IMMUNOMODULATORY OLIGONUCLEOTIDES

Inventors: Arthur M. Krieg, Wellesley, MA (US); Dennis Kleinman, Potomac, MD (US); Alfred D. Steinberg, Potomac, MD (US)

Assignees: The United States of America as represented by the Department of Health and Human Services, Washington, DC (US); University of Iowa Research Foundation, Iowa City, IA (US); Pfizer Inc., New York, NY (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 610 days.

Appl. No.: 10/888,089
Filed: Jul. 9, 2004

Prior Publication Data

Related U.S. Application Data
Continuation of application No. 10/690,495, filed on Oct. 21, 2003, now abandoned, which is a continuation of application No. 09/415,142, filed on Oct. 9, 1999, now abandoned, which is a division of application No. 08/386,063, filed on Feb. 7, 1995, now Pat. No. 6,194,388, which is a continuation-in-part of application No. 08/276,358, filed on Jul. 15, 1994, now abandoned.

Int. Cl.
C12N 15/11 (2006.01)
C07H 21/02 (2006.01)

U.S. Cl. 514/44 R; 536/23.1

Field of Classification Search 536/23.1; 514/44 R

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

4,452,775 A 1984 Kent
5,075,109 A 1992 Tie et al. 424/193.1
5,178,860 A 1993 MacKenzie et al.
5,433,152 A 1995 Webb et al.
5,595,756 A 1996 Bally et al.
5,663,153 A 1997 Hutcherson et al.
5,679,254 A 1997 Morein et al.
5,705,109 A 1998 Parks 264/80
5,705,385 A 1998 Bally et al.
5,723,335 A 1998 Hutcherson et al. 435/375
5,733,613 A 1998 Assell et al.
5,785,992 A 1998 Assell et al.
5,814,335 A 1998 Webb et al.
5,858,794 A 1999 Debs et al.
5,929,326 A 1999 Padmapiyra et al.
5,965,542 A 1999 Wasan et al.
5,968,990 A 1999 Agrawal et al.
5,976,567 A 1999 Wheeler et al.
5,981,501 A 1999 Wheeler et al.
6,004,534 A 1999 Langer et al.
6,027,726 A 2000 Ansell
6,027,732 A 2000 Morein et al.
6,030,954 A 2000 Wu et al.
6,110,745 A 2000 Zhang et al.
6,121,434 A 2000 Peyman et al.
6,191,257 B1 2001 Ledley et al.
6,194,388 B1 2001 Krieg et al.
6,207,646 B1 2001 Krieg et al.
6,214,806 B1 2001 Krieg et al.
6,218,371 B1 2001 Krieg et al.
6,221,882 B1 2001 Macfarlane
6,239,116 B1 2001 Krieg et al.
6,248,720 B1 2001 Mathiowitz et al.
6,348,312 B2 2002 Peyman et al.
6,399,630 B1 2002 Macfarlane
6,406,705 B1 2002 Davis et al.
6,429,199 B1 2002 Krieg et al.
6,459,504 B1 2002 Macfarlane et al.
6,498,148 B1 2002 Raz et al.
6,514,948 B1 2003 Raz et al.
6,521,637 B2 2003 Macfarlane
6,534,062 B2 2003 Raz et al.
6,544,518 B2 2003 Friede et al.
6,552,000 B2 2003 Raz et al.

FOREIGN PATENT DOCUMENTS

OTHER PUBLICATIONS
Heeg et al 2000 International Archives of Allergy and Immunology pp. 87-97.*
Yamada et al 2002 Journal of Immunology pp. 5590-5594.*
Li et al, Vaccine 2003, 21:3139-3339.*
Goodchild et al 1990 The American Chemical Society, vol. 1, No. 3 pp. 165-182.*

ABSTRACT
Oligonucleotides containing unhylated Cpg dinucleotides and therapeutic utilities based on their ability to stimulate an immune response in a subject are disclosed. Also disclosed are therapies for treating diseases associated with immune system activation that are initiated by unhylated CpG dinucleotides in a subject comprising administering to the subject oligonucleotides that do not contain unmethylated CpG sequences (i.e. methylated CpG sequences or no CpG sequence) to outcompete unmethylated CpG nucleic acids for binding. Further disclosed are methylated CpG containing dinucleotides for use as antiviral therapies or as in vivo hybridization probes, and immunoinhibitory oligonucleotides for use as antiviral therapeutics.

7 Claims, No Drawings

Klinman et al., CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci U S A. Apr. 2, 1996;93(7):2879-83.

Stein et al., Non-antisense effects of oligodeoxynucleotides. Antisense Technology. 1997; ch1:241-64.

Vlassov et al., In Vivo pharmacokinetics of oligonucleotides following administration by different routes. CRC Press, Inc. Chapter 5. 1995:71-83.

Patent Interference No. 105,171. Regents of the University of California Opposition 3 (to Iowa Preliminary Motion 3 for judgment under 35 USC 135(b)). Sep. 9, 2004.

Patent Interference No. 105,171. Regents of the University of California Opposition 7 (to Iowa Preliminary Motion 7 to redefine the interference). Sep. 9, 2004.

Patent Interference No. 105,171. Regents of the University of California Contingent Preliminary Motion 8 (to add additional claims under 37 CFR 1.633(c)(2) and (g)). Jul. 2, 2004.

Patent Interference No. 105,171. Iowa Opposition 8 (opposition to motion to add additional claims under 37 CFR 1.633 (2) and (g)) (Electronically filed, unsigned). Sep. 9, 2004.

* cited by examiner
IMMUNOMODULATORY Oligonucleotides

RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 10/690,495 filed on Oct. 21, 2003 and now which a continuation of U.S. patent application Ser. No. 09/415,142, filed Oct. 9, 1999, now abandoned, which is a divisional of U.S. patent application Ser. No. 08/386,063, filed Feb. 7, 1995, now issued as U.S. Pat. No. 6,194,388 B1, which is a continuation-in-part of U.S. patent application Ser. No. 08/276,358, filed Jul. 15, 1994, now abandoned.

GOVERNMENT SUPPORT

The work resulting in this invention was supported in part by National Institute of Health Grant No. R29-AR42556-01. The U.S. Government has certain rights in the invention.

BACKGROUND OF THE INVENTION

DNA Binds to Cell Membrane and is Internalized

Lymphocyte ODN uptake has been shown to be regulated by cell activation. Spleen cells stimulated with the B cell mitogen LPS had dramatically enhanced ODN uptake in the B cell population, while spleen cells treated with the T cell mitogen Con A showed enhanced ODN uptake by T but not B cells (Krieg, A. M., F. Gnelig-Meyling., M. F. Gourley, W. J. Kisch, L. A. Christie, and A. D. Steinberg, 1991. “Uptake of oligodeoxyribonucleotides by lymphoid cells is heterogeneous and inducible”. Antisense Research and Development 1:161).

Immune Effects of Nucleic Acids

Several observations suggest that certain DNA structures may also have the potential to activate lymphocytes. For

Aside from their critical role in regulating cellular transcription, it has recently been shown that CREB/ATF proteins are subverted by some infectious viruses and retroviruses, which are obtained for viral replication. For example, the cytomegalovirus immediate early promoter, one of the strongest known mammalian promoters, contains eleven copies of the CRE which are essential for promoter function (Chang, Y. -N., S. Crawford, J. Stall, D. R. Rawlins, K. T. Jeang, and G. S. Hayward: “The palindrome specific I repeat in the simian cytomegalovirus major immediate-early promoter behave as both strong basal enhancers and cyclic AMP response elements”. *J. Virol.* 64:264, 1990). At least some of the transcriptional activating effects of the adenovirus EIA protein, which induces many promoters, are due to its binding to the DNA binding domain of the CREB/ATF protein, ATF-2, which mediates EIA inducible transcription activation (Liu, F., and M. P. Green: “Promoter targeting by adenovirus EIA through interaction with different cellular DNA-binding domains”. *Nature* 368:520, 1994). It has also been suggested that EIA binds to the CREB-binding protein, CBP (Aran, Z., W. R. Sellers, D. M. Livingston, and R. Eckner: “EIA-associated p300 and CREB-associated CBP belong to a conserved family of coactivators”. *Cell* 77:799, 1994). Human T lymphotropic virus-1 (HTLV-1), the retrovirus that causes human T cell leukemia and tropical spastic paraparesis, also requires CREB/ATF proteins for replication. In this case, the retrovirus produces a protein, Tax, which binds to CREB/ATF proteins and represses them from their normal cellular binding sites to different DNA sequences (flanked by G- and C-rich sequences) present within the HTLV transcriptional enhancer (Paca-Ucarralurtien, S., L. -J. Zhao, N. Adya, J. V. Cross, B. R Cullen, I. M. Boros, and C. Z. Giam: “In vitro selection of DNA elements highly responsive to the human T-cell lymphotropic virus type I transcriptional activator, Tax”. *Mol. Cell. Biol.* 14:456, 1994; Adya, N., L. -J. Zhao, W. Huang, I. Boros, and C. Z. Giam: “Expansion of CREB’s DNA recognition specificity by Tax results from interaction with Ala-Ala-Arg at positions 282-284 near the conserved DNA-binding domain of CREB”. *Proc. Natl. Acad. Sci. USA* 91:5642, 1994).

5'X,C,GX2X,3'

wherein C and G are unmethylated, X1, X2, X3, and X4 are nucleotides and a GCG trinucleotide sequence is not present at or near the 5' and 3' termini.

For facilitating uptake into cells, CpG containing immunostimulatory oligonucleotides are preferably in the range of 8 to 40 base pairs in size. Prolonged immunostimulation can be obtained using stabilized oligonucleotides, particularly phosphorothioate stabilized oligonucleotides. Enhanced immunostimulatory activity has been observed where X1X2 is the dinucleotide GpA and/or X3X4 is the dinucleotide is most preferably TpC or also TpT. Further enhanced immunostimulatory activity has been observed where the consensus motif X1X2CGX3X4 is preceded on the 5' end by a T.

In a second aspect, the invention features useful methods, which are based on the immunostimulatory activity of the oligonucleotides. For example, lymphocytes can either be obtained from a subject and stimulated ex vivo upon contact with an appropriate oligonucleotide; or a non-methylated CpG containing oligonucleotide can be administered to a subject to facilitate in vivo activation of a subject’s lymphocytes. Activated lymphocytes, stimulated by the methods described herein (e.g. either ex vivo or in vivo), can boost a subject’s immune response. The immunostimulatory oligonucleotides can therefore be used to treat, prevent or ameliorate an immune system deficiency (e.g., a tumor or cancer or a viral, fungal, bacterial or parasitic infection in a subject. In addition, immunostimulatory oligonucleotides can also be administered as a vaccine adjuvant, to stimulate a subject’s response to a vaccine. Further, the ability of immunostimulatory cells to induce leukemic cells to enter the cell cycle, suggests a utility for treating leukemia by increasing the sensitivity of chronic leukemia cells and then administering conventional ablative chemotherapy.

In a third aspect, the invention features neutral oligonucleotides (i.e. oligonucleotide that do not contain an unmethylated CpG or which contain a methylated CpG dinucleotide). In a preferred embodiment, a neutralizing oligonucleotide is complementary to an immunostimulatory sequence, but contains a methylated instead of an unmethylated CpG dinucleotide sequence and therefore can compete for binding with unmethylated CpG containing oligonucleotides. In a preferred embodiment, the methylation occurs at one or more of the four carbons and two nitrogens comprising the cytosine six member ring or at one or more of the five carbons and four nitrogens comprising the guanine nine member double ring. 5’ methyl cytosine is a preferred methylated CpG.

In a fourth aspect, the invention features useful methods using the neutral oligonucleotides. For example, in vivo administration of neutral oligonucleotides should prove useful for treating diseases such as systemic lupus erythematosus, sepsis and autoimmune diseases, which are caused or exacerbated by the presence of unmethylated CpG dimers in a subject. In addition, methylation of CpG containing antisense
oligonucleotides or oligonucleotide probes would not initiate an immune reaction when administered to a subject in vivo and therefore would be safer than corresponding unmethylated oligonucleotides.

In a fifth aspect, the invention features immunoinhibitory oligonucleotides, which are capable of interfering with the activity of viral or cellular transcription factors. In a preferred embodiment, immunoinhibitory oligonucleotides are between 2 to 100 base pairs in size and contain a consensus immunoinhibitory CpG motif represented by the formula:

\[\text{bCGXaCGC} \]

wherein X = a nucleotide and n = in the range of 0-50. In a preferred embodiment, X is a pyrimidine.

For facilitating uptake into cells, immunoinhibitory oligonucleotides are preferably in the range of 8 to 40 base pairs in size. Prolonged immunostimulation can be obtained using stabilized oligonucleotides, particularly phosphorothioate stabilized oligonucleotides.

In a sixth and final aspect, the invention features various uses for immunoinhibitory oligonucleotides. Immunoinhibitory oligonucleotides have antiviral activity, independent of any antisense effect due to complementarity between the oligonucleotide and the viral sequence being targeted.

Other features and advantages of the invention will become more apparent from the following detailed description and claims.

DETAILED DESCRIPTION OF THE INVENTION

Definitions

As used herein, the following terms and phrases shall have the meanings set forth below:

An "oligonucleotide" or "oligo" shall mean multiple nucleotides (i.e. molecules comprising a sugar (e.g. ribose or deoxyribose) linked to a phosphate group and to an exchangeable organic base, which is either a substituted pyrimidine (e.g. cytosine (C), thymine (T) or uracil (U)) or a substituted purine (e.g. adenine (A) or guanine (G)). The term "oligonucleotide" as used herein refers to both oligoribonucleotides (ORNs) and oligodeoxyribonucleotides (ODNs). The term "oligonucleotide" shall also include oligonucleosides (i.e. an oligonucleotide minus the phosphate) and any other organic base containing polymer. Oligonucleotides can be obtained from existing nucleic acid sources (e.g. genomic or cDNA), but are preferably synthetic (e.g. produced by oligonucleotide synthesis).

A "stabilized oligonucleotide" shall mean an oligonucleotide that is relatively resistant to in vivo degradation (e.g. via an exo- or endo-nuclease). Preferred stabilized oligonucleotides of the instant invention have a modified phosphate backbone. Especially preferred oligonucleotides have a phosphorothioate modified phosphate backbone (i.e. at least one of the phosphate oxygens is replaced by sulfur). Other stabilized oligonucleotides include: nonionic DNA analogs, such as alkyl- and aryl- phosphonates (in which the charged phosphonate oxygen is replaced by an alkyl or aryl group), phosphodiester and alkylphosphodiesteris, in which the charged oxygen moiety is alkylated. Oligonucleotides which contain a diol, such as tetrahydropyranol or hexahydropyranol, at either or both termini have also been shown to be substantially resistant to nuclease degradation.

An "immunostimulatory oligonucleotide", "immunostimulatory CpG containing oligonucleotide", or "CpG ODN" refer to an oligonucleotide, which contains a cytosine, guanine dinucleotide sequence and stimulates (e.g. has a mitogenic effect) on vertebrate lymphocyte. Preferred immunostimulatory oligonucleotides are between 2 to 100 base pairs in size and contain a consensus mitogenic CpG motif represented by the formula:

\[\text{bX,X,X,XGXX,} \]

wherein C and G are unmethylated, X\textsubscript{1}, X\textsubscript{2}, X\textsubscript{3} and X\textsubscript{4} are nucleotides and a GGC trimucleotide sequence is not present at or near the 5' and 3' termini.

Preferably the immunostimulatory oligonucleotides range between 8 to 40 base pairs in size. In addition, the immunostimulatory oligonucleotides are preferably stabilized oligonucleotides, particularly preferred are phosphorothioate stabilized oligonucleotides. In one preferred embodiment, X\textsubscript{1} X\textsubscript{2} is the dinucleotide CpA. In another preferred embodiment, X\textsubscript{1} X\textsubscript{2} is preferably the dinucleotide TpC or also TpT. In a particularly preferred embodiment, the consensus motif X\textsubscript{1} X\textsubscript{2} CGX\textsubscript{3} X\textsubscript{4} is preceded on the 5' end by a T. Particularly preferred consensus sequences are TGCAGTT or TGACGTC.

A "neutral oligonucleotide" refers to an oligonucleotide that does not contain an unmethylated CpG or an oligonucleotide which contains a methylated CpG dinucleotide. In a preferred embodiment, a neutralizing oligonucleotide is complementary to an immunostimulatory sequence, but contains a methylated instead of an unmethylated CpG dinucleotide sequence and therefore can compete for binding with unmethylated CpG containing oligonucleotides. In a preferred embodiment, the methylolation occurs at one or more of the four carbons and two nitrogens comprising the cytosine and guanine member ring or at one or more of the five carbons and four nitrogens comprising the guanine nine member double ring. 5' methyl cytosine is a preferred methylated CpG.

An "immunoinhibitory oligonucleotide" or "immunoinhibitory CpG containing oligonucleotide" is an oligonucleotide that. Preferred immunoinhibitory oligonucleotides are between 2 to 100 base pairs in size and can be represented by the formula:

\[\text{bCGXaCGC} \]

wherein X = a nucleotide and n = in the range of 0-50. In a preferred embodiment, X is a pyrimidine.

For facilitating uptake into cells, immunoinhibitory oligonucleotides are preferably in the range of 8 to 40 base pairs in size. Prolonged immunostimulation can be obtained using stabilized oligonucleotides, particularly phosphorothioate stabilized

"Palindromic sequence" shall mean an inverted repeat (i.e. a sequence such as ABCDEEE'E'DCB'A' in which A and A' are bases capable of forming the usual Watson-Crick base pairs. In vivo, such sequences may form double stranded structures.

An "oligonucleotide delivery complex" shall mean an oligonucleotide associated with (e.g. ionically or covalently bound to; or encapsulated within) a targeting means (e.g. a molecule that results in higher affinity binding to target cell (e.g. B-cell and natural killer (NK) cell) surfaces and/or increased cellular uptake by target cells). Examples of oligonucleotide delivery complexes include oligonucleotides associated with: a sterol (e.g. cholesterol), a lipid (e.g. a cationic lipid, virosome or liposome), or a target cell specific binding agent (e.g. a ligand recognized by target cell specific receptor). Preferred complexes must be sufficiently stable in vivo to prevent significant uncoupling prior to internalization by the target cell. However, the complex should be cleavable under appropriate conditions within the cell so that the oligonucleotide is released in a functional form.

An "immune system deficiency" shall mean a disease or disorder in which the subject's immune system is not func-
tioning in normal capacity or in which it would be useful to boost a subject's immune response for example to eliminate a tumor or cancer (e.g. tumors of the brain, lung (e.g. small cell and non-small cell), ovary, breast, colon, as well as other carcinomas and sarcomas) or a viral (e.g. HIV, herpes), fungal (e.g. *Candida* sp.), bacterial or parasitic (e.g. *Leishmania*, Toxoplasma) infection in a subject.

A "disease associated with immune system activation" shall mean a disease or condition caused or exacerbated by activation of the subject's immune system. Examples include systemic lupus erythematosus, sepsis and autoimmune diseases such as rheumatoid arthritis and multiple sclerosis.

A "subject" shall mean a human or vertebrate animal including a dog, cat, horse, cow, pig, sheep, goat, chicken, monkey, rat, mouse, etc.

Certain unmethylated CpG-containing oligonucleotides have B cell stimulatory activity as shown in vitro and in vivo.

In the course of investigating the lymphocyte stimulatory effects of two antisense oligonucleotides specific for endogenous retroviral sequences, using protocols described in the attached Examples 1 and 2, it was surprisingly found that two out of twenty-four "controls" (including various scrambled, sense, and mismatch controls for a panel of "antisense" ODN) also mediated B cell activation and IgM secretion, while the other "controls" had no effect.

Two observations suggested that the mechanism of this B cell activation by the "control" ODN may not involve antisense effects 1) comparison of vertebrate DNA sequences listed in GenBank showed no greater homology than that seen with non-stimulatory ODN and 2) the two controls showed no hybridization to Northern blots with 10 μg of spleen poly A+RNA. Resynthesis of these ODN on a different synthesizer or an extensive purification by polyacrylamide gel electrophoresis or high pressure liquid chromatography gave identical stimulation, eliminating the possibility of an impurity. Similar stimulation was seen using B cells from C3H/HeJ mice, eliminating the possibility that lipopolysaccharide (LPS) contamination could account for the results.

The fact that two "control" ODN caused B cell activation similar to that of the two "antisense" ODN raised the possibility that all four ODN were stimulating B cells through some non-antisense mechanism involving a sequence motif that was absent in all of the other non-stimulatory control ODN. In comparing these sequences, it was discovered that all of the four stimulatory ODN contained CpG dinucleotides that were in a different sequence context from the nonstimulatory control.

To determine whether the CpG motif present in the stimulatory ODN was responsible for the stimulation, over 300 ODN ranging in length from 5 to 42 bases that contained methylated, unmethylated, or no CpG dinucleotides in various sequence contexts were synthesized. These ODNs, including the two original "controls" (ODN 1 and 2) and two originally synthesized as "antisense" (ODN 3D and 3M; Krieg; A. M. J. *ImmunoL* 143:2448 (1989)), were then examined for in vitro effects on spleen cells (representative sequences are listed in Table 1). Several ODN that contained CpG dinucleotides induced B cell activation and IgM secretion; the magnitude of this stimulation typically could be increased by adding more CpG dinucleotides (Table 1; compare ODN 2 to 2a or 3D to 3Da and 3Db). Stimulation did not appear to result from an antisense mechanism or impurity.

ODN caused no detectable activation of γδ or other T cell populations.

Mitogenic ODN sequences uniformly became nonstimulatory if the CpG dinucleotide was mutated (Table 1; compare ODN 1 to 1a; 3D to 3Dc; 3M to 3Ma; and 4 to 4a) or if the cytosine of the CpG dinucleotide was replaced by 5-methylcytosine (Table 1; ODN 1b, 2b, 2c, 3Dd, and 3Mb). In contrast, methylation of other cytosines did not reduce ODN activity (ODN 1c, 2d, 3Dc and 3Mc). These data confirmed that a CpG motif is the essential element present in ODN that activate B cells.

In the course of these studies, it became clear that the bases flanking the CpG dinucleotide played an important role in determining the B cell activation induced by an ODN. The optimal stimulatory motif was determined to consist of a CpG flanked by two 5′ purines (preferably a CpA dinucleotide) and two 3′ pyrimidines (preferably a TpT or TpC dinucleotide). Mutations of ODN to bring the CpG motif closer to this ideal improved stimulation (e.g. compare ODN 2 to 2c; 3M to 3Md) while mutations that disturbed the motif reduced stimulation (e.g. compare ODN 3D to 3Df; 4 to 4b, 4c and 4d). On the other hand, mutations outside the CpG motif did not reduce stimulation (e.g. compare ODN 1 to 1d; 3D to 3Dg; 3M to 3Me).

Of those tested, ODNs shorter than 8 bases were nonstimulatory (e.g. ODN 4c). Among the forty-eight 8 base ODN tested, the most stimulatory sequence identified was TCAACGT (ODN 4) which contains the self-complementary "palindrome" ACGGT. In further optimizing this motif, it was found that ODN containing Gs at both ends showed increased stimulation, particularly if the 3′ ODN were rendered nuclease resistant by phosphorothioate modification of the terminal internucleotide linkages. ODN 1585 (5′GGGGTCAACGTTCAGGGGGG 3′ (SEQ ID NO:1)), in which the first two and last five internucleotide linkages are phosphorothioate modified caused an average 25.4 fold increase in mouse spleen cell proliferation compared to an average 3.2 fold increase in proliferation induced by ODN 1638, which has the same sequence as ODN 1585 except that the 10 Gs at the two ends are replaced by 10 As. The effect of the G-rich ends is cis; addition of an ODN with poly G ends but no CpG motif to cells along with 1638 gave no increased proliferation.

Other octamer ODN containing a 6 base palindromic with a TpC dinucleotide at the 5′ end were also active if they were close to the optimal motif (e.g. ODN 4b, 4c). Other dinucleotides at the 5′ end gave reduced stimulation (e.g. ODN 4f; all sixteen possible dinucleotides were tested). The presence of a 3′ dinucleotide was insufficient to compensate for the lack of a 5′ dinucleotide (e.g. ODN 4g). Disruption of the palindrome eliminated stimulation in octamer ODN (e.g. ODN 4h), but palindromes were not required in longer ODN.

<table>
<thead>
<tr>
<th>Oligonucleotide Stimilation of B Cells</th>
<th>Stimulation Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODN</td>
<td>Sequence (5′ to 3′)</td>
</tr>
<tr>
<td>1 (SEQ ID NO: 2)</td>
<td>GCTAGACCTTAGCT</td>
</tr>
<tr>
<td>1a (SEQ. ID NO: 3)</td>
<td>. . . . T</td>
</tr>
<tr>
<td>ODN</td>
<td>Sequence (5' to 3')†</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
</tr>
<tr>
<td>1b</td>
<td>(SEQ ID NO: 4) Z...Z</td>
</tr>
<tr>
<td>1c</td>
<td>(SEQ ID NO: 5) Z...Z</td>
</tr>
<tr>
<td>1d</td>
<td>(SEQ ID NO: 6) AT.GAG.C</td>
</tr>
<tr>
<td>2</td>
<td>(SEQ ID NO: 7) ATGGAGGTCCACGTTCCT</td>
</tr>
<tr>
<td>2a</td>
<td>(SEQ ID NO: 8) C.CTC.G...Z</td>
</tr>
<tr>
<td>2b</td>
<td>(SEQ ID NO: 9) Z...Z.CTC.ZG...Z</td>
</tr>
<tr>
<td>2c</td>
<td>(SEQ ID NO: 10) Z...Z.CTC.ZG...Z</td>
</tr>
<tr>
<td>2d</td>
<td>(SEQ ID NO: 11) C.CTC.G...Z...Z</td>
</tr>
<tr>
<td>2e</td>
<td>(SEQ ID NO: 12) A.A.A.A</td>
</tr>
<tr>
<td>3d</td>
<td>(SEQ ID NO: 13) GAAGAGCTGGACCTTCAT</td>
</tr>
<tr>
<td>3Da</td>
<td>(SEQ ID NO: 14) C.C.C.C</td>
</tr>
<tr>
<td>3Db</td>
<td>(SEQ ID NO: 15) C.C.C.G</td>
</tr>
<tr>
<td>3Cc</td>
<td>(SEQ ID NO: 16) C.A.C.A</td>
</tr>
<tr>
<td>3Cd</td>
<td>(SEQ ID NO: 17) Z.Z.Z.Z</td>
</tr>
<tr>
<td>3Ce</td>
<td>(SEQ ID NO: 18) Z.Z.Z.Z</td>
</tr>
<tr>
<td>3Df</td>
<td>(SEQ ID NO: 19) A.A.A.A</td>
</tr>
<tr>
<td>3Dg</td>
<td>(SEQ ID NO: 20) C.C.G.G.ACTG..</td>
</tr>
<tr>
<td>3M</td>
<td>(SEQ ID NO: 21) TCCATGTCGCTCTGATCT</td>
</tr>
<tr>
<td>3Ma</td>
<td>(SEQ ID NO: 22) CT.C.T.C..</td>
</tr>
<tr>
<td>3Mb</td>
<td>(SEQ ID NO: 23) Z.Z.Z.Z</td>
</tr>
<tr>
<td>3Mc</td>
<td>(SEQ ID NO: 24) Z.Z.Z.Z</td>
</tr>
<tr>
<td>3Md</td>
<td>(SEQ ID NO: 25) A.A.A.T</td>
</tr>
<tr>
<td>3Me</td>
<td>(SEQ ID NO: 26) C.A.C.A.C.A</td>
</tr>
<tr>
<td>4</td>
<td>TCAACATT</td>
</tr>
<tr>
<td>4a</td>
<td>.GC... .</td>
</tr>
<tr>
<td>4b</td>
<td>.GCGC</td>
</tr>
<tr>
<td>4c</td>
<td>.TOTA</td>
</tr>
<tr>
<td>4d</td>
<td>.TT.LAA</td>
</tr>
<tr>
<td>4e</td>
<td>.AA.AGA</td>
</tr>
<tr>
<td>4f</td>
<td>.C..CCA</td>
</tr>
<tr>
<td>4g</td>
<td>.ACTCT</td>
</tr>
<tr>
<td>4h</td>
<td>.C.C.C</td>
</tr>
<tr>
<td>LDS</td>
<td>7.8 ± 2.5</td>
</tr>
</tbody>
</table>

†Stimulation indexes are the means and std. dev., derived from at least 3 separate experiments, and are compared to wells cultured with no added ODN. ND = not done.

Cpd dinucleotides are underlined.
Dots indicate identity; dashes indicate deletions.
Z indicates 5-methyl cytosine.)
The kinetics of lymphocyte activation were investigated using mouse spleen cells. When the cells were pulsed at the same time as ODN addition and harvested just four hours later, there was already a two-fold increase in 3H uridine incorporation. Stimulation peaked at 12-48 hours and then decreased. After 24 hours, no intact ODN were detected, perhaps accounting for the subsequent fall in stimulation when purified B cells with or without anti-IgM (at a submitogenic dose) were cultured with CpG ODN, proliferation was found to synergistically increase about 10-fold by the two mitogens in combination after 48 hours. The magnitude of stimulation was concentration dependent and consistently exceeded that of LPS under optimal conditions for both. Oligonucleotides containing a nucleoside resistant phosphorothioate backbone were approximately two hundred times more potent than unmodified oligonucleotides.

Cell cycle analysis determined the proportion of B cells activated by CpG-ODN. CpG-ODN induced cycling in more than 95% of B cells (Table 2). Splenic B lymphocytes sorted by flow cytometry into CD23− (marginal zone) and CD23+ (follicular) subpopulations were equally responsive to ODN-induced stimulation, as were resting and activated populations of B cells isolated by fractionation over Percoll gradients. These studies demonstrated that CpG-ODN induce essentially all B cells to enter the cell cycle.

Table 2

<table>
<thead>
<tr>
<th>Treatment</th>
<th>G0</th>
<th>G1</th>
<th>S + G2 + M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>97.6</td>
<td>2.4</td>
<td>0.02</td>
</tr>
<tr>
<td>ODN 1a</td>
<td>95.2</td>
<td>4.8</td>
<td>0.04</td>
</tr>
<tr>
<td>ODN 1d</td>
<td>2.7</td>
<td>74.4</td>
<td>22.9</td>
</tr>
<tr>
<td>ODN 3d</td>
<td>3.5</td>
<td>76.4</td>
<td>20.1</td>
</tr>
<tr>
<td>LPS (30 μg/ml)</td>
<td>17.3</td>
<td>70.5</td>
<td>12.2</td>
</tr>
</tbody>
</table>

The mitogenic effects of CpG ODN on human cells, were tested on peripheral blood mononuclear cells (PBMCs) obtained from two patients with chronic lymphocytic leukemia (CLL). As described in Example 1, Control ODN containing no CpG dinucleotide sequence showed no effect on the basal proliferation of 400,000 and 874,000 pm (proliferation measured by 3H thymidine incorporation) of the human cells. However, a phosphorothioate modified CpG ODN 3Md (SEQ ID NO: 25) induced increased proliferation of 7,210 and 8,759 pm respectively in the two patients at a concentration of just 1 μM. Since these cells had been frozen, they may have been less responsive to the ODN than fresh cells in vivo. In addition, cells from CLL patients typically are non-proliferating, which is why traditional chemotherapy is not effective.

Certain B cell lines such as WEHI-231 are induced to undergo growth arrest and/or apoptosis in response to crosslinking of their antigen receptor by anti-IgM (Jakway, J. P. et al., “Growth regulation of the B lymphocyte cell line WEHI-231 by anti-immunoglobulin, lipopolysaccharide and other bacterial products” J. Immunol. 137: 2225 (1986); Tsutata, T., J. Wu and T. Honjo: B-cell apoptosis induced by antigen receptor crosslinking is blocked by a T-cell signal through CD40.” Nature 364: 645 (1993)). WEHI-231 cells are rescued from this growth arrest by certain stimuli such as LPS and by the CD40 ligand. ODN containing the CpG motif were also found to protect WEHI-231 from anti-IgM induced growth arrest, indicating that accessory cell populations are not required for the effect.

To better understand the immune effects of unmethylated CpG ODN, the levels of cytokines and prostaglandins in vitro and in vivo were measured. Unlike LPS, CpG ODN were not found to induce purified macrophages to produce prostaglandin PGE2. In fact, no apparent direct effect of CpG ODN was detected on either macrophages or T cells. In vivo or in whole spleen cells, no significant increase in the following interleukins: IL-2, IL-3, IL-4, or IL-10 was detected within the first six hours. However, the level of IL-6 increased strikingly within 2 hours in the serum of mice injected with CpG ODN. Increased expression of IL-12 and interferon gamma (INF-γ) by spleen cells was also detected within the first two hours.

To determine whether CpG ODN can cause in vivo immune stimulation, DBA/2 mice were injected intraperitoneally with PBS or phosphorothioate CpG or non-CpG ODN at a dose of 33 mg/kg (approximately 500 μg/mouse). Pharmacokinetic studies in mice indicate that this dose of phosphorothioate gives levels of approximately 10 μg/g in spleen tissue (within the effective concentration range determined from the in vitro studies described herein) for longer than twenty-four-hours (Agrawal, S. et al. (1991) Proc. Natl. Acad. Sci. USA 91:7595). Spleen cells from mice were examined twenty-four hours after ODN injection for expression of B cells surface activation markers Ly-6A/E, Ly-1, and class II MHC using three color flow cytometry and for their spontaneous proliferation using 3H thymidine. Expression of all three activation markers was significantly increased in B cells from mice injected with CpG ODN, but not from mice injected with PBS or non-CpG ODN. Spontaneous 3H thymidine incorporation was increased by 2.6 fold in spleen cells from mice injected with the stimulatory ODN compared to PBS or non-CpG ODN-injected mice. After 4 days, serum IgM levels in mice injected with CpG ODN in vivo were increased by approximately 3-fold compared to controls. Consistent with the inability of these agents to activate T cells, there was minimal change in T cell expression of the IL-2R or CD44.

Degradation of phosphodiester ODN in serum is predominantly mediated by 3' exonucleases, while intracellular ODN degradation is more complex, involving 5' and 3' exonucleases and endonucleases. Using a panel of ODN bearing the 3D sequence with varying numbers of phosphorothioate modified linkages at the 5' and 3' ends, it was empirically determined that two 5' and five 3' modified linkages are required to provide optimal stimulation with this CpG ODN.

Unmethylated CpG Oligonucleotides have NK Cell Stimulatory Activity

As described in further detail in Example 4, experiments were conducted to determine whether CpG containing oligonucleotides stimulated the activity of natural killer (NK) cells in addition to T cells. As shown in Table 3, a marked induction of NK activity among spleen cells cultured with CpG ODN 1 and 3D3 was observed. In contrast, there was relatively no induction in effectors that had been treated with non-CpG control ODN.

Table 3

<table>
<thead>
<tr>
<th>ODN</th>
<th>% YAC1 Specific Lysis</th>
<th>% 2C11 Specific Lysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Effector/Target</td>
<td>Effector/Target</td>
</tr>
<tr>
<td>50:1</td>
<td>100:1</td>
<td>50:1</td>
</tr>
<tr>
<td>None</td>
<td>1.1</td>
<td>1.4</td>
</tr>
<tr>
<td>3D3</td>
<td>16.1</td>
<td>24.5</td>
</tr>
</tbody>
</table>

Table 3-continued

<table>
<thead>
<tr>
<th>ODN</th>
<th>% YAC-1 Specific Lysis*</th>
<th>% 2C11 Specific Lysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Effector/Target</td>
<td>Effector/Target</td>
</tr>
<tr>
<td>50:1</td>
<td>100:1</td>
<td>50:1</td>
</tr>
<tr>
<td>3Dd</td>
<td>17.1</td>
<td>27.0</td>
</tr>
<tr>
<td>non-Cpg ODN</td>
<td>-1.6</td>
<td>-1.7</td>
</tr>
</tbody>
</table>

Neutralizing Activity of Methylated CpG Containing Oligos

B cell mitogenicity of ODN in which cytosines in CpG motifs or elsewhere were replaced by 5-methylcytosine were tested as described in Example 1. As shown in Table 1 above, ODN containing methylated CpG motifs were non-mitogenic (Table 1; ODN 1c, 2f, 3Dd, and 3Mc). However, methylation of cytosines other than in a CpG dinucleotide retained their stimulatory properties (Table 1, ODN 1d, 2d, 3Dd, and 3Md).

Immunoinhibitory Activity of Oligos Containing a GCG Trinucleotide Sequence at or Near Both Termini

In some cases, ODN containing CpG dinucleotides that are not in the stimulatory motif described above were found to block the stimulatory effect of other mitogenic CpG ODN. Specifically the addition of an atypical CpG motif consisting of a GCG near or at the 5' and/or 3' end of CpG ODN actually inhibited stimulation of proliferation by other CpG motifs. Methylation or substitution of the cytosine in a GCG motif reverses this effect. By itself, a GCG motif in an ODN has a modest mitogenic effect, though far lower than that seen with the preferred CpG motif.

Proposed Mechanisms of Action of Immunostimulatory, Neutralizing, and Immunoinhibitory Oligonucleotides

Unlike antigens that trigger B cells through their surface Ig receptor, CpG-ODN did not induce any detectable Ca²⁺ flux, changes in protein tyrosine phosphorylation, or IP3 generation. Flow cytometry with FITC-conjugated ODN with or without a CpG motif was performed as described in Zhao, Q et al., (Antisense Research and Development 3:53-66 (1993)), and showed equivalent membrane binding, cellular uptake, efflux, and intracellular localization. This suggests that there may not be cell membrane proteins specific for CpG ODN. Rather than testing through the cell membrane, that data suggest that unmethylated CpG containing oligonucleotides require cell uptake for activity: ODN covalently linked to a solid Teflon support were nonstimulatory, as were biotinylated ODN immobilized on either avidin beads or avidin coated petri dishes. CpG ODN conjugated to either FITC or biotin retained full mitogenic properties, indicating no steric hindrance.

The optimal CpG motif (TGACGGTT/C is identical to theCRE (cyclic AMP response element). Like the mitogenic effects of CpG ODN, binding of CREB to the CRE is abolished if the central CpG is methylated. Electrophoretic mobility shift assays were used to determine whether CpG ODN, which are single stranded, could compete with the binding of B cell CREB/ATF proteins to their normal binding site, the double-stranded CREB. Competition assays demonstrated that single stranded ODN containing CpG motifs could completely compete the binding of CREB to its binding site, while ODN without CpG motifs could not. These data support the conclusion that CpG ODN exert their mitogenic effects through interacting with one or more B cell CREB/ATF proteins in some way. Conversely, the presence of GCG sequences or other atypical CpG motifs near the 5' and/or 3' ends of ODN likely interact with CREB/ATF proteins in away that does not cause activation, and may even prevent it.

The stimulatory CpG motif is common in microbial genomic DNA, but quite rare in vertebrate DNA. In addition, bacterial DNA has been reported to induce B cell proliferation and immunoglobulin (Ig) production, while mammalian DNA does not (Messina, J. P. et al., J. Immunol. 147:1759 (1991)). Experiments further described in Example 3, in which methylation of bacterial DNA with CpG methylase was found to abolish mitogenicity, demonstrates that the difference in CpG status is the cause of B cell stimulation by bacterial DNA. This data supports the following conclusion: that unmethylated CpG dinucleotides present within bacterial DNA are responsible for the stimulatory effects of bacterial DNA.

Tetradecanole, it appears likely that lymphocyte activation by the CpG motif represents an immune defense mechanism that can thereby distinguish bacterial from host DNA. Host DNA would induce little or no lymphocyte activation due to it CpG suppression and methylation. Bacterial DNA would cause selective lymphocyte activation in infected tissues. Since the CpG pathway synergizes with B cell activation through the antigen receptor, B cells bearing antigen receptor specific for bacterial antigens would receive one activation signal through cell membrane Ig and a second signal from bacterial DNA, and would therefore tend to be preferentially activated. The interrelationship of this pathway with other pathways of B cell activation provide a physiologic mechanism employing a polyclonal antigen to induce antigen-specific responses.

Method for Making Immunostimulatory Oligos

For use in the instant invention, oligonucleotides can be synthesized de novo using any of a number of procedures well known in the art. For example, the β-cyanoethyl phosphoramidite method (S. L. Beaucage and M. H. Caruthers, (1981) Tet. Let. 22:1859); nuclease H-phosphonate method (Garrett et al., (1986) Tet. Lett. 27: 4051-4054; Frechler et al.,(1986) Nucl. Acid Res. 14: 5399-5407; Garrett et al., (1986) Tet. Lett. 27: 4055-4058; Gaffney et al., (1988) Tet. Lett. 29:2619-2622). These chemistry can be performed by a variety of automated oligonucleotide synthesizers available in the market. Alternatively, oligonucleotides can be prepared from existing nucleic acid sequences (e.g. genomic or cDNA) using known techniques, such as those employing restriction enzymes, exonuclease or endonucleases.

For use in vivo, oligonucleotides are preferably relatively resistant to degradation (e.g. via endo- and exo- nucleases). Oligonucleotide stabilization can be accomplished via phosphate backbone modifications. A preferred stabilized oligonucleotide has a phosphorothioate modified backbone. The pharmacokinetics of phosphorothioate ODN show that they have a systemic half-life of forty-eight hours in rodents and suggest that they may be useful for in vivo applications (Agrawal, S. et al. (1991) Proc. Natl. Acad. Sci. USA 88:7595). Phosphorothioates may be synthesized using automated techniques employing either phosphoramidate or H-phosphate chemistries. Aryl- and alkyl-phosphonates can be made e.g. as described in U.S. Pat. No. 4,469,863; and alkylphosphonates (in which the charged oxygen moiety is alkylated) as described in U.S. Pat. No. 5,023,243 and European Patent No. 092,574) can be prepared by automated solid phase synthesis using commercially available reagents. Methods for making other DNA backbone modifications and substitutions have been described Uhlmann, E. and Peyman, A (1990) Chem. Rev. 90:544; Goodchild, J. (1990) Bioconjugate Chem. 1:165).
For administration in vivo, oligonucleotides may be associated with a molecule that results in higher affinity binding to target cell (e.g. B-cell and natural killer (NK) cell) surfaces and/or increased cellular uptake by target cells to form an “oligonucleotide delivery complex”. Oligonucleotides can be ionically, or covalently associated with appropriate molecules using techniques which are well known in the art. A variety of coupling or crosslinking agents can be used e.g. protein A, carbodiimide, and N-succinimidyl-3-(2-pyridyldithio) propionate (SPDP). Oligonucleotides can alternatively be encapsulated in liposomes or virosomes using well-known techniques.

The present invention is further illustrated by the following Examples which in no way should be construed as further limiting. The entire contents of all of the references (including literature references, issued patents, published patent applications, and co-pending patent applications) cited throughout this application are hereby expressly incorporated by reference.

Therapeutic Uses of Immunostimulatory Oligos

Based on the immunostimulatory properties, oligonucleotides containing at least one unmethylated CpG dinucleotide can be administered to a subject in vivo to treat an “immune system deficiency”. Alternatively, oligonucleotides containing at least one unmethylated CpG dinucleotide can be contacted with lymphocytes (e.g. B cells or NK cells) obtained from a subject having an immune system deficiency ex vivo and activated lymphocytes can then be reimplanted in the subject.

Immunostimulatory oligonucleotides can also be administered to a subject in conjunction with a vaccine, as an adjuvant, to boost a subject’s immune system to effect better response from the vaccine. Preferably the unmethylated CpG dinucleotide is administered slightly before or at the same time as the vaccine.

Preceding chemotherapy with an immunostimulatory oligonucleotide should prove useful for increasing the responsiveness of the malignant cells to subsequent chemotherapy. CpG ODN also increased natural killer cell activity in both human and murine cells. Induction of NK activity may likewise be beneficial in cancer immunotherapy.

Therapeutic Uses for Neutral Oligonucleotides

Oligonucleotides that are complementary to certain target sequences can be synthesized and administered to a subject in vivo. For example, antisense oligonucleotides hybridize to complementary mRNA, thereby preventing expression of a specific target gene. The sequence-specific effects of antisense oligonucleotides have made them useful research tools for the investigation of protein function. Phase I/II human trials of systemic antisense therapy are now underway for acute myelogenous leukemia and HIV.

In addition, oligonucleotide probes (i.e. oligonucleotides with a detectable label) can be administered to a subject to detect the presence of a complementary sequence based on detection of bound label. In vivo administration and detection of oligonucleotide probes may be useful for diagnosing certain diseases that are caused or exacerbated by certain DNA sequences (e.g. systemic lupus erythematosus, sepsis and autoimmune diseases).

Antisense oligonucleotides or oligonucleotide probes in which any or all CpG dinucleotide is methylated, would not produce an immune reaction when administered to a subject in vivo and therefore would be safer than the corresponding non-methylated CpG containing oligonucleotide.

For use in therapy, an effective amount of an appropriate oligonucleotide alone or formulated as an oligonucleotide delivery complex can be administered to a subject by any mode allowing the oligonucleotide to be taken up by the appropriate target cells (e.g. B-cells and NK cells). Preferred routes of administration include oral and transdermal (e.g. via a patch). Examples of other routes of administration include injection (subcutaneous, intravenous, parenteral, intraperitoneal, intrathecal, etc.). The injection can be in a bolus or a continuous infusion.

An oligonucleotide alone or as an oligonucleotide delivery complex can be administered in conjunction with a pharmaceutically acceptable carrier. As used herein, the phrase “pharmaceutically acceptable carrier” is intended to include substances that can be coadministered with an oligonucleotide or an oligonucleotide delivery complex and allows the oligonucleotide to perform its intended function. Examples of such carriers include solutions, solvents, dispersion media, delay agents, emulsions and the like. The use of such media for pharmaceutically active substances are well known in the art. Any other conventional carrier suitable for use with the oligonucleotides falls within the scope of the instant invention.

Based on the “effective amount” of an oligonucleotide refers to that amount necessary or sufficient to realize a desired biologic effect. For example, an effective amount of an oligonucleotide containing at least one methylated CpG for treating an immune system deficiency could be that amount necessary to eliminate a tumor, cancer, or bacterial, viral or fungal infection. An effective amount for use as a vaccine adjuvant could be that amount useful for boosting a subject’s immune response to a vaccine. An “effective amount” of an oligonucleotide lacking a non-methylated CpG for use in treating a disease associated with immune system activation, could be that amount necessary to outcompete non-methylated CpG containing nucleotide sequences. The effective amount for any particular application can vary depending on such factors as the disease or condition being treated, the particular oligonucleotide being administered, the size of the subject, or the severity of the disease or condition. One of ordinary skill in the art can empirically determine the effective amount of a particular oligonucleotide without necessitating undue experimentation.

The studies reported above indicate that unmethylated CpG containing oligonucleotides are directly mitogenic for lymphocytes (e.g. B cells and NK cells). Together with the presence of these sequences in bacterial DNA, these results suggest that the underrepresentation of CpG dinucleotides in animal genomes, and the extensive methylation of cytosines present in such dinucleotides, may be explained by the existence of an immune defense mechanism that can distinguish bacterial from host DNA. Host DNA would commonly be present in many anatomic regions and areas of inflammation due to apoptosis (cell death), but generally induces little or no lymphocyte activation. However, the presence of bacterial DNA containing unmethylated CpG motifs can cause lymphocyte activation precisely in infected anatomic regions, where its beneficial. This novel activation pathway provides a rapid alternative to T cell dependent antigen specific B cell activation. However, it is likely that B cell activation would not be totally nonspecific. B cells bearing antigen receptors specific for bacterial products could receive one activation signal through cell membrane Ig, and a second from bacterial DNA, thereby more vigorously triggering antigen specific immune responses.

As with other immune defense mechanisms, the response to bacterial DNA could have undesirable consequences in some settings. For example, autoimmune responses to self antigens would also tend to be preferentially triggered by bacterial infections, since autoantigens could also provide a
second activation signal to autoreactive B cells triggered by bacterial DNA. Indeed the induction of autoimmunity by bacterial infections is a common clinical observance. For example, the autoimmune disease systemic lupus erythematosus, which is: i) characterized by the production of anti-DNA antibodies; ii) induced by drugs which inhibit DNA methyltransferase (Cornacchia, E. J. et al., J. Clin Invest. 92:38 (1993)); and iii) associated with reduced DNA methylation (Richardson, B., L. et al., Arth. Rheum. 35:647 (1992)), is likely triggered at least in part by activation of DNA-specific B cells through stimulatory signals provided by CpG motifs, as well as by binding of bacterial DNA to antigen receptors.

Further, sepsis, which is characterized by high morbidity and mortality due to massive and nonspecific activation of the immune system may be initiated by bacterial DNA and other products released from dying bacteria that reach concentrations sufficient to directly activate many lymphocytes.

Lupus, sepsis and other “diseases associated with immune system activation” may be treated, prevented or ameliorated by administering to a subject oligonucleotides lacking an unmethylated CpG dinucleotide (e.g. oligonucleotides that do not include a CpG motif or oligonucleotides in which the CpG motif is methylated) to block the binding of unmethylated CpG containing nucleic acid sequences. Oligonucleotides lacking an unmethylated CpG motif can be administered alone or in conjunction with compositions that block an immune cell’s reponse to other mitogenic bacterial products (e.g. LPS).

The following serves to illustrate mechanistically how oligonucleotides containing an unmethylated CpG dinucleotide can treat, prevent or ameliorate the disease lupus. Lupus is commonly thought to be triggered by bacterial or viral infections. Such infections have been reported to stimulate the production of nonpathogenic antibodies to single stranded DNA. These antibodies likely recognize primarily bacterial sequences including unmethylated CpGs. As disease develops in lupus, the anti-DNA antibodies shift to pathogenic antibodies that are specific for double-stranded DNA. These antibodies would have increased binding for methylated CpG sequences and their production would result from a breakdown of tolerance in lupus. Alternatively, lupus may result when a patient’s DNA becomes hypomethylated, thus allowing anti-DNA antibodies specific for unmethylated CpGs to bind to self DNA and trigger more widespread autoimmunity through the process referred to as “epitope spreading”.

In either case, it may be possible to restore tolerance in lupus patients by coupling antigen oligonucleotides to a protein carrier such as gamma globulin (lgG). Calf-thymus DNA complexed to gamma globulin has been reported to reduce anti-DNA antibody formation.

Therapeutic Uses of Oligos Containing GCG Trinucleotide Sequences at or Near Both Termini

Based on their interaction with CREB/ATF, guanine oligonucleotides containing GCG trinucleotide sequences at or near both termini have antiviral activity, independent of any antisense effect. The complementarity between the oligonucleotide and the viral sequence being targeted. Based on this activity, an effective amount of inhibitory oligonucleotides can be administered to a subject to treat or prevent a viral infection.

EXAMPLES

Example 1

Effects of ODNs on B Cell Total RNA Synthesis and Cell Cycle

B cells were purified from spleens obtained from 6-12 wk old specific pathogen free DBA/2 or BXSB mice (bred in the University of Iowa animal care facility; no substantial strain differences were noted) that were depleted of T cells with anti-Thy-1.2 and complement and centrifugation over lymphocyte M (Cedarlane Laboratories, Hornby, Ontario, Canada) (“B cells”). B cells contained fewer than 1% CD4+ or CD8+ cells. 8x10^6 B cells were dispensed in triplicate into 96 well microtiter plates in 100 µL RPMI containing 10% FBS (heat inactivated to 65°C for 30 min.), 50 µM 2-mercaptoethanol, 100 U/ml penicillin, 100 µg/ml streptomycin, and 2 mM L-glutamate. 20 µM ODN were added at the start of culture for 20 h at 37°C, cells pulsed with 1 µCi of 3H uridine, and harvested and counted 4 hr later. Ig secreting B cells were enumerated using the ELISA spot assay after culture of whole spleen cells with ODN at 20 µM for 48 hr. Data, reported in Table 1, represent the stimulation index compared to cells cultured without ODN. Cells cultured without ODN gave 687 cpm, while cells cultured with 20µg/ml LPS (determined by titration to be the optimal concentration) gave 99,699 cpm in this experiment. 3H thymidine incorporation assays showed similar results, but with some nonspecific inhibition by thymidine released from degraded ODN (Mason, S and A. M. Krieg (1992) Non-specific suppression of 3H-thymidine incorporation by control oligonucleotides. Antisense Research and Development 2:325).

For cell cycle analysis, 2x10^6 B cells were cultured for 48 hr in 2 ml tissue culture medium alone, or with 30µg/ml LPS or with the indicated phosphorothioate modified ODN at 1 µM. Cell cycle analysis was performed as described in [Dzargzyniewicz, Z. et al., Proc. Natl. Acad. Sci. USA 78:2881 (1981)].

To test the mitogenic effects of CpG ODN on human cells, peripheral blood monocyte cells (PBMCs) were obtained from two patients with chronic lymphocytic leukemia (CLL), a disease in which the circulating cells are malignant B cells. Cells were cultured for 48 hrs and pulsed for 4 hours with tritiated thymidine as described above.

Example 2

Effects of ODN on Production of IgM from B cells

Single cell suspensions from the spleens of freshly killed mice were treated with anti-Thy, anti-CD4, and anti-CD8 and complement by the method of Leibson et al., J. Exp. Med. 154:1681 (1981)). Resting B cells (<0.2% T cell contamination) were isolated from the 63-70% band of a discontinuous Percoll gradient by the procedure of DeFranco et al., J. Exp. Med. 155:1523 (1982). These were cultured as described above in 30 µM ODN or 20 µg/ml LPS for 48 hr. The number of B cells actively secreting IgM was maximal at this time point, as determined by ELISPOT assay (Klinman D. M. et al. J. Immunol. 144:506 (1990)). In that assay, B cells were incubated for 6 hrs on anti-Ig coated microtiter plates. The Ig they produced (>99% IgM) was detected using phosphatase-labelled anti-Ig (Southern Biotechnology Associated, Birmingham, Ala.). The antibodies produced by individual B cells were visualized by addition of BCIP (Sigma Chemical Co., St. Louis Mo.) which forms an insoluble blue precipitate in the presence of phosphatase. The dilution of cells producing 20-40 spots/well was used to determine the total number of antibody-secreting B cells/sample. All assays were performed in triplicate. In some experiments, culture supernatants were assayed for IgM by ELISA, and showed similar increases in response to CpG-ODN.
Example 3

B Cell Stimulation by Bacterial DNA

DBA/2 B cells were cultured with no DNA or 50 µg/ml of a) Micrococcus lysodeikiticus; b) NZB/N mouse spleen; and c) NFS/N mouse spleen genomic DNAs for 48 hours, then pulsed with 3H thymidine for 4 hours prior to cell harvest. Duplicate DNA samples were digested with DNase I for 30 minutes at 37°C prior to addition to cell cultures. E. coli DNA also induced an 8.8-fold increase in the number of IgM secreting B cells by 48 hours using the ELISA-spot assay.

DBA/2 B cells were cultured with either no additive, 50 µg/ml LPS or the ODN 1; 1a; 4; or 4a at 20 µM. Cells were cultured and harvested at 4, 8, 24, and 48 hours. BXXB cells were cultured as in Example 1 with 5, 10, 20, 40, or 80 µM of ODN 1; 1a; 4; or 4a or LPS. In this experiment, wells with no ODN had 3853 cpm. Each experiment was performed at least three times with similar results. Standard deviations of the triplicate wells were <5%.

Example 4

Effects of ODN on Natural Killer (NK) Activity

10 x 10⁶ C57BL/6 spleen cells were cultured in two ml RPMI (supplemented as described for Example 1) with or without 40 µM CpG or non-CpG ODN for forty-eight hours. Cells were washed, and then used as effector cells in a short term 51Cr-release assay with YAC-1 and 2C11, two NK sensitive target cell lines (Ballas, Z. K. et al. (1993) J. Immunol. 150:17). Effector cells were added to various concentrations to 10⁴ 51Cr-labeled target cells in V-bottom microtiter plates in 0.2 ml, and incubated in 5% CO₂ for 4 hr. at 37°C C. Plates were then centrifuged, and an aliquot of the supernatant counted for radioactivity. Percent specific lysis was determined by calculating the ratio of the 51Cr released in the presence of effector cells minus the 51Cr released when the target cells were cultured alone, over the total counts released after cell lysis in 2% acetic acid minus the 51Cr cpm released when the cells were cultured alone.

Example 5

In Vivo Studies with CpG Phosphorothioate ODN

Mice were weighed and injected IP with 0.25 ml of sterile PBS or the indicated phosphorothioate ODN dissolved in PBS. Twenty four hours later, spleen cells were harvested, washed, and stained for flow cytometry using phycoerythrin conjugated 6H2 to gate on B cells in conjunction with biotin conjugated anti-IgM/E or anti-Ia b (PharMingen, San Diego, Calif.) or anti-Ia b (Hardy, R. R et al., J. Exp. Med. 159:1169 (1984). Two mice were studied for each condition and analyzed individually.

Example 6

Titration of Phosphorothioate ODN for B Cell Stimulation

B cells were cultured with phosphorothioate ODN with the sequence of control ODN 1a or the CpG ODN 1d and 3 Db and then either pulsed after 20 hr with ³H thymidine or after 44 hr with ³H thymidine before harvesting and determining cpm.

Example 7

Rescue of B Cells From Apoptosis

WEHI-231 cells (5 x 10⁵/well) were cultured for 1 hr. at 37 C in the presence or absence of LPS or the control ODN 1a or the CpG ODN. 1d and 3 Db before addition of anti-IgM (1 µ/ml). Cells were cultured for a further 20 hr. before a 4 hr. pulse with 2 µCi/well ³H thymidine. In this experiment, cells with no ODN or anti-IgM gave 90.4 x 10⁳ by addition of anti-IgM. The phosphorothioate ODN shown in Table 1 gave similar protection, though with some nonspecific suppression due to ODN degradation. Each experiment was repeated at least 3 times with similar results.

Example 8

In Vivo Induction of IL-6

DBA/2 female mice (2 mos. old) were injected IP with 500 µg CpG or control phosphorothioate ODN. At various time points after injection, the mice were bled. Two mice were studied for each time point. IL-6 was measured by Elisa, and IL-6 concentration was calculated by comparison to a standard curve generated using recombinant IL-6. The sensitivity of the assay was 10 pg/ml. Levels were undetectable after 8 hr.

Example 9

Binding of B cell CREB/ATF to a Radiolabelled Doublestranded CRE Probe (CREB).

Whole cell extracts from CH12.LX B cells showed 2 retarded bands when analyzed by EMSA with the CRE probe (free probe is off the bottom of the figure). The CREB/ATF protein(s) binding to the CRE were competed by the indicated amount of cold CRE, and by single-stranded CpG ODN, but not by non-CpG ODN.

Equivalents

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents of the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 1

ggggtcaacg ttcagggg

<210> SEQ ID NO 2
<211> LENGTH: 15
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 2

gctagacgtt agcgcgt

<210> SEQ ID NO 3
<211> LENGTH: 15
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 3

gctagacgtt agcgcgt

<210> SEQ ID NO 4
<211> LENGTH: 15
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (7)...(7)
<223> OTHER INFORMATION: m5c

<400> SEQUENCE: 4

gctagacgtt agcgcgt

<210> SEQ ID NO 5
<211> LENGTH: 15
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (13)...(13)
<223> OTHER INFORMATION: m5c

<400> SEQUENCE: 5

gctagacgtt agcgcgt

<210> SEQ ID NO 6
<211> LENGTH: 15
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 6

gctagacgtt gacgt

<210> SEQ ID NO 7
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 7

atggaagtc gaccgttctc

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 8

atcgacttcc gacgcccttc

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 9

atcgaccttn ggmgtttctc

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 10

atcgacttctg gacgcccttc

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 11

atcgaccttc gacgcgtttctc

<213> ORGANISM: DNA
<220> TYPE: DNA
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 12

atggaagtc gaccgttctc
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 12
atggaagtcaacggtctc

<210> SEQ ID NO 13
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 13
gagaacgctcgacctccct

<210> SEQ ID NO 14
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 14
gagaacgctcgacctccct

<210> SEQ ID NO 15
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 15
gagaacgctcgacctccct

<210> SEQ ID NO 16
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 16
gagaacgctcgacctccct

<210> SEQ ID NO 17
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<222> FEATURE: modified
<223> OTHER INFORMATION: modified

<400> SEQUENCE: 17
gagaacgctcgacctccct

<210> SEQ ID NO 18
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<220> FEATURE:
<210> SEQ ID NO 19
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 19
gagaagctg gacnttccat

<210> SEQ ID NO 20
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 20
gagaagctc gacacgtgat

<210> SEQ ID NO 21
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 21
tccatgctgg tcctgtatcct

<210> SEQ ID NO 22
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide

<400> SEQUENCE: 22
tccatgctgg tcctgtatcct

<210> SEQ ID NO 23
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<222> NAME/KEY: modified.base
<223> LOCATION: (8)...(8)
<223> OTHER INFORMATION: m5c

<400> SEQUENCE: 23
tctagtnngg tcctgtatcct

<210> SEQ ID NO 24
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic oligonucleotide
<226> FEATURE:
The invention claimed is:

1. A method of increasing interferon-gamma in a subject comprising administering to a subject an immunostimulatory oligonucleotide delivery complex, said complex comprising an immunostimulatory oligonucleotide linked to a biodegradable delivery complex, wherein the immunostimulatory oligonucleotide is 8 to 40 nucleotides in length, has greater than two unmethylated cytosine-guanine dinucleotides and comprises 5’ X1X2CGX3X43’, wherein C and G are unmethylated and X1, X2 are nucleotides, and X3 and X4 are pyrimidines, in an amount sufficient to increase interferon-gamma in said subject.

2. The method of claim 1, wherein said delivery complex is a liquid phase microcarrier.

3. The method of claim 1, wherein said immunostimulatory oligonucleotide is covalently linked to said delivery complex.

4. The method of claim 1, wherein said immunostimulatory oligonucleotide is non-covalently linked to said delivery complex.

5. The method of claim 1, wherein said immunostimulatory oligonucleotide comprises a phosphate backbone modification.

6. The method of claim 5, wherein said phosphate backbone modification is a phosphorothioate.

7. The method of claim 1, wherein the immunostimulatory oligonucleotide does not include a GCG trinucleotide at a 5’ and/or 3’ terminal.