cells treated with PMMA and ionomycin (Panel E).

FIG. 9 is a graph plotting lung lavage cell count over time. The graph shows that when the mice are initially injected with Schistosoma mansoni eggs “egg”, which induces a Th2 immune response, and subsequently inhale Schistosoma mansoni egg antigen “SEA” (open circle), many inflammatory cells are present in the lungs. However, when the mice are initially given CpG oligo (SEQ ID NO:10) along with egg, the inflammatory cells in the lung are not increased by subsequent inhalation of SEA (open triangles).

FIG. 10 is a graph plotting lung lavage eosinophil count over time. Again, the graph shows that when the mice are initially injected with egg and subsequently inhale SEA (open circle), many eosinophils are present in the lungs. However, when the mice are initially given CpG oligo (SEQ ID NO:10) along with egg, the inflammatory cells in the lung are not increased by subsequent inhalation of the SEA (open triangles).

FIG. 11 is a bar graph plotting the effect on the percentage of macrophage, lymphocyte, neutrophil and eosinophil cells induced by exposure to saline alone; egg, then SEA; egg and SEQUINO11, then SEA; and egg and control oligo (SEQ ID NO:11), then SEA. When the mice are treated with the control oligo at the time of the initial exposure to the egg, there is little
effect on the subsequent influx of eosinophils into the lungs after inhalation of SEA. Thus, when mice inhale the eggs on days 14 or 21, they develop an acute inflammatory response in the lungs. However, giving a CpG oligo along with the eggs at the time of initial antigen exposure on days 0 and 7 almost completely abolishes the increase in eosinophils when the mice inhale the egg antigen on day 14.

Fig. 12 is a bar graph plotting eosinophil count in response to injection of various amounts of the protective oligo SEQ ID NO:10.

Fig. 13 is a bar graph plotting interleukin 4 (IL-4) production (pg/ml) in mice over time in response to injection of egg, then SEA (open diamond); egg and SEQ ID NO:10; then SEA (open circle); or saline, then saline (open square). The graph shows that the resultant inflammatory response correlates with the levels of the Th2 cytokine IL-4 in the lung.

Fig. 14 is a bar graph plotting interleukin 12 (IL-12) production (pg/ml) in mice over time in response to injection of saline; egg; then SEA; or SEQ ID NO:10 and egg, then SEA. The graph shows that administration of an oligonucleotide containing an unmethylated CpG motif can actually redirect the cytokine response of the lung to production of IL-12, indicating a Th1 type of immune response.

Fig. 15 is a bar graph plotting interferon gamma (IFN-γ) production (pg/ml) in mice over time in response to injection of saline; egg; then saline; or SEQ ID NO:10 and egg, then SEA. The graph shows that administration of an oligonucleotide containing an unmethylated CpG motif can also redirect the cytokine response of the lung to production of IFN-γ, indicating a Th1 type of immune response.

DETAILED DESCRIPTION OF THE INVENTION

Definitions

As used herein, the following terms and phrases shall have the meanings set forth below:

An “allergen” refers to a substance that can induce an allergic or asthmatic response in a susceptible subject. The list of allergens is enormous and can include pollens, insect venoms, animal dander, dust, fungal spores and drugs (e.g. penicillin). Examples of natural, animal and plant allergens include proteins specific to the following genera: Canine (Canis familiaris); Dermatophagoides (e.g. Dermatophagoides farinae); Felis (Felis domesticus); Ambrosia (Ambrosia artemisiifolia); Lolium (e.g. Lolium perenne or Lolium multiflorum); Cryptomeria (Cryptomeria japonica); Alternaria (Alternaria alternata); Alder; Alnus (Alnus glutinosa); Betula (Betula verrucosa); Quercus (Quercus alba); Olea (e.g. Olea europaea); Plantago (Plantago lanceolata); Parietaria (e.g. Parietaria officinalis or Parietaria judaica); Blattella (e.g. Blattella germanica); Apsi (e.g. Apsi multiformum); Cuppress (e.g. Cuppress sempervirens, Cupressus arizonica and Cupressus macrocarpa); Juniperus (e.g. Juniperus communis, Juniperus virginiana, Juniperus communis and Juniperus ashei); Thuya (e.g. Thuya orientalis); Chamaecyparis (e.g. Chamaecyparis obtusa); Periplaneta (e.g. Periplaneta americana); Agropyron (e.g. Agropyron repens); Secale (e.g. Secale cereale); Triticum (e.g. Triticum aestivum); Dactylis (e.g. Dactylis glomerata); Festuca (e.g. Festuca elatior); Poa (e.g. Poa pratensis or Poa compressa); Avena (e.g. Avena sativa); Holcus (e.g. Holcus lanatus); Anthoxanthum (e.g. Anthoxanthum odoratum); Arrhenatherum (e.g. Arrhenatherum elatius); Agrostis (e.g. Agrostis alba); Phleum (e.g. Phleum pratense); Phalaris (e.g. Phalaris arundinacea); Paspalum (e.g. Paspalum notatum); Sorghum (e.g. Sorghum halepensis); and Bromus (e.g. Bromus inermis).

An “allergy” refers to acquired hypersensitivity to a substance (allergen). Allergic conditions include eczema, allergic rhinitis or hay fever, bronchial asthma, urticaria (hives) and food allergies, and other atopic conditions.

“Asthma” — refers to a disorder of the respiratory system characterized by inflammation, narrowing of the airways and increased reactivity of the airways to inhaled agents. Asthma is frequently, although not exclusively associated with atopic or allergic symptoms.

An “immune system deficiency” shall mean a disease or disorder in which the subject’s immune system is not functioning in normal capacity or in which it would be useful to boost a subject’s immune response for example to eliminate a tumor or cancer (e.g. tumors of the brain, lung (e.g. small cell and non-small cell)), breast, prostate, colon, as well as other carcinomas and sarcomas) or an infection in a subject.

Examples of infectious virus include: Retroviridae (e.g., human immunodeficiency viruses, such as HIV-1 (also referred to as HTLV-III, LAV or HTLV-III/LAV), or HIV-III; and other isolates, such as HIV-1P, Picornaviridae (e.g., polio viruses, hepatitis A virus; enteroviruses, human coxsackie viruses, rhinoviruses, echoviruses; Caliciviridae (e.g., strains that cause gastroenteritis); Togaviridae (e.g., equine encephalitis viruses, rubella viruses); Flaviridae (e.g., dengue viruses, encephalitis viruses, yellow fever viruses); Coronaviridae (e.g., coronaviruses); Rhabdoviridae (e.g., vesicular stomatitis viruses, rabies viruses); Filoviridae (e.g., ebola viruses); Paramyxoviridae (e.g., parainfluenza viruses, mumps virus, measles virus, respiratory syncytial virus); Orthomyxoviridae (e.g., influenza viruses); Bunyaviridae (e.g., Hantaan viruses, bunga viruses, phleboviruses and Nairo viruses); Arena viridae (hemorrhagic fever viruses); Reoviridae (e.g., reoviruses, orbiviruses and rotaviruses); Birnaviridae; Hepadnaviridae (Hepatitis B Virus); Paroviridae (paroviruses); Papovaviridae (papilloma viruses, polyoma viruses); Adenoviridae (most adenoviruses); Herpesviridae (herpes simplex virus (HSV) 1 and 2, varicella zoster virus, cytomegalovirus (CMV), herpes viruses’); Poxviridae (variola viruses, vaccinia viruses, pox viruses); and Iridoviridae (e.g., African swine fever viruses), and unclassified viruses (e.g., the etiological agents of Spongiform encephalopathies, the agent of delta hepatitis (thought to be a defective satellite of hepatitis B virus), the agents of non-A, non-B hepatitis (class 1—internally transmitted, class 2—parenterally transmitted (i.e., Hepatitis C); Norwalk and related viruses, and astroviruses).

Examples of infectious bacteria include: Helicobacter pyloris, Borrelia burgdorferi, Legionella pneumophila, Mycobacteria spp. (e.g., M. tuberculosis, M. avium, M. intracellularis, M. kansasi, M. gordonae), Staphylococcus aureus, Neisseria gonorrhoeae, Neisseria meningitidis, Listeria monocytogenes, Streptococcus pyogenes (Group A Streptococcus), Streptococcus agalactiae (Group B Streptococcus), Streptococcus viridans group, Streptococcus faecalis, Streptococcus bovis, Streptococcus anaerobic spp.), Streptococcus pneumoniae, pathogenic Campylobacter spp., Enterococcus spp., Haemophilus influenzae, Bacillus anthracis, Corynebacterium diphtheriae, Corynebacterium sp., Eryspelothrix rhusiopathiae, Clostridium perfringens, Clostridium tetani, Enterobacter aerogenes, Klebsiella pneumoniae, Pasteurella multocida, Bacteroides sp., Fusobacterium nucleatum, Streptobacillus moniliformis, Treponema pallidum, Treponema pertenue, Leptospira, and Actinomyces israelii.
Examples of infectious fungi include: Cryptococcus neoformans., Histoplasma capsulatum, Coccidioides immitis, Blastomyces dermatitidis, Chlamydia trachomatis, Candida albicans. Other infectious organisms (i.e., protists) include: Plasmodium falciparum and Toxoplasma gondii.

An "immunosuppressive nucleic acid molecule" refers to a nucleic acid molecule, which contains an unmethylated cytosine, guanine dimethylcycotide sequence (i.e. "CpG DNA") or DNA containing a cytosine followed by guanosine and linked by a phosphate bond) and stimulates (e.g., has a mitogenic effect on, or induces or increases cytokine expression by) a vertebrate lymphocyte. An immunosuppressive nucleic acid molecule can be double-stranded or single-stranded. Generally, double-stranded molecules are more stable in vivo, while single-stranded molecules have increased immune activity.

In a preferred embodiment, the immunosuppressive nucleic acid contains a consensus mitogenic CpG motif represented by the formula:

$$5'\text{X}_1\text{C}\text{OX}_2\text{X}_3'$$

where X_1 is selected from the group consisting of A, G and T; and X_2 is C or T.

In a particularly preferred embodiment, immunosuppressant nucleic acid molecules are between 2 to 100 base pairs in size and contain a consensus mitogenic CpG motif represented by the formula:

$$5'\text{X}_1\text{X}_2\text{C}\text{OX}_2\text{X}_3'$$

wherein C and G are unmethylated, X_1, X_2, X_3 and X_4 are nucleotides.

For economic reasons, preferably the immunosuppressive CpG DNA is in the range of between 8 to 40 base pairs in size if it is synthesized as an oligonucleotide. Alternatively, CpG dimethylcycotides can be produced on a large scale in plasmids, after which being administered to a subject are degraded into oligonucleotides. Preferred immunosuppressive nucleic acid molecules (e.g., for use in increasing the effectiveness of a vaccine or to treat an immune system deficiency by stimulating an antibody [humoral] response in a subject) have a relatively high stimulation index with regard to B cell, monocyte and/or natural killer cell responses (e.g., cytokine, proliferative, lytic or other responses).

The stimulation index of a particular immunosuppressive CpG DNA can be tested in various immune cell assays. Preferably, the stimulation index of the immunosuppressive CpG DNA with regard to B-cell proliferation is at least about 5, preferably at least about 10, more preferably at least about 15 and most preferably at least about 20 as determined by incorporation of ^{3}H uridine in a murine B cell culture, which has been contacted with a 20 µM of ODN for 20 h at 37°C C and has been pulsed with 1 µCi of ^{3}H uridine and harvested and counted h later as described in detail in Example 1. For use in vivo, for example to treat an immune system deficiency by stimulating a cell-mediated (local) immune response in a subject, it is important that the immunosuppressive CpG DNA be capable of effectively inducing cytokine secretion by mononuclear cells and/or Natural Killer (NK) cell lytic activity.

Preferred immunosuppressive CpG nucleic acid should effect at least about 500 pg/ml of TNF-α, 15 pg/ml IFN-γ, 70 pg/ml of GM-CSF 275 pg/ml of IL-6, 200 pg/ml IL-12, depending on the therapeutic indication, as determined by the assays described in Example 12. Other preferred immunosuppressive CpG DNAs should effect at least about 10%, more preferably at least about 15% and most preferably at least about 20% YAC-1 cell specific lysis or at least about 30%, more preferably at least about 35 and most preferably at least about 40% 2C11 cell specific lysis as determined by the assay described in detail in Example 4.

A "nucleic acid" or "DNA" shall mean multiple nucleotides (i.e., molecules comprising a sugar (e.g., ribose or deoxyribose) linked to a phosphate group and to an exchangeable organic base, which is either a substituted pyrimidine (e.g., cytosine (C), thymine (T), uracil (U)) or a substituted purine (e.g., adenine (A) or guanine (G)). As used herein, the term refers to ribonucleotides as well as oligodeoxynucleotides. The term shall also include polynucleotides (i.e., a polynucleotide minus the phosphate) and any other organic base containing polymer. Nucleic acid molecules can be obtained from existing nucleic acid sources (e.g. genomic or cDNA), but are preferably synthetic (e.g. produced by oligonucleotide synthesis).

A "nucleic acid delivery complex" shall mean a nucleic acid molecule associated with (e.g., ionically or covalently bound to; or encapsulated within) a targeting means (e.g., a molecule that results in higher affinity binding to target cell (e.g. B-cell and natural killer (NK) cell) surfaces and/or increased cellular uptake by target cells). Examples of nucleic acid delivery complexes include nucleic acids associated with: a sterol (e.g. cholesterol), a lipid (e.g. a cationic lipid, virosome or liposome), or a target cell specific binding agent (e.g. a ligand recognized by target cell specific receptor). Preferred complexes must be sufficiently stable in vivo to prevent significant uncoupling prior to internalization by the target cell. However, the complex should be cleavable under appropriate conditions within the cell so that the nucleic acid is released in a functional form.

"Pulsedromic sequence" shall mean an inverted repeat (i.e. a sequence such as ABCDEFFDCBA' in which A and A' are bases capable of forming the usual Watson-Crick base pairs. In vivo, such sequences may form double stranded structures. A "stabilized nucleic acid molecule" shall mean a nucleic acid molecule that is relatively resistant to in vivo degradation (e.g. via an exo- or endo-nuclease). Stabilization can be a function of length or secondary structure. Unmethylated CpG containing nucleic acid molecules that are tens to hundreds of kbs long are relatively resistant to in vivo degradation. For shorter immunomodulatory nucleic acid molecules, secondary structure can stabilize and increase their effect. For example, if the 3' end of a nucleic acid molecule has self-complementarity to an upstream region, so that it can fold back and form a sort of stem loop structure, then the nucleic acid molecule becomes stabilized and therefore exhibits more activity.

Preferred stabilized nucleic acid molecules of the instant invention have a modified backbone. For use in immune stimulation, especially preferred stabilized nucleic acid molecules are phosphorothioate modified nucleic acid molecules (i.e., at least one of the phosphate oxygens of the nucleic acid molecule is replaced by sulfur). Preferably the phosphate modification occurs at or near the 5' and/or 3' end of the nucleic acid molecule. In addition to stabilizing nucleic acid molecules, as reported further herein, phosphorothioate-modified nucleic acid molecules (including phosphorothioate-modified) can increase the extent of immune stimulation of the nucleic acid molecule, which contains an unmethylated CpG dinucleotide as shown herein. International Patent Application Publication Number: WO 95/26204 entitled "Immune Stimulation By Phosphorothiate Oligonucleotide Analogs" also reports on the non-sequence specific immunostimulatory effect of phosphorothioate modified oligonucleotides. As reported herein, unmethylated CpG containing nucleic acid molecules having a phosphorothioate backbone have been found to preferentially activate B-cell activity,
while unmethylated CpG containing nucleic acid molecules having a phosphodiester backbone have been found to preferentially activate monocytyc (macrophages, dendritic cells and monocytes) and NK cells. Phosphorothioate CpG oligonucleotides with preferred human motifs are also strong activators of monocytyc and NK cells.

Other stabilized nucleic acid molecules include: nonionic DNA analogs, such as alkyl- and aryl-phosphonates (in which the charged phosphate oxygen is replaced by an alkyl or aryl group), phosphodiester and alkylphosphodiester, in which the charged oxygen moiety is alkylated. Nucleic acid molecules which contain a diol, such as tetraethylenglycol or hexaethylenglycol, at either or both termini have also been shown to be substantially resistant to nuclease degradation.

A “subject” shall mean a human or vertebrate animal including a dog, cat, horse, cow, pig, sheep, goat, chicken, monkey, rat, mouse, etc.

As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. Preferred vectors are those capable of autonomous replication and expression of nucleic acids to which they are linked (e.g., an episome). Vectors capable of directing the expression of genes to which they are operatively linked are referred to herein as “expression vectors.” In general, expression vectors of utility in recombinant DNA techniques are often in the form of “plasmids” which refer generally to circular double stranded DNA loops which, in their vector form, are not bound to the chromosome. In the present specification, “plasmid” and “vector” are used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors which serve equivalent functions and which become known in the art subsequently hereto.

Certain Unmethylated CpG Containing Nucleic Acids Have B Cell Stimulatory Activity As Shown In Vitro and In Vivo

In the course of investigating the lymphocyte stimulatory effects of two antisense oligonucleotides specific for endogenous retroviral sequences, using protocols described in the attached Examples 1 and 2, it was surprisingly found that two out of twenty-four “controls” (including various scrambled, sense, and mismatch controls for a panel of “antisense” ODN) also mediated B cell activation and IgM secretion, while the other “controls” had no effect.

Two observations suggested that the mechanism of this B cell activation by the “control” ODN may not involve antisense effects 1) comparison of vertebrate DNA sequences listed in GenBank showed no greater homology than that seen with non-stimulatory ODN and 2) the two controls shown no hybridization to Northern blots with 10 μg of spleen poly A+RNA. Resynthesis of these ODN on a different synthesizer or extensive purification by polyacrylamide gel electrophoresis or high pressure liquid chromatography gave identical stimulation, eliminating the possibility of an impurity. Similar stimulation was seen using B cells from C3H/HeJ mice, eliminating the possibility that lipopolysaccharide (LPS) contamination could account for the results.

The fact that two “control” ODN caused B cell activation similar to that of the two “antisense” ODN raised the possibility that all four ODN were stimulating B cells through some non-antisense mechanism involving a sequence motif that was absent in all of the other non-stimulatory control ODN. In comparing these sequences, it was discovered that all of the four stimulatory ODN contained CpG dinucleotides that were in a different sequence context from the non-stimulatory control.

To determine whether the CpG motif present in the stimulatory ODN was responsible for the observed stimulation, over 50 ODN ranging in length from 5 to 42 bases that contained methylated, unmethylated, or no CpG dinucleotides in various sequence contexts were synthesized. These ODNs, including the two original “controls” (ODN 1 and 2) and two originally synthesized as “antisense” (ODN 3D and 3M; Krieg, A. M. J. Immunol. 143:2448 (1989)), were then examined for in vitro effects on spleen cells (representative sequences are listed in Table 1). Several ODN that contained CpG dinucleotides induced B cell activation and IgM secretion; the magnitude of this stimulation typically could be increased by adding more CpG dinucleotides (Table 1; compare ODN 2 to 2a or 3D to 3D5). Stimulation did not appear to result from an antisense mechanism or impurity. ODN caused no detectable proliferation of γδ or other T cell populations.

Mitogenic ODN sequences uniformly became non-stimulatory if the CpG dinucleotide was mutated (Table 1; compare ODN 1 to 1a; 3D to 3Dc; 3M to 3Mα and 4 to 4α) or if the cytokine of the CpG dinucleotide was replaced by 5-methylcytosine (Table 1; ODN 1 b, 2 b, 3Dd, and 3Mb). Partial methylation of CpG motifs caused a partial loss of stimulatory effect (compare 2a to 2c, Table 1). In contrast, methylation of other cytokines did not reduce ODN activity (ODN 1 c, 2 d, 3De and 3Mc). These data confirmed that a CpG motif is the essential element present in ODN that activate B cells.

In the course of these studies, it became clear that the bases flanking the CpG dinucleotide played an important role in determining the murine B cell activation induced by an ODN. The optimal stimulatory motif was determined to consist of a CpG flanked by two 5′ purines (preferably a CpA dinucleotide) and two 3′ pyrimidines (preferably a TpT or TpC dinucleotide). Mutations of ODN to bring the CpG motif closer to this ideal improved stimulation (e.g., Table 1, compare ODN 2 to 2c; 3M to 3Mα) while mutations that disturbed the motif reduced stimulation (e.g. Table 1, compare ODN 3D to 3Df; 4 to 4b, 4c and 4d). On the other hand, mutations outside the CpG motif did not reduce stimulation (e.g. Table 1, compare ODN 1 to 1d; 3D to 3Dg; 3M to 3Mc). For activation of human cells, the best flanking bases are slightly different (See Table 5).

Of those tested, ODNs shorter than 8 bases were non-stimulatory (e.g. Table 1, ODN 4e). Among the forty-eight 8 base ODN tested, the most stimulatory sequence identified was TCAACGGTT (ODN 4) which contains the self-complementary “palindromic” AAGTTT. In further optimizing this motif, it was found that ODN containing Cis at both ends showed increased stimulation, particularly if the ODN were rendered nuclease resistant by phosphorothioate modification of the terminal internucleotide linkages. ODN 1585 (5′ GGCCCTAAACGTTGAGGAGGGG 3′ (SEQ ID NO:12)), in which the first two and last five internucleotide linkages are phosphorothioate modified caused an average 25.4 fold increase in mouse spleen cell proliferation compared to an average 3.2 fold increase in proliferation induced by ODN 1638, which has the same sequence as ODN 1585 except that the 10 Cs at the two ends are replaced by 10 As. The effect of the G-rich ends is cis; addition of an ODN with poly G ends but no CpG motif to cells along with 1638 gave no increased proliferation. For nucleic acid molecules longer than 8 base pairs, non-palindromic motifs containing an unmethylated CpG were found to be more immunostimulatory.
Other octamer ODN containing a 6 base palindrome with a TpC dinucleotide at the 5' end were also active (e.g. Table 1, ODN 4b,4c). Other dinucleotides at the 5' end gave reduced stimulation (e.g. ODN 4f, all sixteen possible dinucleotides were tested). The presence of a 3' dinucleotide was insufficient to compensate for the lack of a 5' dinucleotide (e.g. Table 1, ODN 4g). Disruption of the palindrome eliminated stimulation in octamer ODN (e.g. Table 1, ODN 4h), but palindromes were not required in longer ODN.

TABLE 1

Oligonucleotide Stimulation of Mouse B Cells

<table>
<thead>
<tr>
<th>Production</th>
<th>Sequence (5' to 3')</th>
<th>^{3}H Uridine</th>
<th>IgM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (SEQ ID NO: 13)</td>
<td>GCTAGAAGTTAACGC</td>
<td>6.1 ± 0.8</td>
<td>17.9 ± 3.6</td>
</tr>
<tr>
<td>1a (SEQ ID NO: 4)</td>
<td>T...T...</td>
<td>1.2 ± 0.2</td>
<td>1.7 ± 0.5</td>
</tr>
<tr>
<td>1b (SEQ ID NO: 14)</td>
<td>Z...Z...</td>
<td>1.2 ± 0.1</td>
<td>1.8 ± 0.0</td>
</tr>
<tr>
<td>1c (SEQ ID NO: 15)</td>
<td>...Z...Z...</td>
<td>10.3 ± 4.4</td>
<td>9.5 ± 1.3</td>
</tr>
<tr>
<td>1d (SEQ ID NO: 16)</td>
<td>AT...GAGC...</td>
<td>13.0 ± 2.3</td>
<td>18.3 ± 7.5</td>
</tr>
<tr>
<td>2 (SEQ ID NO: 17)</td>
<td>ATGGAAGTCCAGGCTCT</td>
<td>2.9 ± 0.2</td>
<td>13.6 ± 2.0</td>
</tr>
<tr>
<td>2a (SEQ ID NO: 18)</td>
<td>C...CTC...G...</td>
<td>7.7 ± 0.8</td>
<td>24.2 ± 3.2</td>
</tr>
<tr>
<td>2b (SEQ ID NO: 19)</td>
<td>Z...Z...CTC...Z...</td>
<td>1.6 ± 0.5</td>
<td>2.8 ± 2.2</td>
</tr>
<tr>
<td>2c (SEQ ID NO: 20)</td>
<td>Z...Z...CTC...G...</td>
<td>3.1 ± 0.6</td>
<td>7.3 ± 1.4</td>
</tr>
<tr>
<td>2d (SEQ ID NO: 21)</td>
<td>D...CTC...G...Z...</td>
<td>7.4 ± 1.4</td>
<td>27.7 ± 5.4</td>
</tr>
<tr>
<td>2e (SEQ ID NO: 22)</td>
<td>A...Z...</td>
<td>5.6 ± 2.0</td>
<td>ND</td>
</tr>
<tr>
<td>3D (SEQ ID NO: 23)</td>
<td>GAGAACCTGACCTCTTCAT</td>
<td>4.9 ± 0.5</td>
<td>19.9 ± 3.6</td>
</tr>
<tr>
<td>3Da (SEQ ID NO: 24)</td>
<td>C...C...</td>
<td>6.6 ± 1.5</td>
<td>33.9 ± 6.9</td>
</tr>
<tr>
<td>3Db (SEQ ID NO: 25)</td>
<td>Z...Z...C...G...</td>
<td>10.1 ± 2.8</td>
<td>25.4 ± 0.8</td>
</tr>
<tr>
<td>3Dc (SEQ ID NO: 26)</td>
<td>C...A...</td>
<td>1.0 ± 0.1</td>
<td>1.2 ± 0.5</td>
</tr>
<tr>
<td>3Dd (SEQ ID NO: 27)</td>
<td>Z...Z...</td>
<td>1.2 ± 0.2</td>
<td>1.0 ± 0.4</td>
</tr>
<tr>
<td>3De (SEQ ID NO: 28)</td>
<td>Z...Z...</td>
<td>4.4 ± 1.2</td>
<td>18.8 ± 4.4</td>
</tr>
<tr>
<td>3Df (SEQ ID NO: 29)</td>
<td>A...A...</td>
<td>1.6 ± 0.1</td>
<td>7.7 ± 0.4</td>
</tr>
<tr>
<td>3Dg (SEQ ID NO: 30)</td>
<td>C.G...ACTG...</td>
<td>6.1 ± 1.5</td>
<td>18.6 ± 1.5</td>
</tr>
<tr>
<td>3M (SEQ ID NO: 31)</td>
<td>TCCATUTGCTCTCGATGCT</td>
<td>4.1 ± 0.2</td>
<td>23.2 ± 4.9</td>
</tr>
<tr>
<td>3Ma (SEQ ID NO: 32)</td>
<td>T...CT...</td>
<td>0.9 ± 0.1</td>
<td>1.8 ± 0.5</td>
</tr>
<tr>
<td>3Mb (SEQ ID NO: 33)</td>
<td>Z...Z...</td>
<td>1.3 ± 0.3</td>
<td>1.5 ± 0.6</td>
</tr>
<tr>
<td>3Mc (SEQ ID NO: 34)</td>
<td>Z...Z...</td>
<td>5.4 ± 1.5</td>
<td>8.5 ± 2.6</td>
</tr>
<tr>
<td>3Md (SEQ ID NO: 35)</td>
<td>A...T...</td>
<td>17.2 ± 9.4</td>
<td>ND</td>
</tr>
<tr>
<td>3Me (SEQ ID NO: 36)</td>
<td>C...A...</td>
<td>3.6 ± 0.2</td>
<td>14.2 ± 5.2</td>
</tr>
<tr>
<td>4 (SEQ ID NO: 13)</td>
<td>TCACACGT</td>
<td>6.1 ± 1.4</td>
<td>19.2 ± 5.2</td>
</tr>
<tr>
<td>4a</td>
<td>GC...</td>
<td>1.1 ± 0.2</td>
<td>1.5 ± 1.1</td>
</tr>
<tr>
<td>4b</td>
<td>GCCGC...</td>
<td>4.5 ± 0.2</td>
<td>9.6 ± 3.4</td>
</tr>
<tr>
<td>4c</td>
<td>TCGA...</td>
<td>2.7 ± 1.0</td>
<td>ND</td>
</tr>
<tr>
<td>4d</td>
<td>TTA...A</td>
<td>1.3 ± 0.2</td>
<td>ND</td>
</tr>
<tr>
<td>4e</td>
<td>...</td>
<td>1.3 ± 0.2</td>
<td>1.1 ± 0.5</td>
</tr>
</tbody>
</table>
TABLE 1-continued

<table>
<thead>
<tr>
<th>ODN</th>
<th>Sequence (5' to 3')</th>
<th>³H Uridine</th>
<th>IgM</th>
</tr>
</thead>
<tbody>
<tr>
<td>4f</td>
<td>C........</td>
<td>3.9 ± 1.4</td>
<td>ND</td>
</tr>
<tr>
<td>4g</td>
<td>.........CT</td>
<td>1.4 ± 0.3</td>
<td>ND</td>
</tr>
<tr>
<td>4h</td>
<td>........C</td>
<td>1.2 ± 0.2</td>
<td>ND</td>
</tr>
<tr>
<td>LPS</td>
<td></td>
<td>7.8 ± 2.5</td>
<td>4.8 ± 1.0</td>
</tr>
</tbody>
</table>

*Stimulation indexes are the means and std. dev. derived from at least 3 separate experiments, and are compared to wells cultured with no added ODN. ND not done.
CpG dinucleotides are underlined.
Dots indicate identity; dashes indicate deletions.
Z indicates 5 methyl cytosine.

TABLE 2

Identification of the optimal CpG motif for marine Il-6 production and B cell activation.

<table>
<thead>
<tr>
<th>IL-6 (pg/ml)**</th>
<th>CH12.LX</th>
<th>SPLENIC B CELL</th>
<th>ST*</th>
<th>IgM (ng/ml)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>512 (SEQ ID NO: 37)TCTGATGCTCTCTGATGCT</td>
<td>1300 ± 106</td>
<td>627 ± 43</td>
<td>5.8 ± 0.4</td>
<td>7315 ± 1324</td>
</tr>
<tr>
<td>1637 (SEQ ID NO: 39)G_</td>
<td>136 ± 27</td>
<td>46 ± 6</td>
<td>1.7 ± 0.2</td>
<td>770 ± 72</td>
</tr>
<tr>
<td>1615 (SEQ ID NO: 39)G........</td>
<td>1201 ± 155</td>
<td>850 ± 202</td>
<td>3.7 ± 0.5</td>
<td>3212 ± 617</td>
</tr>
<tr>
<td>1614 (SEQ ID NO: 40)A........</td>
<td>1533 ± 321</td>
<td>1812 ± 103</td>
<td>10.8 ± 0.6</td>
<td>7568 ± 414</td>
</tr>
<tr>
<td>1636 (SEQ ID NO: 41)A........</td>
<td>1181 ± 76</td>
<td>947 ± 132</td>
<td>5.4 ± 0.0</td>
<td>3983 ± 485</td>
</tr>
<tr>
<td>1634 (SEQ ID NO: 42)C........</td>
<td>1049 ± 223</td>
<td>1671 ± 175</td>
<td>9.2 ± 0.5</td>
<td>6256 ± 261</td>
</tr>
<tr>
<td>1619 (SEQ ID NO: 43)T........</td>
<td>1555 ± 304</td>
<td>2908 ± 129</td>
<td>12.5 ± 1.0</td>
<td>8243 ± 698</td>
</tr>
<tr>
<td>1618 (SEQ ID NO: 44)A........</td>
<td>2109 ± 291</td>
<td>2596 ± 166</td>
<td>12.9 ± 0.7</td>
<td>10425 ± 674</td>
</tr>
<tr>
<td>1639 (SEQ ID NO: 45)A........</td>
<td>1827 ± 63</td>
<td>2012 ± 132</td>
<td>11.5 ± 0.4</td>
<td>9489 ± 103</td>
</tr>
<tr>
<td>1707 (SEQ ID NO: 46)A........</td>
<td>ND</td>
<td>ND</td>
<td>4.0 ± 0.2</td>
<td>3534 ± 217</td>
</tr>
<tr>
<td>1708 (SEQ ID NO: 47)G........</td>
<td>ND</td>
<td>ND</td>
<td>1.5 ± 0.1</td>
<td>466 ± 109</td>
</tr>
</tbody>
</table>

Dots indicate identity; CpG dinucleotides are underlined; ND not done
*The experiment was done at least three times with similar results. The level of IL-6 of unstimulated control cultures of both CH12.LX and splenic B cells was <10 pg/ml. The IgM level of unstimulated culture was 547 ± 2 pg/ml. CpG dinucleotides are underlined and dots indicate identity.
**Uridine uptake was indicated as a fold increase (SI: stimulation index) from unstimulated control (1232.67 ± 213.68 cpn). Cells were stimulated with 20 μM of various CpG O-DNAs. Data present the mean ± SD of triplicates measured by ELISA.

The kinetics of lymphocyte activation were investigated using mouse spleen cells. When the cells were pulsed at the same time as ODN addition and harvested just four hours later, there was already a two-fold increase in [3H] uridine incorporation. Stimulation peaked at 12-48 hours and then decreased. After 24 hours, no intact ODN were detected, perhaps accounting for the subsequent fall in stimulation when purified B cells with or without anti-IgM (at submaximal) were cultured with CpG ODN, proliferation was found to synergistically increase about 10-fold by the two mitogens in combination after 48 hours. The magnitude of stimulation was concentration dependent and consistently exceeded that of LPS under optimal conditions for both. Oligonucleotides containing a nucleas resistant phosphorothioate backbone were approximately two hundred times more potent than unmodified oligonucleotides.

Cell cycle analysis was used to determine the proportion of B cells activated by CpG-ODN. CpG-ODN induced cycling in more than 95% of B cells. Splenic B lymphocytes sorted by flow cytometry into CD23-(marginal zone) and CD23+(follicular) subpopulations were equally responsive to ODN-induced stimulation, as were both resting and activated populations of B cells isolated by fractionation over Percoll gradients. These studies demonstrated that CpG-ODN induce essentially all B cells to enter the cell cycle. Immunostimulatory Nucleic Acid Molecules Block Marine B Cell Apoptosis

Certain B cell lines such as WEHI-231 are induced to undergo growth arrest and/or apoptosis in response to crosslinking of their antigen receptor by anti-IgM (Jakway, J. P. et al., "Growth regulation of the B lymphoma cell line..."
WEHI-231 by anti-immunoglobulin, lipopolysaccharide and other bacterial products. "J. Immunol., 137: 2225 (1986); Tsubata, T., J. Wu and T. Honjo: B-cell apoptosis induced by antigen receptor crosslinking is blocked by a T-cell signal through CD40." Nature 364: 645 (1993). WEHI-231 cells are rescued from this growth arrest by certain stimuli such as LPS and by the CD40 ligand. ODN containing the CpG motif were also found to protect WEHI-231 from anti-IgM induced growth arrest, indicating that accessory cell populations are significantly induced IL-6 secretion (ODN 5a, 5b, 5c) while CpG methylated E. coli DNA, or ODN containing methylated CpG (ODN 5f) or no CpG (ODN 5d) did not. Changes at sites other than CpG dinucleotides (ODN 5b) or methylation of other cytosines (ODN 5g) did not reduce the effect of CpG ODN. Methylation of a single CpG in an ODN with three CpGs resulted in a partial reduction in the stimulation (compare ODN 5c to 5e; Table 3).

TABLE 3

<table>
<thead>
<tr>
<th>Treatment</th>
<th>IL-6 (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>calf thymus DNA</td>
<td>≤10</td>
</tr>
<tr>
<td>calf thymus DNA + DNase</td>
<td>≤10</td>
</tr>
<tr>
<td>E. coli DNA</td>
<td>1169.5 ± 94.1</td>
</tr>
<tr>
<td>E. coli DNA + DNase</td>
<td>≤10</td>
</tr>
<tr>
<td>CpG methylated E. coli DNA</td>
<td>≤10</td>
</tr>
<tr>
<td>LPS</td>
<td>200.1 ± 17.1</td>
</tr>
<tr>
<td>Media (no DNA)</td>
<td>≤10</td>
</tr>
<tr>
<td>ODN 5a</td>
<td>1096.4 ± 372.0</td>
</tr>
<tr>
<td>5b SEQ ID NO: 1 ATGAGACTCTCCACGGTCTCT</td>
<td>1124.5 ± 126.2</td>
</tr>
<tr>
<td>5c SEQ ID NO: 3 CGGAGGGAAC</td>
<td>1783.0 ± 189.5</td>
</tr>
<tr>
<td>5d SEQ ID NO: 4 AGGCGCTTTT</td>
<td>≤10</td>
</tr>
<tr>
<td>5e SEQ ID NO: 5 CCGAGGGAAC</td>
<td>851.1 ± 114.4</td>
</tr>
<tr>
<td>5f SEQ ID NO: 6 ZGGZGGZ</td>
<td>≤10</td>
</tr>
<tr>
<td>5g SEQ ID NO: 7 ZGGZGGZ</td>
<td>1862.3 ± 87.26</td>
</tr>
</tbody>
</table>

not required for the effect. Subsequent work indicates that CpG ODN induce Bcl-x and myc expression, which may account for the protection from apoptosis. Also, CpG nucleic acids have been found to block apoptosis in human cells. This inhibition of apoptosis is important, since it should enhance and prolong immune activation by CpG DNA.

Induction of Murine Cytokine Secretion by CpG Motifs in Bacterial DNA or Oligonucleotides.

As described in Example 9, the amount of IL-6 secreted by spleen cells after CpG DNA stimulation was measured by ELISA. T cell depleted spleen cell cultures rather than whole spleen cells were used for in vitro studies following preliminary studies showing that T cells contribute little or nothing to the IL-6 produced by CpG DNA-stimulated spleen cells. As shown in Table 3, IL-6 production was markedly increased in cells cultured with E. coli DNA but not in cells cultured with calf thymus DNA. To confirm that the increased IL-6 production observed with E. coli DNA was not due to contamination by other bacterial products, the DNA was digested with DNase prior to analysis. DNase pretreatment abolished IL-6 production induced by E. coli DNA (Table 3). In addition, spleen cells from LPS-nonresponsive C3H/HeJ mice produced similar levels of IL-6 in response to bacterial DNA. To analyze whether the IL-6 secretion induced by E. coli DNA was mediated by the unmethylated CpG dinucleotides in bacterial DNA, methylated E. coli DNA and a panel of synthetic ODN were examined. As shown in Table 3, CpG ODN

T cell depleted spleen cells from DBA/2 mice were stimulated with phosphodiester modified oligonucleotides (10—ODN) (20 μM), calf thymus DNA (50 μg/ml) or E. coli DNA (50 μg/ml) with or without enzyme treatment, or LPS (10 μg/ml) for 24 hr. Data represent the mean (pg/ml) ± SD of triplicates. CpG dinucleotides are underlined and dots indicate identity. Z indicates 5-methylcytosine.

Identification of the Optimal CpG Motif for Induction of Murine IL-6 and IgM Secretion and B cell Proliferation.

to analyze whether the optimal B cell stimulatory CpG motif was identical with the optimal CpG motif for IL-6 secretion, a panel of ODN in which the bases flanking the CpG dinucleotide were progressively substituted was studied. This ODN panel was analyzed for effects on B cell proliferation, Ig production, and IL-6 secretion, using both splenic B cells and CHL2 LX cells. As shown in Table 2, the optimal stimulatory motif is composed of an unmethylated CpG flanked by two 5’ purines and two 3’ pyrimidines. Generally a mutation of either 5’ purine to pyrimidine or 3’ pyrimidine to purine significantly reduced its effects. Changes in 5’ purines to C were especially deleterious, but changes in 5’ purines to T or 3’ pyrimidines to purines had less marked effects. Based on analyses of the results and scores of other ODN, it was determined that the optimal CpG motif for induction of IL-6 secretion is TGACGGT, which is identical with the optimal mitogenic and IgM-inducing CpG motif (Table 2). This motif was more stimulatory than any of the palindromes containing sequences studied (1639, 1707 and 1708).
Titratin of Induction of Murine IL-6 Secretion by CpG Motifs.

Bacterial DNA and CpG ODN induced IL-6 production in T cell-depleted murine spleen cells in a dose-dependent manner, but vertebrate DNA and non-CpG ODN did not (FIG. 1). IL-6 production plateaued at approximately 50 μg/ml of bacterial DNA or 40 μM of CpG O—ODN. The maximum levels of IL-6 induced by bacterial DNA and CpG ODN were 1-1.5 ng/ml and 2-4 ng/ml respectively. These levels were significantly greater than those seen after stimulation by LPS (0.35 ng/ml) (FIG. 1A). To evaluate whether CpG ODN with a nucleosome-resistant DNA backbone would also induce IL-6 production, S—ODN were added to T cell-depleted murine spleen cells. CpG S—ODN did not induce IL-6 in a dose-dependent manner to the same level as CpG O—ODN while non-CpG S-ODN failed to induce IL-6 (Fig. 1C). CpG S—ODN at a concentration of 0.05 μM could induce maximal IL-6 production in these cells. This result indicated that the nucleosome-resistant DNA backbone modification retains the sequence-specific ability of CpG DNA to induce IL-6 secretion and that CpG S—ODN are more than 80-fold more potent than CpG O—ODN in this assay system.

Induction of Murine IL-6 Secretion by CpG DNA in vivo.

To evaluate the ability of bacterial DNA and CpG S—ODN to induce IL-6 secretion in vivo, BALB/c mice were injected iv. with 100 μg of E. coli DNA, calf thymus DNA, or CpG or non-stimulatory S—ODN and bled 2 hr after stimulation. The level of IL-6 in the sera from the E. coli DNA injected group was approximately 13 ng/ml while IL-6 was not detected in the sera from calf thymus DNA or PBS injected groups (Table 4). CpG S—ODN also induced IL-6 secretion in vivo. The IL-6 level in the sera from CpG S—ODN injected groups was approximately 20 ng/ml. In contrast, IL-6 was not detected in the sera from non-stimulatory S—ODN stimulated group (Table 4).

<table>
<thead>
<tr>
<th>Stimulant</th>
<th>IL-6 (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td><50</td>
</tr>
<tr>
<td>E. coli DNA</td>
<td>13858 ± 3143</td>
</tr>
<tr>
<td>Calf thymus DNA</td>
<td><50</td>
</tr>
<tr>
<td>CpG S-ODN</td>
<td>20715 ± 606</td>
</tr>
<tr>
<td>non-CpG S-ODN</td>
<td><50</td>
</tr>
</tbody>
</table>

Mice (2 mice/group) were i.v. injected with 100 μl of PBS, 200 μg of E. coli DNA or calf thymus DNA, or 500 μg of CpG S—ODN or non-CpG control S—ODN. Mice were bled 2 hr after injection and 1:10 dilution of each serum was analyzed by IL-6 ELISA. Sensitivity limit of IL-6 ELISA was 5 pg/ml.

Sequences of the CpG S—ODN is 5′GCTAGACGTGAGCT3′ (SEQ ID NO:48) and of the non-stimulatory S—ODN is 5′GCTAGATGTTAGGGCT3′ (SEQ ID NO:49). Note that although there is a CpG in sequence 48, it is too close to the 3′ end to affect stimulation, as explained herein. Data represent means ± SD of duplicates. The experiment was done at least twice with similar results.

Kinetin of Murine IL-6 Secretion after Stimulation by CpG Motifs in vivo.

To evaluate the kinetics of induction of IL-6 secretion by CpG DNA in vivo, BALB/c mice were injected iv. with CpG or control non-CpG S—ODN. Serum IL-6 levels were significantly increased within 1 hr and peaked at 2 hr to a level of approximately 9 ng/ml in the CpG S—ODN injected group (FIG. 2). IL-6 protein in sera rapidly decreased after 4 hr and returned to basal levels after 12 hr post-stimulation. In contrast to CpG DNA-stimulated groups, no significant increase of IL-6 was observed in the sera from the non-stimulatory S—ODN or PBS injected groups (FIG. 2).

Tissue Distribution and Kinetics of IL-6 mRNA Expression Induced by CpG Motifs in vivo.

As shown in FIG. 2, the level of serum IL-6 increased rapidly after CpG DNA stimulation. To investigate the possible tissue origin of this serum IL-6, the kinetics of IL-6 gene expression in vivo after CpG DNA stimulation, BALB/c mice were injected iv. with CpG or non-CpG S—ODN and RNA was extracted from liver, spleen, thymus, and bone marrow at various time points after stimulation. As shown in FIG. 3A, the level of IL-6 mRNA in liver, spleen, and thymus was increased within 30 min. after injection of CpG S—ODN. The liver IL-6 mRNA peaked at 2 hr post-injection and rapidly decreased and reached basal level 8 hr after stimulation (FIG. 3A). Splenic IL-6 mRNA peaked at 2 hr after stimulation and then gradually decreased (FIG. 3A). Thymus IL-6 mRNA peaked at 1 hr post-injection and then gradually decreased (FIG. 3A). IL-6 mRNA was significantly increased in bone marrow within 1 hr after CpG S—ODN injection but then returned to basal level. In response to CpG S—ODN, liver, spleen and thymus showed more substantial increases in IL-6 mRNA expression than the bone marrow.

Patterns of Murine Cytokine Expression Induced by CpG DNA

In vivo or in whole spleen cells, no significant increase in the protein levels of the following interleukins: IL-2, IL-3, IL-4, IL-5, or IL-10 was detected within the first six hours (Klinman, D. M. et al., (1996) Proc. Natl. Acad. Sci. USA 93:2879-2883). However, the level of TNF-α is increased within 30 minutes and the level of IL-6 increased strikingly within 2 hours in the serum of mice injected with CpG ODN. Increased expression of IL-12 and interferon gamma (IFN-γ) mRNA by spleen cells was also detected within the first two hours.

<table>
<thead>
<tr>
<th>Induction of human PBMC cytokine secretion by CpG oligos</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODN</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>512</td>
</tr>
<tr>
<td>1637</td>
</tr>
<tr>
<td>1615</td>
</tr>
<tr>
<td>ODN</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1614</td>
</tr>
<tr>
<td>1636</td>
</tr>
<tr>
<td>1634</td>
</tr>
<tr>
<td>1619</td>
</tr>
<tr>
<td>1618</td>
</tr>
<tr>
<td>1639</td>
</tr>
<tr>
<td>1707</td>
</tr>
<tr>
<td>1708</td>
</tr>
</tbody>
</table>

Dots indicate identity; Cpg dimonucleotides are underlined.

CpG DNA induces cytokine secretion by human PBMC, specifically monocytes. The same panels of ODN used for studying mouse cytokine expression were used to determine whether human cells also are induced by CpG motifs to express cytokine (or proliferate), and to identify the CpG motif(s) responsible. Oligonucleotide 1619 (GTCGTT) was the best inducer of TNF-α and IFN-γ secretion, and was closely followed by the nearly identical motif of oligonucleotide 1634 (GTCGCT) (Table 5). The motifs in oligodeoxynucleotides 1637 and 1614 (GCGGT and GACGGT) led to strong IL-6 secretion with relatively little induction of other cytokines. Thus, it appears that human lymphocytes, like murine lymphocytes, secrete cytokines differentially in response to CpG dimonucleotides, depending on the surrounding bases. Moreover, the motifs that stimulate murine cells best differ from those that are most effective with human cells. Certain CpG oligodeoxynucleotides are poor at activating human cells (oligodeoxynucleotides 1707, 1708, which contain the palindromic formation sequences GACGGT and CAGTG, respectively).

The results of the DNA appear to be monocytes, since the cytokine secretion is abolished by treatment of the cells with L-leucyl-L-leucine methyl ester (L-LME), which is selectively toxic to monocytes (but also to cytotoxic T lymphocytes and NK cells), and does not affect B cell IgG secretion (Table 6, and data not shown). The cells surviving L-LME treatment had >95% viability by trypsin blue exclusion, indicating that the lack of a cytokine response among these cells did not simply reflect a nonspecific death of all cell types. Cytokine secretion in response to E. coli (EC) DNA requires unmethylated CpG motifs, since it is abolished by methylation of the EC DNA (next to the bottom row, Table 6). LPS contamination of the DNA cannot explain the results since the level of contamination was identical in the native and methylated DNA, and since addition of twice the highest amount of contaminating LPS had no effect (not shown).

TABLE 6

<table>
<thead>
<tr>
<th>DNA</th>
<th>TNF-α↑ (pg/ml)</th>
<th>IL-6↑ (pg/ml)</th>
<th>IFN-γ↑ (pg/ml)</th>
<th>RANTES (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC DNA (50 μg/ml)</td>
<td>900</td>
<td>12,000</td>
<td>700</td>
<td>1560</td>
</tr>
<tr>
<td>EC DNA (5 μg/ml)</td>
<td>850</td>
<td>11,000</td>
<td>400</td>
<td>750</td>
</tr>
<tr>
<td>EC DNA (0.5 μg/ml)</td>
<td>500</td>
<td>ND</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>EC DNA (0.05 μg/ml)</td>
<td>62.5</td>
<td>10,000</td>
<td>15.6</td>
<td>0</td>
</tr>
<tr>
<td>EC DNA (50 μg/ml) + L-LME1</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>EC DNA (10 μg/ml) + Methyl2</td>
<td>0</td>
<td>5</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>CT DNA (50 μg/ml)</td>
<td>0</td>
<td>600</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1 Levels of all cytokines were determined by ELISA using Quantikine kits from R&D Systems as described in the previous table. Results are representative using PBMC from different donors.

2 Cells were pretreated for 15 min with L-leucyl-L-leucine methyl ester (L-LME) to determine whether the cytokine production under these conditions was from monocytes (or other L-LME-sensitive cells).

3 LPS was methylated using 2 U/mg DNA of CpG methylase (New England Biolabs) according to the manufacturer’s directions, and methylated confirmed by digestion with Hpa-II andMsp-I. As a negative control, samples were included containing twice the maximal amount of LPS contained in the highest concentration of EC DNA which failed to induce detectable cytokine production under these experimental conditions.

ND = not done

The loss of cytokine production in the PBMC treated with L-LME suggested that monocytes may be responsible for cytokine production in response to CpG DNA. To test this hypothesis more directly, the effects of CpG DNA on highly purified human monocytes and macrophages was tested. As hypothesized, CpG DNA directly activated production of the cytokines IL-6, GM-CSF, and TNF-α by human macrophages, whereas non-CpG DNA did not (Table 7).
TABLE 7
CpG DNA induces cytokine expression in purified human macrophages

<table>
<thead>
<tr>
<th>Cells alone</th>
<th>IL-6 (pg/ml)</th>
<th>GM-CSF (pg/ml)</th>
<th>TNF-α (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT DNA (50 μg/ml)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EC DNA (50 μg/ml)</td>
<td>2000</td>
<td>15.6</td>
<td>1000</td>
</tr>
</tbody>
</table>

Biological Role of IL-6 in Inducing Murine IgM Production in Response to CpG Motifs.

The kinetic studies described above revealed that induction of IL-6 secretion, which occurs within 1 hr post CpG stimulation, precedes IgM secretion. Since the optimal CpG motif for ODN inducing secretion of IL-6 is the same as that for IgM (Table 2), whether the CpG motifs independently induce IgM and IL-6 secretion or whether the IgM production is dependent on prior IL-6 secretion was examined. The addition of neutralizing anti-IL-6 antibodies inhibited in vitro IgM production mediated by CpG ODN in a dose-dependent manner but a control antibody did not (Fig. 4A). In contrast, anti-IL-6 addition did not affect either the basal level or the CpG-induced B cell proliferation (Fig. 4B).

Increased Transcriptional Activity of the IL-6 Promoter in Response to CpG DNA.

The increased level of IL-6 mRNA and protein after CpG DNA stimulation could result from transcriptional or post-transcriptional regulation. To determine if the transcriptional activity of the IL-6 promoter was upregulated in B cells cultured with CpG ODN, a murine B cell line, WEHI-231, which produces IL-6 in response to CpG DNA, was transfected with an IL-6 promoter-CAT construct (pIL-6/CAT) (Potratz, S. T. et al., 17β-estadiol) inhibits expression of human interleukin-6-promoter-reporter constructs by a receptor-dependent mechanism. J. Clin. Invest. 93:944). CAT assays were performed after stimulation with various concentrations of CpG or non-CpG ODN. As shown in Fig. 5, CpG ODN induced increased CAT activity in dose-dependent manner while non-CpG ODN failed to induce CAT activity. This confirms that CpG induces the transcriptional activity of the IL-6 promoter.

Dependence of B Cell Activation by CpG ODN on the Number of S' and 3' Phosphorothioate Internucleotide Linkages.

To determine whether partial sulfur modification of the ODN backbone would be sufficient to enhance B cell activation, the effects of a series of ODN with the same sequence, but with differing numbers of S internucleotide linkages at the S' and 3' ends were tested. Based on previous studies of nucleic acid degradation of ODN, it was determined that at least two phosphorothioate linkages at the S' end of ODN were required to provide optimal protection of the ODN from degradation by intracellular exo- and endo-nucleases. Only chimeric ODN containing two S' phosphorothioate-modified linkages, and a variable number of 3' modified linkages were therefore examined.

The lymphocyte stimulating effects of these ODN were tested at three concentrations (3.3, 10, and 30 μM) by measuring the total levels of RNA synthesis (by 3H]uridine incorporation) or DNA synthesis (by 3H]thymidine incorporation) in treated spleen cell cultures (Example 10). O—ODN (0/0 phosphorothioate modifications) bearing a CpG motif caused no spleen cell stimulation unless added to the cultures at concentrations of at least 10 μM (Example 10). However, when this sequence was modified with two S linkages at the S' end and at least three S linkages at the 3' end, significant stimulation was seen at a dose of 3.3 μM. At this low dose, the level of stimulation showed a progressive increase as the number of 3' modified bases was increased, until this reached or exceeded six, at which point the stimulation index began to decline. In general, the optimal number of 3' S linkages for spleen cell stimulation was five. At all three concentrations tested in these experiments, the S—ODN was less stimulatory than the optimal chimeric compounds.

Dependence of CpG-mediated Lymphocyte Activation on the Type of Backbone Modification.

Phosphorothioate modified ODN (S—ODN) are far more nuclease resistant than phosphodiester modified ODN (O—ODN). Thus, the increased immune stimulation caused by S—ODN and S—O—ODN (i.e. chimeric phosphorothioate ODN in which the central linkages are phosphodiester, but the two S' and five 3' linkages are phosphorothioate modified) compared to O—ODN may result from the nuclease resistance of the former. To determine the role of ODN nuclease resistance in immune stimulation by CpG ODN, the stimulatory effects of chimeric ODN in which the S' and 3' ends were rendered nuclease resistant with either methylphosphonate (MP—), methylphosphoroacetate (MPA—), phosphorothioate (S—), or phosphorodithioate (S2—) internucleotide linkages were tested (Example 10). These studies showed that despite their nuclease resistance, MP—O—ODN were actually less immune stimulatory than O—ODN. However, combining the MP and S modifications by replacing both non-bridging O molecules with 5' and 3' MPS internucleotide linkages restored immune stimulation to a slightly higher level than that triggered by O—ODN.

S—ODN were far more nuclease resistant than O—ODN, and were even more stimulatory than S—ODN, at least at concentrations above 3.3 μM. At concentrations below 3 μM, the S—ODN with the 3M sequence was more potent than the corresponding S—O—ODN, while the S—ODN with the 3D sequence was less potent than the corresponding S—O—ODN (Example 10). In comparing the stimulatory CpG motifs of these two sequences, it was noted that the 3D sequence is a perfect match for the stimulatory motif in that the CpG is flanked by two S' purines and two 3' pyrimidines. However, the bases immediately flanking the CpG in ODN 3D are not optimal; it has a 5' pyrimidine and a 3' purine. Based on further testing, it was found that the sequence requirement for immune stimulation is more stringent for S—ODN than for S—O— or O—ODN. S—ODN with poor matches to the optimal CpG motif cause little or no lymphocyte activation (e.g. Sequence 3D). However, S—ODN with good matches to the motif, most critically at the positions immediately flanking the CpG, are more potent than the corresponding S—O—ODN (e.g. Sequence 3M, Sequences 4 and 6), even though at higher concentrations (greater than 5 μM) the peak effect from the S—O—ODN is greater (Example 10).

S2—O—ODN were remarkably stimulatory, and caused substantially greater lymphocyte activation than the corresponding S—ODN or S—O—ODN at every tested concentration.

The increased B cell stimulation seen with CpG ODN bearing S or S2 substitutions could result from any or all of the following effects: nuclease resistance, increased cellular
uptake, increased protein binding, and altered intracellular localization. However, nucleosome resistance cannot be the only explanation, since the MP—O—ODN were actually less stimulatory than the O—ODN with CpG motifs. Prior studies have shown that ODN uptake by lymphocytes is markedly affected by the backbone chemistry (Zhu and others, 1993) Comparison of cellular binding and uptake of antisense phosphodiester, phosphorothioate, and mixed phosphorothioate and methylphosphonate oligonucleotides. (Antisense Research and Development 3, 53-66; Zhu and others, 1994) Stage-specific oligonucleotide uptake in murine bone marrow B cell precursors. Blood 84, 3660-3666.) The highest cell membrane binding and uptake was seen with S—ODN, followed by S—O—ODN, O—ODN, and MP—ODN. This differential uptake correlates well with the degree of immune stimulation.

Unmethylated CpGContaining Oligos have NK Cell Stimulatory Activity

Experiments were conducted to determine whether CpG containing oligonucleotides stimulated the activity of natural killer (NK) cells in addition to B cells. As shown in Table 8, a marked induction of NK activity among spleen cells cultured with CpG ODN 1 and 3Dd was observed. In contrast, there was relatively no induction in effectors that had been treated with non-CpG control ODN.

<table>
<thead>
<tr>
<th>DNA or Cytokine Added</th>
<th>Mouse Cells</th>
<th>Human Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expt. 1 None</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>IL-2</td>
<td>16.66</td>
<td>15.02</td>
</tr>
<tr>
<td>E. coli DNA</td>
<td>7.23</td>
<td>5.05</td>
</tr>
<tr>
<td>Calf thymus DNA</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Expt. 2 None</td>
<td>0.00</td>
<td>3.28</td>
</tr>
<tr>
<td>1585 gggGTCACGTTGCGggggG (SEQ ID NO: 12)</td>
<td>7.38</td>
<td>17.98</td>
</tr>
<tr>
<td>1629 tggggGTC........... (SEQ ID NO: 50)</td>
<td>0.00</td>
<td>4.4</td>
</tr>
<tr>
<td>Expt. 3 None</td>
<td>0.00</td>
<td>5.22</td>
</tr>
<tr>
<td>1613 GCTAGACGTTATGCTG (SEQ ID NO: 51)</td>
<td>7.02</td>
<td>ND</td>
</tr>
<tr>
<td>1769tggggGGCTGTTCGCTGATGCT (SEQ ID NO: 52)</td>
<td>3.35</td>
<td>4.4</td>
</tr>
<tr>
<td>1619 TCCATGCTGCTTCCGATGCT (SEQ ID NO: 43)</td>
<td>0.00</td>
<td>4.4</td>
</tr>
<tr>
<td>1765tggggGGCTGTTCGCTGATGCT (SEQ ID NO: 55)</td>
<td>0.11</td>
<td>4.4</td>
</tr>
</tbody>
</table>

CpG dimethylolates in ODN sequences are indicated by underlining; G indicates methylcytosine. Lower case letters indicate nucleoside resistant phosphorothioate modified internucleotide linkages which, in titration experiments, were more than 20 times as potent as non-modified ODN, depending on the flanking bases. Poly G ends (g) were used in some ODN, because they significantly increase the level of ODN uptake.

TABLE 8

<table>
<thead>
<tr>
<th>% YAC-1 Specific Lysis*</th>
<th>% 2C11 Specific Lysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effector: Target</td>
<td>Effector: Target</td>
</tr>
<tr>
<td>ODN</td>
<td>50.1</td>
</tr>
<tr>
<td>None</td>
<td>-1.1</td>
</tr>
<tr>
<td>1</td>
<td>16.1</td>
</tr>
<tr>
<td>3Dd</td>
<td>17.1</td>
</tr>
<tr>
<td>non-CpG ODN</td>
<td>-1.6</td>
</tr>
</tbody>
</table>

From all of these studies, a more complete understanding of the immune effects of CpG DNA has been developed, which is summarized in FIG. 6.

Identification of B Cell and Monocyte/NK Cell-Specific Oligonucleotides

As shown in FIG. 6, CpG DNA can directly activate highly purified B cells and monocytic cells. There are many similarities in the mechanism through which CpG DNA activates these cell types. For example, both require NFkB activation as explained further below.

In further studies of different immune effects of CpG DNA, it was found that there is more than one type of CpG motif. Specifically, oligo 1668, with the best mouse B cell motif, is a strong inducer of both B cell and natural killer (NK) cell activation, while oligo 1758 is a weak B cell activator, but still induces excellent NK responses (Table 10).
Table 10

<table>
<thead>
<tr>
<th>ODN Sequence</th>
<th>B cell activation</th>
<th>DR activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCCATGAGCTTCTCCAGATCT (SEQ ID NO: 54)</td>
<td>42,849</td>
<td>2.52</td>
</tr>
<tr>
<td>TCCCTCCAGCTGCGCAT (SEQ ID NO: 55)</td>
<td>1,747</td>
<td>6.66</td>
</tr>
<tr>
<td>NONE</td>
<td>367</td>
<td>0.00</td>
</tr>
</tbody>
</table>

CpG dinucleotides are underlined; oligonucleotides were synthesized with phosphorothioate modified backbones to improve their nuclease resistance. *Measured by 7 H thymidine incorporation after 48 hr culture with oligode-
guanylnucleotides at a 200 nM concentration as described in Example 1.
* Measured in lytic units.

Teleological Basis of Immunostimulatory, Nucleic Acids
Vertebrate DNA is highly methylated and CpG dinucle-
otides are underrepresented. However, the stimulatory CpG
motif is common in microbial genomic DNA, but quite rare in
vertebrate DNA. In addition, bacterial DNA has been
reported to induce B cell proliferation and immunoglobulin
(Ig) production, while mammalian DNA does not (Messina,
described in Example 3, in which methylation of bacterial
DNA with CpG methylase was found to abolish mitogenicity,
demonstrates that the difference in CpG status is the cause of
B cell stimulation by bacterial DNA. This data supports the
following conclusion: that unmethylated CpG dinucleotides
present within bacterial DNA are responsible for the stimula-
tory effects of bacterial DNA.

Teleologically, it appears likely that lymphocyte activation
by the CpG motif represents an immune defense mechanism
that can thereby distinguish bacterial from host DNA. Host
DNA, which would be most likely present in many anatomic
regions and areas of inflammation due to apoptosis (cell
death), would generally induce little or no lymphocyte acti-
vation due to CpG suppression and methylation. However,
the presence of bacterial DNA containing unmethylated CpG
motifs can cause lymphocyte activation precisely in infected
anatomic regions, where it is beneficial. This novel activation
pathway provides a rapid alternative to T cell dependent
antisense specific B cell activation. Since the CpG pathway
activates with B cell activation through the antigen receptor,
B cells bearing antigen receptor specific for bacterial antigens
would receive one activation signal through cell membrane Ig
and a second signal from bacterial DNA, and would therefore
be preferentially activated. The interrelationship of this
pathway with other pathways of B cell activation provide a
physiologic mechanism employing a polyclonal antigen to
inhibit antigen-specific responses.

However, it is likely that B cell activation would not be
totally nonspecific. B cells bearing antigen receptors specific
for bacterial products could receive one activation signal
through cell membrane Ig, and a second from bacterial DNA,
thereby more vigorously triggering antigen specific immune
responses. As with other immune defense mechanisms, the
response to bacterial DNA could have undesirable conse-
quences in some settings. For example, autoimmune responses to self antigens would also tend to be preferentially
triggered by bacterial infections, since autoantigens could
also provide a second activation signal to autoreactive B cells
triggered by bacterial DNA. Indeed the induction of autoimmu-
ity by bacterial infections is a common clinical observa-
ence. For example, the autoimmune disease systemic lupus
erthematous, which is i) characterized by the production of
anti-DNA antibodies; ii) induced by drugs which inhibit
DNA methytransferase (Cormac, J. E. et al., J. Clin.
Invest. 92:38 (1993)); and iii) associated with reduced DNA
methylation (Richardson, B. L. et al., Arth. Rheum 35:647
(1992)), is likely triggered at least in part by activation of
DNA-specific B cells through stimulatory signals provided
by CpG motifs, as well as by binding of bacterial DNA to
antigen receptors.

Further, sepsis, which is characterized by high morbidity
and mortality due to massive and nonspecific activation of the
immune system may be initiated by bacterial DNA and other
products released from dying bacteria that reach concentra-
tions sufficient to directly activate many lymphocytes. Fur-
ther evidence of the role of CpG DNA in the sepsis syndrome
Immunology 156:4570-4575.

Proposed Mechanisms of Action

Unlike antigens that trigger B cells through their surface Ig
receptor, CpG-ODN did not induce any detectable Ca2+ flux,
changes in protein tyrosine phosphorylation, or IP3 generation. Flow cytometry with FITC-conjugated ODN with or
without a CpG motif was performed as described in Zhao, Q
et al., (Antisense Research and Development 3:53-66 (1993)),
and showed equivalent membrane binding, cellular uptake,
eflux, and intracellular localization. This suggests that there
may not be cell membrane proteins specific for CpG ODN.
Rather than acting through the cell membrane, that data sug-
gests that unmethylated CpG containing oligonucleotides
require cell uptake for activity: ODN covalently linked to a
solid Teflon support were nonstimulatory, as were biotinyl-
ated ODN immobilized on either avidin beads or avidin
coated petri dishes. CpG ODN conjugated to either FITC or
biotin retained full mitogenic properties, indicating no steric
hindrance.

Recent data indicate the involvement of the transcription
factor NFκB as a direct or indirect mediator of the CpG effect.
For example, within 15 minutes of treating B cells or mono-
cytes with CpG DNA, the level of NFκB binding activity is
increased (FIG. 7). However, it is not increased by DNA that
does not contain CpG motifs. In addition, it was found that
two different inhibitors of NFκB activation, PDTC and
glotoxin, completely block the lymphocyte stimulation by
CpG DNA as measured by B cell proliferation or monocytic
cell cytokine secretion, suggesting that NFκB activation is
required for both cell types.

There are several possible mechanisms through which
NFκB can be activated. These include through activation of
various protein kinases, or through the generation of reactive
oxidant species. No evidence for protein kinase activation
induced immediately after CpG DNA treatment of B cells or
monocytic cells have been found, and inhibitors of protein kinase A, protein kinase C, and protein tyrosine kinases had no effects on the Cpg induced activation. However, Cpg DNA causes a rapid induction of the production of reactive oxygen species in both B cells and monocytic cells, as detected by the sensitive fluorescent dye dihydrodorhamine 123 as described in Royall, J. A., and Ischiropoulos, H. (Archives of Biochemistry and Biophysics 302:348-355 (1993)). Moreover, inhibitors of the generation of these reactive oxygen species completely block the induction of NFκB and the later induction of cell proliferation and cytokine secretion by Cpg DNA.

Working backwards, the next question was how Cpg DNA leads to the generation of reactive oxygen species so quickly. Previous studies by the inventors demonstrated that oligonucleotides and plasmid or bacterial DNA are taken up by cells as activated chloroquine. These mononuclear and biaflomylin, which work through different mechanisms. FIG. 8A shows the results from a flow cytometry study using mouse B cells with the dihydrodorhamine 123 dye to determine levels of reactive oxygen species. The dye only sample in Panel A of the figure shows the background levels of cells positive for the dye at 28.6%. As expected, this level of reactive oxygen species was greatly increased to 89% in the cells treated for 20 minutes with PMA and ionomycin, a positive control (Panel B). The cells treated with the Cpg oligo also showed an increase in the level of reactive oxygen species such that more than 50% of the cells became positive (Panel D). However, cells treated with an oligonucleotide with the identical sequence except that the Cpg was switched did not show this significant increase in the level of reactive oxygen species (Panel E).

In the presence of chloroquine, the results are very different (Fig. 8B). Chloroquine slightly lowers the background level of reactive oxygen species in the cells such that the untreated cells in Panel A have only 4.3% that are positive. Chloroquine completely abolishes the induction of reactive oxygen species in the cells treated with Cpg DNA (Panel B) but does not reduce the level of reactive oxygen species in the cells treated with PMA and ionomycin (Panel E). This demonstrates that unlike the PMA plus ionomycin, the generation of reactive oxygen species following treatment of B cells with Cpg DNA requires that the DNA undergo an acidification step in the endosomes. This is a completely novel mechanism of leukocyte activation. Chloroquine mononuclear and biaflomylin also appear to block the acivation of NFκB by Cpg DNA as well as the subsequent proliferation and induction of cytokine secretion.

Presumably, there is a protein in or near the endosomes that specifically recognizes DNA containing Cpg motifs and leads to the generation of reactive oxygen species. To detect any protein in the cell cytoplasm that may specifically bind Cpg DNA, we used electrophoretic mobility shift assays (EMSA) with 5' radioactively labeled oligonucleotides with or without Cpg motifs. A band was found that appears to represent a protein binding specifically to single stranded oligonucleotides that have Cpg motifs, but not to oligonucleotides that lack Cpg motifs or to oligonucleotides in which the Cpg motif has been methylated. This binding activity is blocked if excess of oligonucleotides that contain the NFκB binding site was added. This suggests that an NFκB or related protein is a component of a protein or protein complex that binds the stimulatory Cpg oligonucleotides.

No activation of CREB/ATF proteins was found at time points where NFκB was strongly activated. These data therefore do not provide proof that NFκB proteins actually bind to the Cpg nucleic acids, but rather that the proteins are required in some way for the Cpg activity. It is possible that a CREB/ATF or related protein may interact in some way with NFκB proteins or other proteins thus explaining the remarkable similarity in the binding motifs for CREB proteins and the optimal Cpg motif. It remains possible that the oligos bind to a CREB/ATF or related protein, and that this leads to NFκB activation.

Alternatively, it is very possible that the Cpg nucleic acids may bind to one of the TRAF proteins that bind to the cytoplasmic region of CD40 and mediate NFκB activation when CD40 is cross-linked. Examples of some of these TRAF proteins include TRAF-2 and TRAF-5.

Method for Making Immunostimulatory Nucleic Acids

For use in the instant invention, nucleic acids can be synthesized de novo using any of a number of procedures well known in the art. For example, the β-cyanosynthetic phosphoramidite method (S. L. Beaucage and M. H. Caruthers, 1981) Tet. Let. 22:1859; nucleoside H-phosphonate method (Garegg et al., 1986) Tet. Let. 27:4051-4054; Froehler et al., 1986) Nucl. Acid. Res. 14: 5399-5407; Garegg et al., 1986) Tet. Let. 27:4055-4057; Gaffney et al., 1988) Tet. Let. 29:2619-2622). These chemistries can be performed by a variety of automated oligonucleotide synthesizers available in the market. Alternatively, oligonucleotides can be prepared from existing nucleic acid sequences (e.g. genomic or cDNA) using known techniques, such as those employing restriction enzymes, exonucleases or endonucleases.

For use in vivo, nucleic acids are preferably relatively resistant to degradation (e.g. via endo- and exo-nucleases). Secondary structures, such as stem loops, can stabilize nucleic acids against degradation. Alternatively, nucleic acid stabilization can be accomplished via phosphate backbone modifications. A preferred stabilized nucleic acid has at least a partial phosphorothioate modified backbone. Phosphorothioates may be synthesized using automated techniques employing either phosphoramidate or H-phosphonate chemistries. Aryl- and alkyl-phosphonates can be made e.g. as described in U.S. Pat. No. 4,469,863; and alkylphosphoester (in which the charged oxygen moiety is alkylated as described in U.S. Pat. No. 5,023,243 and European Patent No. 092,574) can be prepared by automated solid phase synthesis using commercially available reagents. Methods for making other DNA backbone modifications and substitutions have been described (Uhlmann, E. and Peyman, A. 1990) Chem. Rev. 90:544; Goodchild, J. 1990) Bioconjugate Chem. 1:165; 2'-O-methyl nucleic acids with Cpg motifs also cause immune activation, as do ethoxy-modified Cpg nucleic acids. In fact, no backbone modifications have been found that completely abolish the Cpg effect, although it is greatly reduced by replacing the C with a 5-methyl C.

For administration in vivo, nucleic acids may be associated with a molecule that results in higher affinity binding to target cells (e.g. B-cell, monocyte cell and natural killer (NK) cell) surfaces and/or increased cellular uptake by target cells to form a "nucleic acid delivery complex". Nucleic acids can be ionically, or covalently associated with appropriate molecules using techniques which are well known in the art. A variety of coupling or crosslinking agents can be used e.g. protein A, carbodiimide, and N,N,N-trimethyl-3-(2-py-
ridy(dithio) propionate (SPDP). Nucleic acids can alternatively be encapsulated in liposomes or virosomes using well-known techniques.

Therapeutic Uses of Immunostimulatory Nucleic Acid Molecules

Based on their immunostimulatory properties, nucleic acid molecules containing at least one unmethylated Cpg dinucleotide can be administered to a subject in vivo to treat an “immune system deficiency”. Alternatively, nucleic acid molecules containing at least one unmethylated Cpg dinucleotide can be contacted with lymphocytes (e.g., B cells, monocytic cells or NK cells) obtained from a subject having an immune system deficiency ex vivo and activated lymphocytes can then be reimplanted in the subject.

As reported herein, in response to unmethylated Cpg containing nucleic acid molecules, an increased number of spleen cells secretes IL-6, IL-12, IFN-γ, IFN-α, IFN-β, IL-1, IL-3, IL-10, TNF-α, TNF-β, GM-CSF, RANTES, and probably others. The increased IL-6 expression was found to occur in B cells, CD4+ T cells and monocytes.

Immunostimulatory nucleic acid molecules can also be administered to a subject in conjunction with a vaccine to boost a subject’s immune system and thereby effect a better response from the vaccine. Preferably, the immunostimulatory nucleic acid molecule is administered slightly before or at the same time as the vaccine. A conventional adjuvant may optionally be administered in conjunction with the vaccine, which is minimally comprised of an antigen, as the conventional adjuvant may further improve the vaccination by enhancing antigen absorption.

When the vaccine is a DNA vaccine at least two components determine its efficacy. First, the antigen encoded by the vaccine determines the specificity of the immune response. Second, if the backbone of the plasmid contains Cpg motifs, it functions as an adjuvant for the vaccine. Thus, Cpg DNA acts as an effective “danger signal” and causes the immune system to respond vigorously to new antigens in the area. This mode of action presumably results primarily from the stimulatory local effects of Cpg DNA on dendritic cells and other “professional” antigen presenting cells, as well as from the costimulatory effects on B cells.

Immunostimulatory oligonucleotides and unmethylated Cpg containing vaccines, which directly activate lymphocytes and co-stimulate an antigen-specific response, are fundamentally different from conventional adjuvants (e.g., aluminum precipitates), which are inert when injected alone and are thought to work through absorbing the antigen and thereby presenting it more effectively to immune cells. Further, conventional adjuvants only work for certain antigens, only induce an antibody (humoral) immune response (Th2), and are very poor at inducing cellular immune responses (Th1). For many pathogens, the humoral response contributes little to protection, and can even be detrimental.

In addition, an immunostimulatory oligonucleotide can be administered prior to, along with or after administration of a chemotherapy or immunotherapy to increase the responsiveness of the malignant cells to subsequent chemotherapy or immunotherapy or to speed the recovery of the bone marrow through induction of restorative cytokines such as GM-CSF. Cpg nucleic acids also increase natural killer cell lytic activity and antibody dependent cellular cytotoxicity (ADCC). Induction of NK activity and ADCC may likewise be beneficial in cancer immunotherapy, alone or in conjunction with other treatments.

Another use of the described immunostimulatory nucleic acid molecules is in desensitization therapy for allergies, which are generally caused by IgE antibody generation against harmless allergens. The cytokines that are induced by unmethylated Cpg nucleic acids are predominantly of a class called “Th1” which is most marked by a cellular immune response and is associated with IL-12 and IFN-γ. The other major type of immune response is termed a Th2 immune response, which is associated with more of an antibody immune response and with the production of IL-4, IL-5 and IL-10. In general, it appears that allergic diseases are mediated by Th2 type immune responses and autoimmune diseases by Th1 immune response. Based on the ability of the immunostimulatory nucleic acid molecules to shift the immune response in a subject from a Th2 (which is associated with production of IgE antibodies and allergy) to a Th1 response (which is protective against allergic reactions), an effective dose of an immunostimulatory nucleic acid (or a vector containing a nucleic acid) alone or in conjunction with an allergen can be administered to a subject to treat or prevent an allergy.

Nucleic acids containing unmethylated Cpg motifs may also have significant therapeutic utility in the treatment of asthma. Th2 cytokines, especially IL-4 and IL-5 are elevated in the airways of asthmatic subjects. These cytokines promote important aspects of the asthmatic inflammatory response, including IgE isotype switching, eosinophil chemotaxis and activation and mast cell growth. Th1 cytokines, especially IFN-γ and IL-12, can suppress the formation of Th2 clones and production of Th2 cytokines.

As described in detail in the following Example 12, oligonucleotides containing an unmethylated Cpg motif (i.e. TCCATGAGCTTCTGCAGTT; SEQ ID NO:10), but not a control oligonucleotide (TCCATGAGCTTCTGCAGTT; SEQ ID NO:11) prevented the development of an inflammatory cellular infiltrate and eosinophilia in a murine model of asthma. Furthermore, the suppression of eosinophilic inflammation was associated with a suppression of a Th2 response and induction of a Th1 response.

For use in therapy, an effective amount of an appropriate immunostimulatory nucleic acid molecule alone or formulated as a delivery complex can be administered to a subject by any mode allowing the oligonucleotide to be taken up by the appropriate target cells (e.g., B cells and monocyctic cells). Preferred routes of administration include oral and transdermal (e.g., via a patch). Examples of other routes of administration include injection (subcutaneous, intravenous, intraperitoneal, intrathecal, etc.). The injection can be in a bolus or a continuous infusion.

A nucleic acid alone or as a nucleic acid delivery complex can be administered in conjunction with a pharmaceutically acceptable carrier. As used herein, the phrase “pharmaceutically acceptable carrier” is intended to include substances that can be coadministered with a nucleic acid or a nucleic acid delivery complex and allows the nucleic acid to perform its indicated function. Examples of such carriers include solutions, solvents, dispersion media, delay agents, emulsions and the like. The use of such media for pharmaceutically active substances are well known in the art. Any other conventional carrier suitable for use with the nucleic acids falls within the scope of the instant invention.

The language “effective amount” of a nucleic acid molecule refers to the amount necessary or sufficient to realize a desired biologic effect. For example, an effective amount of a nucleic acid containing at least one unmethylated Cpg for treating an immune system deficiency could be that amount necessary to eliminate a tumor, cancer, or bacterial, viral or fungal infection. An effective amount for use as a vaccine adjuvant could be that amount useful for boosting a subjects immune response to a vaccine. An “effective amount” for
treating asthma can be that amount useful for redirecting a Th2 type of immune response that is associated with asthma to a Th1 type of response. The effective amount for any particular application can vary depending on such factors as the disease or condition being treated, the particular nucleic acid being administered (e.g. the number of unmethylated CpG motifs or their location in the nucleic acid), the size of the subject, or the severity of the disease or condition. One of ordinary skill in the art can empirically determine the effective amount of a particular oligonucleotide without necessitating undue experimentation.

The present invention is further illustrated by the following Examples which in no way should be construed as further limiting. The entire contents of all of the references (including literature references, issued patents, published patent applications, and co-pending patent applications) cited throughout this application are hereby expressly incorporated by reference.

EXAMPLES

Example 1

Effects of ODNs on B Cell Total RNA Synthesis and Cell Cycle

B cells were purified from spleens obtained from 6-12 wk old specific pathogen free DBA/2 or B6XS6 mice bred in the University of Iowa animal care facility; no substantial strain differences were noted) that were depleted of T cells with anti-Thy-1.2 and complement and centrifugation over lymphocyte M (Cedarlane Laboratories, Hornby, Ontario, Canada) (“B cells”). B cells contained fewer than 1% CD4 or CD8 cells. 8x10^6 B cells were dispensed in triplicate into 96 well microtiter plates in 100 µl RPMI containing 10% FBS (heat inactivated to 65°C for 30 min.), 50 µM 2-mercapto-ethanol, 100 U/ml penicillin, 100 µg/ml streptomycin, and 2 mM L-glutamate. 20 µM ODN were added at the start of culture for 20 h at 37°C. Cells pulsed with 1 µCi of 3H thymidine, and harvested and counted 4 hr later. Ig secreting B cells were enumerated using the ELISA spot assay after culture of whole spleen cells with ODN at 20 µM for 48 hr. Data, reported in Table 1, represent the stimulation index compared to cells cultured without ODN. 3H thymidine incorporation assays showed similar results, but with some nonspecific inhibition by thymidine released from degraded ODN (Matson, S. and A. M. Krieg (1992) Nonspecific suppression of 3H-thymidine incorporation by control oligonucleotides. Antisense Research and Development 2:525).

Example 2

Effects of ODN on Production of IgM from B Cells

Single cell suspensions from the spleens of freshly killed mice were treated with anti-Thy1, anti-CD4, and anti-CD8 and complement by the method of Leibson et al., J. Exp. Med. 154:1681 (1981). Resting B cells (<0.2% T cell contamination) were isolated from the 63-70% band of a discontinuous Percoll gradient by the procedure of DeFranco et al., J. Exp. Med. 155:1523 (1982). These were cultured as described above in 30 nM ODN or 20 µg/ml LPS for 48 hr. The number of B cells actively secreting IgM was maximal at this time point, as determined by ELISPOT assay (Klimmman, D. M. et al. J. Immunol. 144:506 (1990)). In that assay, B cells were incubated for 6 hrs on anti-Ig coated microtiter plates. The Ig they produced (>99% IgM) was detected using phosphatase-labeled anti-Ig (Southern Biotechnology Associated, Birmingham, Ala.). The antibodies produced by individual B cells were visualized by addition of BCIP (Sigma Chemical Co., St. Louis Mo.) which forms an insoluble blue precipitate in the presence of phosphatase. The dilution of cells producing 20-40 spots/well was used to determine the total number of antibody-secreting B cells/sample. All assays were performed in triplicate (data reported in Table 1). In some experiments, culture supernatants were assayed for IgM by ELISA, and showed similar increases in response to CpG-ODN.

Example 3

B Cell Stimulation by Bacterial DNA

DBA/2 B cells were cultured with no DNA or 50 µg/ml of a) Micrococcus lysodeikticus; b) NZB/N mouse spleen; and c) NFS/N mouse spleen genomic DNAs for 48 hours, then pulsed with 3H thymidine for 4 hours prior to cell harvest. Duplicate DNA samples were digested with DNase I for 30 minutes at 37°C prior to addition to cell cultures. E.coli DNA also yielded 8-fold increase in the number of IgM secreting B cells by 48 hours using the ELISA-spot assay.

Example 4

Effects of ODN on Natural Killer (NK) Activity

10x10^6 C57BL/6 spleen cells were cultured in two ml RPMI (supplemented as described for Example 1) with or without 40 µM CpG or non-CpG ODN for forty-eight hours. Cells were washed, and then used as effector cells in a short term 51Cr release assay with YAC-1 and 2C11, two NK sensitive target cell lines (Ballas, Z. K. et al. (1993) J. Immunol. 150:17). Effector cells were added at various concentrations to 10^5 51Cr-labeled target cells in V-bottom microtiter plates in 0.2 ml, and incubated in 5% CO2 for 4 hr. at 37°C. Plates were then centrifuged, and an aliquot of the supernatant counted for radioactivity. Percent specific lysis was determined by calculating the ratio of the 51Cr released in the presence of effector cells minus the 51Cr released when the target cells are cultured alone, over the total counts released after cell lysis in 2% acetic acid minus the 51Cr cpm released when the cells are cultured alone.

Example 5

In Vivo Studies with CpG Phosphorothioate ODN

Mice were weighed and injected IP with 0.25 ml of sterile PBS or the indicated phosphorothioate ODN dissolved in PBS. Twenty four hours later, spleen cells were harvested, washed, and stained for flow cyemetry using phycoerythrin conjugated 6B2 to gate on B cells in conjunction with biotin conjugated anti 1Cy-A/E or anti-1A/E (Pharminagen, San Diego, Calif.) or anti-Bla-1 (Hardy, R. R. et al., J. Exp. Med. 159: 1169 (1984). Two mice were studied for each condition and analyzed individually.
Example 6

Titration of Phosphorothioate ODN for B Cell Stimulation

B cells were cultured with phosphorothioate ODN with the sequence of control ODN 1a or the CpG ODN 1d and 3Db and then either pulsed after 20 hr with [3H] thymidine or after 44 hr with [3H] thymidine before harvesting and determining cpm.

Example 7

Rescue of B Cells from Apoptosis

WEHI-231 cells (5x10^4/well) were cultured for 1 hr at 37 C in the presence or absence of LPS or the control ODN 1a or the CpG ODN 1d and 3Db before addition of anti-lgM (1/μl). Cells were cultured for a further 20 hr, before 4 hr, pulse with 2 μCi/well 3H thymidine. In this experiment, cells with no ODN or anti-lgM gave 90-40x10^3 cpm of 3H thymidine incorporation by addition of anti-lgM. The phosphodiester ODN showed in Table 1 gave similar protection, though with some nonspecific suppression due to ODN degradation. Each experiment was repeated at least 3 times with similar results.

Example 8

In Vivo Induction of Murine IL-6

DBA/2 female mice (2 mos. old) were injected IP with 500 μg CpG or control phosphorothioate ODN. At various time points after injection, the mice were bled. Two mice were studied for each time point. IL-6 was measured by Elisa, and IL-6 concentration was calculated by comparison to a standard curve generated using recombinant IL-6. The sensitivity of the assay was 10 pg/ml. Levels were undetectable after 8 hr.

Example 9

Systemic Induction of Murine IL-6 Transcription

Mice and cell lines. DBA/2, BALB/c, and C3H/HeJ mice at 5-10 wk of age were used as a source of lymphocytes. All mice were obtained from The Jackson Laboratory (Bar Harbor, Me.), and bred and maintained under specific pathogen-free conditions in the University of Iowa Animal Care Unit. The mouse B cell line CH2L1.X was kindly provided by Dr. G. Bishop (University of Iowa, Iowa City).

Cell preparation. Mice were killed by cervical dislocation. Single cell suspensions were prepared aseptically from the spleens from mice. T cell depleted mouse splenocytes were prepared by using anti-Thy-1.2 and complement and centrifugation over lymphocyte M (Cedarlane Laboratories, Hornby, Ontario, Canada) as described (Krieg, A. M. et al., 1989) for endogenous retroviral sequences in the regulation of lymphocyte activation. J. Immunol. 143:2448).

ODN and DNA. Phosphodiester oligonucleotides (O-ODN) and the backbone modified phosphorothioate oligonucleotides (S-ODN) were obtained from the DNA Core facility at the University of Iowa or from Operon Technologies (Alameda, Calif.). E. coli DNA (Strain B) and calf thymus DNA were purchased from Sigma (St. Louis, Mo.). All DNA and ODN were purified by extraction with phenol:chloroform:isooamyl alcohol (25:24:1) and/or ethanol precipitation. E. coli and calf thymus DNA were single stranded prior to use by boiling for 10 min. followed by cooling on ice for 5 min. For some experiments, E. coli and calf thymus DNA were digested with DNase I (2 μg/ml of DNA) at 37° C for 2 hr in 1xSSC with 5 mM MgCl₂. To methylate the cytosine in CpG dinucleotides in E. coli DNA, E. coli DNA was treated with CpG methylase (M. SssI; 2 μg/ml of DNA) in NEBuffer 2 supplemented with 160 μM S-adenosylmethionine and incubated overnight at 37° C. Methylated DNA was purified as above. Efficiency of methylation was confirmed by Hpa II digestion followed by analysis by gel electrophoresis. All enzymes were purchased from New England Biolabs (Beverly, Mass.). LPS level in ODN was less than 12.5 ng/ml and E. coli and calf thymus DNA contained less than 2.5 ng of LPS/ml of DNA by Limulus assay.

Cell Culture. All cells were cultured at 37° C in a 5% CO₂ humidified incubator maintained in RPMI-1640 supplemented with 10% (v/v) heat inactivated fetal calf serum (FCS), 1.5 mM L-glutamine, 50 μg/ml, CpG or non-CpG phosphodiester ODN (O—ODN) (20 μM), phosphorothioate ODN (S—ODN) (0.5 μM), or E. coli or calf thymus DNA (50 μg/ml) at 37° C for 24 hr. (For IL-6 production) or 5 days (for IgM production). Concentrations of stimuliants were chosen based on preliminary studies with titrations. In some cases, cells were treated with CpG O—ODN along with various concentrations of neutralizing rat IgG1 antibody against murine IL-6 (hybridoma MP5-20F3) or control rat IgG1 mAb to E. coli β-galactosidase (hybridoma GL113; ATCC, Rockville, Md.) (20) for 5 days. At the end of incubation, culture supernatants were detected by ELISA as below.

In vivo induction of IL-6 and IgM. BALB/c mice were injected intravenously (iv) with PBS, calf thymus DNA (200 μg/100 μl PBS/mouse), E. coli DNA (200 μg/100 μl PBS/mouse), or CpG or non-CpG S—ODN (200 μg/100 μl PBS/mouse). Mice (two/group) were bled by retroorbital puncture and sacrificed by cervical dislocation at various time points. Liver, spleen, thymus, and bone marrow were removed and RNA was prepared from those organs using RNAzol B (Tel-Test, Friendswood, Tex.) according to the manufacturers protocol.

ELISA. Flat-bottomed Immulon 1 plates (Dynatech Laboratories, Inc., Chantilly, Va.) were coated with 100 μl/well of anti-mouse IL-6 mAb (MP5-20F3) (2 μg/ml) or anti-mouse IgM μ-chain specific (5 μg/ml; Sigma, St. Louis, Mo.) in carbonate-bicarbonate, pH 9.6 buffer (15 mM Na₂CO₃, 35 mM NaHCO₃) overnight at 4° C. The plates were then washed with PBBS (0.5 mM MgCl₂, 0.4 mM H₂O₂, 2.68 mM KCl, 1.47 mM KH₂PO₄, 0.14 M NaCl, 6.6 mM KH₂PO₄, 0.5% Tween 20) and blocked with 10% FCS in PBBS for 2 hr at room temperature and then washed again. Culture supernatants, mouse serum, recombinant mouse IL-6 (Pharmingen, San Diego, Calif.) or purified mouse IgM (Calbiochem, San Diego, Calif.) were appropriately diluted in 10% FCS and incubated in triplicate wells for 6 hr at room temperature. The plates were washed and 100 μl/well of biotinylated rat anti-mouse IL-6 monoclonal antibodies (MP5-32C11, Pharmingen, San Diego, Calif.) (1 μg/ml in 10% FCS) or biotinylated anti-mouse Ig (Sigma, St. Louis, Mo.) were added and incubated for 45 min. at room temperature following washes with PBBS. Horse serum peroxidase (HRP) conjugated avidin (Bio-rad Laboratories, Hercules, Calif.) at 1:4000 dilution in 10% FCS (100 μl/well) was added and incubated at room temperature for 30 min. The plates were washed and developed with o-phenylenediamine dihydrochloride (OPD; Sigma, St. Louis Mo.) 0.05 M phosphate-citrate buffer, pH 5.0, for 30 min. The reaction was stopped with 0.67 N H₂SO₄ and plates were read on a microplate reader (Cambridge Technology, Inc., Watertown, Mass.) at 490-600 nm. The results are shown in FIGS. 1 and 2.
RT-PCR. A sense primer, an antisense primer, and an internal oligonucleotide probe for IL-6 were synthesized using published sequences (Montgomery, R. A. and M. S. Dallman (1991). Analysis of cytokine gene expression during fetal thymocyte ontogeny using the polymerase chain reaction (J. Immunol. 147:554). cDNA synthesis and IL-6 PCR was done essentially as described by Montgomery and Dallman (Montgomery, R. A. and M. S. Dallman (1991). Analysis of cytokine gene expression during fetal thymocyte ontogeny using the polymerase chain reaction (J. Immunol. 147:554) using RT-PCR reagents from Perkin-Elmer Corp. (Hayward, Calif.). Samples were analyzed after 20 cycles of amplification by gel electrophoresis followed by un blot analysis (Stoev, J. P. et al., (1991) DNA hybridization in dried gels with fragmented probes: an improvement over blotting techniques, Techniques 3:123). Briefly, the gel was hybridized at room temperature for 30 min. in denaturation buffer (0.05 M NaOH, 1.5 M NaCl) followed by incubation for 30 min. in renaturation buffer (1.5 M NaCl, 1 M Tris, pH 8) and a 30 min. wash in double distilled water. The gel was dried and prehybridized at 47°C for 2 hr. hybridization buffer (5× SSPE, 0.1% SDS) containing 10 µg/ml denatured salmon sperm DNA. The gel was hybridized with 2×10^6 cpm/ml 32P-labeled end-labeled internal oligonucleotide probe for IL-6 (5'CGATTCCACGTATTCCCAAA 3' SEQ ID NO:56) overnight at 47°C, washed 4 times (2×SSC, 0.2% SDS) at room temperature and autoradiographed. The results are shown in FIG. 3.

Cell Proliferation assay. DBA/2 mice spleen B cells (5×10^7 cells/100 µl) were treated with media, CPG or non-CPG S—ODN (0.5 µM) or S—ODN (20 µm) for 24 hr at 37°C. Cells were pulsed with the last 4 hr. with either [3H] Thymidine or [3H] Uridine (1 µCi/well). Amounts of 3H incor 30 porated were measured using Liquid Scintillation Analyzer (Packard Instrument Co., Downers Grove, Ill.).

Transfections and CAT assays. WEHI-231 cells (10^5 cells) were electroporated with 20 µg of control or human IL-6 promoter-CAT construct (kindly provided by S. Manolagas, Univ. of Arkansas) (Papratzz et al., (1994) 17B-estradiol inhibits expression of human interleukin-6 promoter-reporter constructs as a receptor-dependent mechanism. J. Clin. Invest. 93:944) at 250 mV and 960 µF. Cells were stimulated with various concentrations or CPG or non-CPG ODN after electroporation. Chloramphenicol acetyltransferase (CAT) activity was measured by a solution assay (Seed, B. and J. Y. Sheen (1988) A simple phase-extraction assay for chloramphenicol acetyltransferase activity. Gene 76(271) 16 hr. after transfection. The results are presented in FIG. 5.

Example 10

Oligodeoxynucleotide Modifications Determine the Magnitude of B Cell Stimulation by CPG Motifs

ODN were synthesized on an Applied Biosystems Inc. (Foster City, Calif.) model 380A, 380B, or 394 DNA synthesizer using standard procedures (Beacur and Caruthers (1981) Deoxynucleoside phosphoramidites — A new class of key intermediates for deoxynucleoside synthesis. Tetrahedron Letters 22, 1859-1862.). Phosphodiester ODN were synthesized using standard beta-cyanoethyl phosphoramidite chemistry. Phosphorothioate linkages were introduced by oxidizing the phosphate linkage with elemental sulfur instead of the standard iodine oxidation. The four common nucleoside phosphoramidites were purchased from Applied Biosystems. All phosphodiester and thioate containing ODN were deprotected by treatment with concentrated ammonia at 55°C for 12 hours. The ODN were purified by gel exclusion chromatography and lyophilized to dryness prior to use. Phosphorothioate linkages were introduced by using deoxynucleoside S-(b-benzoylmethylcarboxyethyl) pyrrolidino thio phosphoramidites (Wiesler, W. T. et al., (1993) In Methods in Molecular Biology: Protocols for Oligonucleotides and Analogs-Synthesis and Properties, Agrawal, S., ed.), Humana Press, 191-206.). Dithioate containing ODN were deprotected by treatment with concentrated ammonia at 55°C for 12 hours followed by reverse phase HPLC purification.

In order to synthesize oligomers containing methylylphosphonothioates or methylphosphonates as well as phosphodiester at any desired internucleotide linkage, two different synthetic cycles were used. The major synthetic differences in the two cycles are the coupling reagent where dialkylaminomethylnucleoside phosphines are used and the oxidation reagents in the case of methylphosphonothioates. In order to synthesize either derivative, the condensation time has been increased for the dialkylaminomethylnucleoside phosphines due to the slower kinetics of coupling (Jager and Engels, (1984) Synthesis of deoxynucleoside methylphosphonates via a phosphoramidite approach. Tetrahedron Letters 24, 1437-1440.). After the coupling step has been completed, the methylphosphodiester is treated with the sulfurizing reagent (5% elemental sulfur, 100 millimolar N,N-diamethylaminopyridine in carbon disulfide/pyridine/triethylamine), four consecutive times for 450 seconds each to produce methylphosphonothioates. To produce methylphosphonate linkages, the methylphosphodiester is treated with standard oxidizing reagent (0.1 M iodine in tetrahydrofuran/2,6-lutidine/water).

The silica gel bound oligomer was treated with distilled pyridine/concentrated ammonia, 1:1, (v/v) for four days at 4 degrees centigrade. The supernatant was dried in vacuo, dissolved in water and chromatographed on a G50/50 Sephadex column. As used herein, O—ODN refers to ODN which are phosphodiester; S—ODN are completely phosphorothioate modified; S—S—ODN are chimeric ODN in which the central linkages are phosphodiester, but the two 5' and five 3' linkages are phosphorothioate modified; S—S—S—ODN are chimeric ODN in which the central linkages are phosphodiester, but the two 5' and five 3' linkages are phosphorothioate modified, and MP—O—ODN are chimeric ODN in which the central linkages are phosphodiester, but the two 5' and five 3' linkages are methylphosphonate modified. The ODN sequences studied (with CPG dinucleotides indicated by underlining) include:

3D (5' GAGAAGCTCTGAAGCTCCAT ; (SEQ ID NO: 14) ;
3M (5' TCCATGCTGTCGGTCTGACT ; (SEQ ID NO: 22) ;
5 (5' GCOTATGCTCCTGACTGGC ; (SEQ ID NO: 57) ;
and
6 (5' CTTAGCTGTCGGTCTGACCT ; (SEQ ID NO: 56) ;

These sequences are representative of literally hundreds of CPG and non-CPG ODN that have been tested in the course of these studies.

Mice. DBA/2, or BxSB mice obtained from The Jackson Laboratory (Bar Harbor, Me.), and maintained under specific pathogen-free conditions were used as a source of lymphocytes at 5-10 wk of age with essentially identical results.

Cell proliferation assay. For cell proliferation assays, mouse spleen cells (5×10^7 cells/100 µl well) were cultured at 37°C in a 5% CO2 humidified incubator in RPMI-1640
supplemented with 10% (v/v) heat inactivated fetal calf serum (heated to 65°C for experiments with O—ODN, or 56°C for experiments using only modified ODN). 1.5 μM L-glutamine, 50 μM 2-mercaptoethanol. 100 U/ml penicillin and 100 μg/ml streptomycin for 24 hr or 48 hr as indicated. 1 μCi of 3H uridine or thymidine (as indicated) was added to each well, and the cells harvested after an additional 4 hours of culture. Filters were counted by scintillation counting. Standard deviations of the triplicate wells were <5%. The results are presented in FIGS. 6-8.

Example 11
Induction of NK Activity

Phosphodiester ODN were purchased from Operon Technologies (Alameda, Calif.). Phosphorothioate ODN were purchased from the DNA core facility, University of Iowa, or from The Midland Certified Reagent Company (Midland, Tex.). E. coli (strain B) DNA and calf thymus DNA were purchased from Sigma (St. Louis, Mo.). All DNA and ODN were purified by extraction with phenol:chloroform:isoamyl alcohol (25:24:1) and/or ethanol precipitation. The LPS level in ODN was less than 12.5 ng/mg and E. coli calf thymus DNA contained less than 2.5 ng of LPS/mg of DNA by Limulus assay.

Virus-free, 4-6 week old, DBA/2, C57BL/6 (B6) and congenitally athymic BALB/c mice were obtained on contract through the Veterans Affairs from the National Cancer Institute (Bethesda, Md.). C57BL/6 SCID mice were bred in the SPF barrier facility at the University of Iowa Animal Care Unit.

Human peripheral mononuclear blood leukocytes (PBMC) were obtained as previously described (Ballas, Z. K. et al., J. Allergy Clin. Immunol. 85:453; Ballas, Z. K. and W. Rasmussen (1990) J. Immunol. 145:1039; Ballas, Z. K. and W. Rasmussen (1993) J. Immunol. 150:17). Human or murine cells were cultured at 5x10^6/well, at 37°C in a 5% CO2 humidified atmosphere in 24-well plates (Ballas, Z. K. et al., J. Allergy Clin. Immunol. 85:453; Ballas, Z. K. and W. Rasmussen (1990) J. Immunol. 145:1039; and Ballas, Z. K. and W. Rasmussen (1993), J. Immunol. 150:17), with medium alone or with CpG or non-CpG ODN at the indicated concentrations, or with E. coli or calf thymus (50 μg/ml) at 37°C for 24 hr. All cultures were harvested at 18 hr, and the cells were used as effectors in a standard 4 hr. 51Cr-release assay against K562 (human) or YAC-1 (mouse) target cells as previously described. For calculation of lytic units (LU), 1 LU was defined as the number of cells needed to effect 30% specific lysis. Where indicated, neutralizing antibodies against IFN-β (Lee Biomolecular, San Diego, Calif.) or IL-12 (C15.1, C15.6, C17.8, and C17.15; provided by Dr. Giorgio Trencher, the Wistar Institute, Philadelphia, Pa.) or their isotype controls were added at the initiation of cultures to a concentration of 10 μg/ml. For anti-IL-12 addition, 10 μg of each of the 4 MAB (or isotype controls) were added simultaneously. Recombinant human IL-2 was used at a concentration of 100 U/ml.

Example 12
Prevention of the Development of an Inflammatory Cellular Infiltrate and Eosinophilia in a Murine Model of Asthma

6-8 week old C56BL/6 mice (from The Jackson Laboratory, Bar Harbor, Me.) were immunized with 5,000 Schistosoma mansoni eggs by intraperitoneal (i.p.) injection on days 0 and 7. Schistosoma mansoni eggs contain an antigen (Schistosoma mansoni egg antigen (SEA)) that induces a Th2 immune response (e.g. production of IgE antibody). IgE antibody production is known to be an important cause of asthma. The immunized mice were then treated with oligonucleotides (30 μg in 200 μl saline by i.p. injection), which either contained an unmethylated CpG motif (i.e. TCCATGA CGTTCGTGACGTT; SEQ ID NO.10) or did not (i.e. control, TCCATGAGCTCTCTCTGAGTCT; SEQ ID NO.11). Soluble SEA (10 μg in 25 μl of saline) was administered by intranasal instillation on days 14 and 21. Saline was used as a control.

Mice were sacrificed at various times after airway challenge. Whole lung lavage was performed to harvest airway and alveolar inflammatory cells. Cytokine levels were measured from lavage fluid by ELISA. RNA was isolated from whole lung for Northern analysis and RT-PCR studies using CsCl gradients. Lungs were inflated and perfused with 4% paraformaldehyde for histologic examination.

FIG. 9 shows that when the mice are initially injected with the eggs i.p., and then inhale the egg antigen (open circle), many inflammatory cells are present in the lungs. However, when the mice are initially given a nucleic acid containing an unmethylated CpG motif along with the eggs, the inflammatory cells in the lung are not increased by subsequent inhalation of the egg antigen (open triangles).

FIG. 10 shows that the same results are obtained when only eosinophils present in the lung lavage are measured. Eosinophils are the type of inflammatory cell most closely associated with asthma.

FIG. 11 shows that when the mice are treated with a control oligo at the time of the initial exposure to the egg, there is little effect on the subsequent influx of eosinophils into the lungs after inhalation of SEA. Thus, when mice inhale the eggs on days 14 or 21, they develop an acute inflammatory response in the lungs. However, giving a CpG oligo along with the eggs at the time of initial antigen exposure on days 0 and 7 almost completely abolishes the increase in eosinophils when the mice inhale the egg antigen on day 14.

FIG. 12 shows that very low doses of oligonucleotide (<10 μg) can give this protection.

FIG. 13 shows that the resultant inflammatory response correlates with the levels of the Th2 cytokine IL-4 in the lung.

FIG. 14 shows that administration of an oligonucleotide containing an unmethylated CpG motif can actually redirect the cytokine response of the lung to production of IL-12, indicating a Th1 type of immune response.

FIG. 15 shows that administration of an oligonucleotide containing an unmethylated CpG motif can also redirect the cytokine response of the lung to production of IFN-γ, indicating a Th1 type of immune response.

Example 13
CpG Oligonucleotides Induce Human PBMC to Secret Cytokines

Human PBMC were prepared from whole blood by standard centrifugation over ficoll hypaque. Cells (5x10^6/ml) were cultured in 10% autologous serum in 96 well microtiter plates with CpG or control oligodeoxynucleotides (24 μg/ml for phosphodiester oligonucleotides; 6 μg/ml for nuclease resistant phosphorothioate oligonucleotides) for 4 hr in the case of TNF-α or 24 hr. for the other cytokines before supernatant harvest and assay, measured by ELISA using Quantikine kits or reagents from R&D Systems (pg/ml) or cytokine ELISA kits from Biosource (for IL-12 assay). Assays were performed as per the manufacturer’s instructions. Data are presented in Table 6 as the level of cytokine above that in wells with no added oligodeoxynucleotide.
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents of the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

SEQUENCE LISTING

<table>
<thead>
<tr>
<th>SEQ ID NO</th>
<th>LENGTH</th>
<th>TYPE</th>
<th>ORGANISM</th>
<th>FEATURE</th>
<th>OTHER INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>DNA</td>
<td>Artificial Sequence</td>
<td>Synthetic oligonucleotide</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>DNA</td>
<td>Artificial Sequence</td>
<td>Synthetic oligonucleotide</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>DNA</td>
<td>Artificial Sequence</td>
<td>Synthetic oligonucleotide</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>DNA</td>
<td>Artificial Sequence</td>
<td>Synthetic oligonucleotide</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>DNA</td>
<td>Artificial Sequence</td>
<td>Synthetic oligonucleotide</td>
<td></td>
</tr>
</tbody>
</table>

```
seq_1 = atggaagttc cagtgttctc
seq_2 = atgcacctac gtgcgttctc
seq_3 = tccataacgt tcctgtgctgt
seq_4 = gctagatgtt agcgt
seq_5 = gagaacgtcg acctcgtat
```
<400> SEQUENCE: 6

gcatgacgt gagct
 15

<210> SEQ ID NO 7
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 7
tccatgagct tcctgagct
 20

<210> SEQ ID NO 8
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 8
tccatgagct tcctgagct
 20

<210> SEQ ID NO 9
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 9
tccagacgt tcctgagct
 20

<210> SEQ ID NO 10
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 10
tccatgacgt tcctgagct
 20

<210> SEQ ID NO 11
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 11
tccatgagct tcctgagtc t
 21

<210> SEQ ID NO 12
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 12
gggctcaacg ttgaggggg
 20

<210> SEQ ID NO 13
<211> LENGTH: 15

ggggtcaacg ttgaggggg
 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 13

gctagacgtt agcgt

<210> SEQ ID NO 14
<211> LENGTH: 15
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (7)...(7)
<223> OTHER INFORMATION: m5c

<400> SEQUENCE: 14

gctagacgtt agcgt

<210> SEQ ID NO 15
<211> LENGTH: 15
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (7)...(7)
<223> OTHER INFORMATION: m5c
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (13)...(13)
<223> OTHER INFORMATION: m5c

<400> SEQUENCE: 15

gctagacgtt agcgt

<210> SEQ ID NO 16
<211> LENGTH: 15
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 16

gcagacgtt gagct

<210> SEQ ID NO 17
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 17

gatgagaggc cagcttcttc

<210> SEQ ID NO 18
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 18

gatgacgtctt gacgcttcttc
<210> SEQ ID NO 24
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 24

gagaacgctc gaccttccc

<210> SEQ ID NO 25
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 25

gagaacgctc gaccttccg

<210> SEQ ID NO 26
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 26

gagaacgctg gaccttccc

<210> SEQ ID NO 27
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 27

gagaacgctg gacctccc

<210> SEQ ID NO 28
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 28

gagaacgctg gaccttccc

<210> SEQ ID NO 29
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 29

gagaacgatg gaccttccc
SEQ ID NO 36
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Synthetic oligonucleotide
SEQUENCE: 36
tccagtccgg tctgtcgtgat

SEQ ID NO 37
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Synthetic oligonucleotide
SEQUENCE: 37
tccagtccgg tctgtcgtgct

SEQ ID NO 38
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Synthetic oligonucleotide
SEQUENCE: 38
tccagtgccgg tctgtcgtgct

SEQ ID NO 39
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Synthetic oligonucleotide
SEQUENCE: 39
tccagtgccgg tctgtcgtgct

SEQ ID NO 40
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Synthetic oligonucleotide
SEQUENCE: 40
tccagtgccgg tctgtcgtgct

SEQ ID NO 41
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Synthetic oligonucleotide
SEQUENCE: 41
tccagtgctg a tctgtcgtgct

SEQ ID NO 42
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Synthetic oligonucleotide
<400> SEQUENCE: 42

tccatgctgc toctgagctgt 20

<210> SEQ ID NO 43
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 43

tccatgctgc toctgagctgt 20

<210> SEQ ID NO 44
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 44

tccatgctgc toctgagctgt 20

<210> SEQ ID NO 45
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 45

tccatagctgc toctgagctgt 20

<210> SEQ ID NO 46
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 46

tccatagctgc toctgagctgt 20

<210> SEQ ID NO 47
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 47

tccatagctgc toctgagctgt 20

<210> SEQ ID NO 48
<211> LENGTH: 15
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 48

gactgacgct gagct 15

<210> SEQ ID NO 49
<211> LENGTH: 15
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 49

gctagatgt agcgt

<210> SEQ ID NO 50
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 50
gggstcaagt ctaggggsgg

<210> SEQ ID NO 51
<211> LENGTH: 15
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 51
gctagacgt agcgt

<210> SEQ ID NO 52
<211> LENGTH: 15
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (8)...(8)
<223> OTHER INFORMATION: m5c

<400> SEQUENCE: 52
gctagacctt aggtc

<210> SEQ ID NO 53
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<220> FEATURE:
<221> NAME/KEY: modified base
<222> LOCATION: (8)...(8)
<223> OTHER INFORMATION: m5c

<400> SEQUENCE: 53
tcctggtcgct tcctgatgct

<210> SEQ ID NO 54
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 54
tcctgacgt tcctgatgct

<210> SEQ ID NO 55
<211> LENGTH: 16
The invention claimed is:

1. A composition for treating an immune system deficiency that is an influenza virus infection comprising an antigen and a nucleic acid delivery complex having an immunostimulatory oligonucleotide associated with cholesterol, wherein the oligonucleotide is 8-100 nucleotides in length and comprises the formula

$$5'X_1X_2CGX_3X_4'$$

wherein C and G are unmethylated, X_1, X_2, X_3 and X_4 are nucleotides.

2. The composition of claim 1, wherein the oligonucleotide is 8-40 nucleotides in length.

3. The composition of claim 1, wherein the composition is administered by an oral route.

4. The composition of claim 1, wherein the composition is administered by a parenteral route.

5. The composition of claim 1, further comprising a pharmaceutically acceptable carrier.

6. The composition of claim 1, wherein the oligonucleotide is synthetic.

7. A method for stimulating a cytotoxic lymphocyte response in a subject comprising administering to a subject a composition of claim 1, in an effective amount for stimulating a cytotoxic lymphocyte response.

8. The method of claim 7, wherein the oligonucleotide is 8-40 nucleotides in length.

9. The method of claim 7, further comprising administering a pharmaceutically acceptable carrier to the subject.

10. The method of claim 7, wherein the oligonucleotide is synthetic.

11. The method of claim 7, wherein the composition is administered by a parenteral route.

12. A method for promoting a Th1 immune response in a subject comprising administering to a subject a composition of claim 1, in an effective amount for promoting a Th1 immune response.

13. The method of claim 12, wherein the oligonucleotide is 8-40 nucleotides in length.

14. The method of claim 12, further comprising administering a pharmaceutically acceptable carrier to the subject.

15. The method of claim 12, wherein the oligonucleotide is synthetic.

16. The method of claim 12, wherein the composition is administered by a parenteral route.

17. The method of claim 12, wherein the immune response comprises IL-12 production.

18. The method of claim 12, wherein the immune response comprises IFN-gamma production.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

At column 1, line 18, please replace the paragraph under the Government Support heading with the following paragraph:

--This invention was made with Government support under Grant No. R29-AR42556-01 awarded by National Institutes of Health. The Government has certain rights in the invention.--

Signed and Sealed this
First Day of May, 2012

[Signature]

David J. Kappos
Director of the United States Patent and Trademark Office