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Figure 39. Relative error of the nearest neighbor prediction technique on the Duffing 

Map. 

 

 

 

 In the case of the Duffing Map, the neural network prediction methodology 

outperformed the two chaotic techniques. Disappointingly, the proposed technique was 

not as accurate as the neural network technique for prediction. However, it did 

outperform the nearest neighbor technique. Table 4 illustrates directly the performance of 

the three techniques on the Duffing Map. It is hypothesized that the cause of this poor 

performance was the sparseness of data in the center of the Duffing Map. As will be seen 

in the next sub-section, the new technique performs far better when the phase space does 

not contain this sparseness. 

 

Table 3. Comparison of the mean absolute error of the prediction techniques on the 

Duffing Map. 
Prediction Technique Mean Absolute Error 

Neural Network 0.3278 

Nearest Neighbor 1.1519 

Proposed Technique 0.9969 
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4.2.2 Prediction with the Henon Map 

 The Henon Map, as described in Eq. (27), is another well known difference 

equation with well understood dynamics. As with the Duffing map, the validation of the 

proposed prediction methodology uses the first 10,000 data points as the training set of 

the prediction algorithm. The prediction algorithm is then used to predict the next 100 

points. The Lyapunov exponent for the 10,000 points of the Henon Map was calculated to 

be 0.427386 (given a = 1.25 and b  = 0.3) and the optimal constant for the prediction 

algorithm given in Eq. (24) was generated by the modified evolutionary algorithm to be -

4.4055. Table 4 illustrates the prediction accuracy for the first 10 points of the prediction. 
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j    (27) 

 

 As can be seen from Table 4, the prediction algorithm does much better with the 

Henon Map dataset than it did with the Duffing Map dataset. This is partly due to the 

lower Lyapunov exponent value of the first 10,000 points of the Henon Map and the lack 

of the sparse center region found in the Duffing Map. Fig. 40 shows the relative error for 

the 100 predictions of the Henon Map. Clearly, the prediction schema does fairly well 

with most of the 100 predictions. While there are some larger relative errors in the 

predictions, there is not the large error exhibited in the Duffing Map. The mean absolute 

error for the predictions of the Henon Map was calculated to be 0.512295. 
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Table 4. Prediction Accuracy for the First 10 Predictions for the Henon Map 

Actual Predicted 
Absolute 

Error 
Relative 

Error 

1.148 1.177 0.029 0.025 

-0.933 -1.030 0.097 0.104 

0.125 -0.133 0.258 2.064 

0.698 0.666 0.032 0.046 

0.355 0.339 0.016 0.045 

1.0328 1.039 0.006 0.006 

-0.387 -0.411 0.024 0.062 

1.101 1.07561 0.025 0.023 

-0.812 -0.743 0.069 0.0850 
0.408 0.550 0.142 0.348 

 

 

 
Figure 40. Relative error the proposed prediction technique on the Henon Map 

 

 Again, the results of the new prediction methodology should be compared with 

those of existing methods. Using the same initial conditions as those which created the 

results in Fig. 40, a neural network, with the topology as described for the Duffing Map 

example, was used to predict the next 100 points of the Henon Map. The neural network 

produced a mean absolute error of 0.8857. Fig. 41 shows the relative error of the neural 

network for the 100 prediction points.  
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Figure 41. Relative error of the neural network on the Henon Map 

 

 

 To complete the comparison of the new prediction methodology to existing 

methodologies on the Henon Map, the nearest neighbor methodology, as described above 

in the Duffing Map example, was used to predict the next 100 points of the map. The 

nearest neighbor prediction methodology produced a mean absolute error of 0.6242. Fig. 

42 plots the relative error of the nearest neighbor method prediction of the Henon Map. 

 

 
Figure 42. Relative error of the nearest neighbor prediction methodology on the Henon 

Map. 

 

 

 

 It is easily seen that the proposed prediction methodology outperforms the 

existing methodology techniques. It is also shown that the neural network technique 
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performs the worst of the three techniques. With the lack of sparseness that was 

experienced in the Duffing Map, it is clearly shown that chaotic prediction techniques are 

more adept than standard stochastic techniques for deterministically chaotic systems. 

This statement is especially true of those systems which do not contain sparse regions of 

phase space within the orbits of the system. Table 5 illustrates directly the comparison of 

the three prediction techniques. 

 

Table 5. Comparison of errors for prediction of the Henon Map. 
Prediction Technique Mean Absolute Error 

Neural Network 0.8857 

Nearest Neighbor 0.6242 

Proposed Technique 0.5123 

 

 

4.2.3 Prediction on Wind Turbine Generator Speed. 

 For this section, data from a commercial wind turbine in service was captured at 

10 second intervals. From the over 100 parameters of the captured SCADA data two 

parameters were used for this example, the generator speed and the wind speed.  The 

combination of these two parameters was used in this prediction exercise. 4000 data 

points were used as the training set for the prediction algorithm and the generator speed 

was selected as the variable to predict. The original 4000 points of the generator speed 

are shown in Fig. 39, with the corresponding wind speed, and the phase portrait of those 

4000 points is given in Fig. 44. 
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Figure 43. The first 4000 data points for the generator speed of a given wind turbine at 10 

second intervals 

 

 

 

  
Figure 44. Phase Portrait of first 4000 points for generator speed of a given wind turbine. 
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The prediction algorithm is used to predict the next 100 points of the generator 

speed for the given turbine. The Lyapunov exponent for the first 4,000 points of the 

generator speed was calculated to be 0.17662 and the optimal constant for the prediction 

algorithm, given in Eq. (24), was generated by the modified evolutionary algorithm to be 

-3.6091. Table 4 illustrates the prediction accuracy for the first 10 points of the 

prediction. 

 

Table 6. Prediction Accuracy for the First 10 Predictions for the Generator Speed 

Actual Predicted 
Absolute 

Error 
Relative 

Error 

869.8 870.7 0.9 0.001 

870 869.7 0.3 0.0003 

870.5 870.0 0.5 0.0006 

868.8 868.6 0.2 0.0002 

868.1 871.9 3.8 0.004 

871.7 870.8 0.9 0.001 

870.1 870.2 0.1 0.0001 

870.2 871.4 1.2 0.001 

868.7 869.4 0.7 0.0008 

870 868.84 1.16 0.001 
 

 

As can be seen from Table 6, the prediction algorithm does very well with the 

prediction of generator speed. Fig. 45 illustrates the relative error for the 100 predictions 

of the generator speed. Clearly, the prediction schema does extremely well with the 100 

predictions. The mean absolute error for the predictions of the generator speed was 

calculated to be 11.95782. The mean absolute error is influenced by the large values of 

the actual data. The mean relative error better illustrates the error rate for this data set. 
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The mean relative error for the 100 predictions of generator speed was calculated to be 

0.013143 which is a strong validation of the proposed prediction methodology. 

 

 

Figure 45. Relative error for generator speed predictions. 

 

 

 Again, a comparison was performed between the three prediction methodologies 

discussed above. The neural network prediction algorithm was configured as in the 

previous two examples and produced results with a mean absolute error of 25.6415 for 

the next 100 points in the wind dataset. For the same dataset and prediction points the 

nearest neighbor methodology performed better, producing results with a mean absolute 

error of 14.2319.  The results of the neural network and nearest neighbor methodologies 

are given in Fig. 46 and 47 respectively. The direct comparison of the errors for the three 

prediction techniques is given in Table 7. 
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Figure 46. Relative error of the neural network for generator speed predictions. 

 

 

 
 

Figure 47. Relative error of the nearest neighbor methodology for generator speed 

predictions. 

 

 

 

 

Table 7. Comparison of the prediction methodologies mean absolute error for the wind 

dataset. 
Prediction Technique Mean Absolute Error 

Neural Network 25.6415 

Nearest Neighbor 14.2319 

Proposed Technique 11.9578 

 

  

 It is clear to see from Table 7 that the chaotic prediction methodologies again 

performed far better than the non-chaotic neural network on the chaotic dataset. 
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However, due to the nature of the data set, with its divergent regions of values, it is 

desirable to choose multiple regions of the dataset and compare the predictions of the 

three methodologies for each region. Table 8 describes the results of this comparison. 

The first column of Table 8 is the index from which the predictions began in each region. 

 

Table 8. Mean absolute error of prediction of the wind generator dataset. 

Starting Index Proposed Technique Nearest Neighbor Neural Network 

1001 9.879 9.983 11.388 

2001 6.448 7.053 8.981 

2901 5.310 6.753 93.513 

3501 7.662 8.082 9.564 

 

  

 As can be seen from Table 8, the proposed prediction technique does very well 

with the wind turbine generator dataset. The technique was able to adequately predict 

data points in all regions. In the region which produced the most difficulty for the neural 

network, the region where the data tends to zero, the proposed technique was able to 

respond with accurate predictions. These results clearly indicate that the proposed 

technique is a viable prediction algorithm. 

 

 

4.3 Discussion of Prediction Results 

The results of the examples given above indicate that the proposed prediction 

methodology does well in practice and remains fairly accurate over the length of the 

predictions to the limit of the Lyapunov exponent. It is also clear that the algorithm does 
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much better for Lyapunov exponents which are smaller in value, as would be expected. 

Table 9 illustrates this fact through comparison of the three examples above. 

 

Table 9. Prediction Methodology Accuracy 

Dataset λ value MAE MRE 

Duffing Map 0.505 0.997 2.153 

Henon Map 0.427 0.512 1.433 

Generator Speed 0.177 11.958 0.0131 

 

 

 The results given in Table 9 hold great promise for the proposed methodology’s 

accuracy. An additional benefit of the proposed prediction methodology is that it can be 

customized to the given dataset. Should a dataset produce prediction errors larger than 

desired it is possible to increase the frequency of the calculation of the constant c by the 

evolutionary algorithm. Additionally, the computation time for the predictions is 

moderate, relative to the dataset. Thus, the algorithm is appealing for control strategies as 

well as basic predictions. 
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CHAPTER 5. SYSTEM STATE CHANGE AND ANOMALY DETECTION IN 

CHAOTIC SYSTEMS 

 Many domains, such as industrial control systems, health care, and computer 

networking, are concerned with system state change detection. The early detection of 

system changes can assist in preventing catastrophic failure in critical systems such as the 

power grid. Additionally, state change detection can warn of such issues as cyber attacks 

on computing networks. The detection of these phenomena can be a challenging task. 

However, this task becomes more difficult when the system under question is represented 

by deterministically chaotic data. 

 The literature contains many references related to anomaly detection in linear, 

linearized, and stochastic systems. As examples, in the computer network/cyber domain 

research has been presented by Patcha et al. [54], Wang et al [55] and Fang et al [56]. 

Work was also reported in the medical domain such as the survey presented by Chandola 

et al [57] or the work of Chuah et al [58]. The state change detection domain is also well 

represented for the linear, linearized and stochastic realms. Azad et al [59] presented 

research related to state change detection in active and inactive systems and Radke et al 

[60] presented a survey of change detection techniques for the image domain. 

Unfortunately, the techniques of linear and stochastic state change, detection algorithms 

are insufficient for use on deterministically chaotic systems. 

Rapid advances in technology, especially in safety critical domains, have resulted 

in a greater need for accurate description and anomaly detection of deterministically 

chaotic systems. Domains such as the Smart Grid [7], alternative energy control, 

advanced cryptographic communications and even the human heart are driven by 
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deterministic chaos and require accurate state characterization and early detection of 

forthcoming anomalies. 

Limited research has been conducted in the domain of chaotic system state change 

detection. Tykierko [61] presented work which utilized changes in invariant metrics 

related to the chaotic system, such as the fractal dimension or the maximal Lyapunov 

exponent, to detect state changes. Chakraborty et al [62] proposed the use of symbolic 

dynamics filtering for anomaly detection. Ref. [62] was extended by Rao et al [63] in 

their review of the topic. However, these methodologies lack the ability to be readily 

visualized by the user and are computationally intense, therefore inappropriate for real 

time implementation. 

This section presents a system state change detection algorithm specifically for 

systems exhibiting deterministic chaos. The presented material takes advantage of the 

reconstructed phase space of the chaotic system through the course grained Ergodicity 

Plot and a novel transition matrix. The novel transition matrix can be utilized to detect 

system changes as new data is streamed into the algorithm. As will be shown, the 

proposed algorithm can be used in real time systems due to its extremely small 

computational footprint and is highly effective at detecting small changes in a chaotic 

system as well as direct anomalies. Further, the proposed algorithm is tunable with user 

defined parameters to assist in reducing false positive rates.  

 

5.1 Ergodic Transition Matrixes 

 It is possible to utilize the new Ergodicity Plot to better understand 

mathematically the regions of phase space which are visited by the orbits of the chaotic 
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system. To do so, a matrix of the transitions can be generated. Transition probability 

matrices are not novel in of themselves. The Markov Chain has been well studied and 

well represents the transition probabilities of a system [64]. However the matrix that will 

be generated here diverges from the standard Markov model through the use of the local 

Lyapunov exponent of the region represented by a member of the partition of the 

previous section to generate a transition measure rather than a transition probability. 

The calculation of the local Lyapunov exponent is performed as given in Chapter 

2, with only the data in the local region being considered. With the local Lyapunov 

exponent calculated for each region in the partitioned embedding phase space the Ergodic 

Transition Matrix can be generated as follows. Consider a equivariant partition I on the 

embedding phase space resulting in a 



�� � 

�� square matrix. For each cell, mi,j of the 

matrix, calculate the probability, ρ, that the orbit transitions from the ith region of the 

partitioned phase space to the jth region. Then the ergodic transition measure etm(●) for 

the cell mi,j is given in Eq. (28). The appendix of this thesis contains a pseudocode 

method of computer software for the creation of the ETM as described here. Table 9 

illustrates a small portion the Ergodic Transition Matrix for the data used to generate the 

EP for the Cedar Rapids, IA temperature data discussed in Chapter 3 and illustrated in 

Fig. 34. 

 

-+�n�& .p �  >F     (28) 
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Table 10.Portion of the Ergodic Transition Matrix for the EP in Fig. 34. 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0.000779 0.000779 0 0 0 0 

 

 

As can be seen in Table 10, The Ergodic Transition Matrix is often a sparse matrix. This 

is extremely beneficial though when seeking to perform real time analysis as will be 

shown in Chapter 6 with case studies. To facilitate the visualization of the entire Ergodic 

Transition Matrix the matrix is plotted as a surface plot in Fig. 48. 

 

 

Figure 48. Surface Plot of the Ergodic Transition Matrix for the Data in Fig. 16. 
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The Ergodic Transition Matrix (ETM) is highly effective at representing the 

manners by which the chaotic system traverses the embedding phase space. More 

importantly though, the partitioning of the embedding phase space can be viewed as the 

generation of system states where each member of the partition represents a specific 

system state. Then, the ETM can be viewed as representational of the traversal of system 

states by the chaotic system. As such it can be used for system state change and anomaly 

detection as presented next. 

 

5.2 Change Detection using the ETM 

 The ETM is a concise and manageable representation of the ergodicity of the 

chaotic system. As such, it contains useful information pertaining to the normal operating 

conditions of the chaotic system under consideration. It is possible to utilize the ETM to 

determine when the chaotic system is experiencing small state changes which could 

indicate the early occurrence of anomalous features (e.g. changes in the system states 

which indicate system degradation, possibly to failure). This section defines the use of 

the ETM for state change detection. Actual case study examples of this methodology are 

left for presentation in Chapter 6. 

 Consider a chaotic system which is currently operating without anomalies or 

outliers and is not experiencing changes in the system states. The attractor representing 

that system is representational of the system’s normal operating conditions. As such, it is 

possible to form the EP and ETM from the system’s attractor of normality. The ETM 

generated from the system’s attractor, and EP, forms a baseline pattern of trajectory 
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traversal within the embedding phase space and may be used as a benchmark by which 

future traversals may be measured. Define this type of ETM as the ETM of Normality, 

ETMNorm. It should be noted that, as with all machine learning techniques, the larger the 

training, or in this case normal, dataset available, within a reasonable limit, the more 

accurate the model will be. Thus, a sufficient sized sample of the normal operating states 

is desirous for the algorithm; however, this is subjective and dependent upon the system 

under consideration. 

 Given the ETM of Normality, ETMNorm, for the system under consideration, it is 

possible to stream new data into the algorithm and compare the ETM of the new data to 

the ETMNorm. To facilitate the comparison, a buffer is maintained, in a moving window 

method, of the new streaming data, as single data points do not facilitate the generation of 

an ETM. The size of this buffer is system dependent but a sufficient buffer size consists 

of 4-5 complete orbits of the chaotic system.  The ETM of the streaming data is created 

each time a complete (mean) orbit has been added to the buffer. As the new orbit is added 

to the buffer, the previous first orbit of the buffer is removed to facilitate maintaining a 

constant buffer size. The absolute difference between the ETM for the buffer, #�*���, 

and the, ETMNorm represents the degree of system state change, ∆s, as given in Eq. (29). 

 

B� � �#�*(�o� � #�*����     (29) 

  

The degree of system state change, ∆s, can be used to warn of systems which may 

be experiencing shifts in their operating states, as these phenomena will appear as 

differences between the buffer ETM from the ETM of Normality. It is possible to set a 
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threshold, �, based on the degree of state change metric, ∆s, such that a warning is given 

for state changes B� � �. The degree of system state change metric is sensitive to even 

small changes in the system operation and is therefore highly effective for state change 

detection. The use of the alarm threshold affords the tuning of the state change detection 

algorithm to reduce false positive rates. 

The buffer of the detection algorithm forms a moving window as new data is 

streamed into the system. Therefore, it is possible to continue to compare new data as it is 

encountered. Additionally, it is possible to evolve the ETMNorm to include recently 

encountered data, such as may be desired for systems which may include a break in 

period. In such systems it would then be more desirable to consider the initial data as 

transient to the actual ETMNorm. Obviously, evolution of the #�*(�o� is system 

dependent.  

Due to the compact size of the ETM, as a real valued matrix, it is easy to see how 

this methodology could be used in a real time monitoring system with little 

computational overhead. The ETMNorm is only a matrix of state change metrics, double 

precision, which is easily stored in resident memory for even the smallest of systems. The 

buffer ETM is easily generated with little overhead as well, making the proposed 

algorithm a very attractive near real-time detection system. The appendix of this thesis 

contains a pseudocode method for a computer program to perform anomaly and system 

state change detection as described here. 

In conclusion, this section has presented a novel anomaly and state change 

detection technique. The validity of this technique on actual chaotic systems is given in 

Chapter 6. The technique has been shown to be computationally simple and maintains a 
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small system footprint allowing it to be utilized in a near real-time environment on 

smaller embedded devices.   
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CHAPTER 6. CASE STUDIES 

 This section illustrates the effectiveness of the techniques proposed in this thesis 

through case studies in various domains. The case studies presented here represent real 

world systems and actual collected data. However, due to the sensitivity of some of the 

data presented, any information reflecting specific individuals has been cleansed and 

represented by discrete naming conventions which protect individual identities. The 

studies utilize one or more techniques from the material presented in the previous 

sections of this thesis. 

 

6.1 Classification of MMO Users through Ergodicity Plots 

 

This section describes research conducted in the domain of motif detection and 

association in Massive Multiplayer Online (MMO) environments. This research included 

classifying user types through network motif pattern recognition techniques, comparing 

these motifs to chaotic attractors reconstructed for each user, and determining if any such 

comparisons could be used as classification techniques in their own right. This case study 

illustrates the ability of chaotic attractors and EPs to be used as classifiers for instances of 

chaotic systems. 

 The dataset used for the research conducted was gleaned from publicly available 

Internet Relay Chat (IRC) logs for the online game Eve Online
®

. The dataset represented 

individual messages posted to the IRC logs by members of the gaming community. There 

were 274 channels from which the data was taken. Combined, there were 1,075,490 

messages logged. Each message consisted of a timestamp indicating when the message 
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posted to the IRC channel, the username (avatar name) of the user posting the message, 

and the message content. 

 The data obtained from the IRC logs represented a time span beginning on 

November 2006 and ending on May 2010. These logs were parsed into a SQL server 

database to facilitate easy retrieval of the data. In addition to the simple parsing of the 

data, a database of id numbers for each user (avatar) which consisted of simple integer 

values was generated. This was done in order to preserve privacy of the individual users 

during the course of the research. Additionally, a database of relations was generated to 

indicate the relationships between users in the IRC channels. These relations were 

generated based on temporal proximity to a given message. Therefore, distinct users who 

had posted messages to the IRC channel in a given time prior and following the posting 

of a message are considered to have a relationship, albeit implicit. 

 A network diagram was generated for each user in the database using an open 

source network software tool. A visual inspection of these diagrams revealed patterns 

which could be used for classification. Due to these patterns being detected the author 

undertook a pattern analysis of the network diagrams and discovered a number of distinct 

classes of patterns.  For the sake of the present study, the number of classes was limited 

to be three; however this is a user selected parameter and can be changed. These classes 

were related to the user’s role within the game. The three classifications that emerged 

were the leader role (one who leads missions within the MMO environment), workers 

(one who follows instructions and works at a low level to perform tasks during MMO 

missions) and finally spies (one who communicates with both their own team and the 

opposing team in the MMO environment).  These classifications were confirmed through 
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polling users of the IRC logs in this particular MMO environment. Fig. 47 illustrates the 

network diagram for a user classified as a leader, while Fig. 48 shows a follower and Fig. 

49 a spy. 

As can be clearly seen in Fig. 49-51 there are distinct relationship link motifs for 

each class of user. Leaders link to a select few other users in the IRC channels
4
 whereas 

workers link to a large number of other users. It is clear from Fig. 51 that users classified 

as spies link to two or more distinct user groups. Assumptions concerning different IRC 

channels and chat rooms were taken into account in developing these diagrams and do 

not influence the classifications presented herein. 

 

 

Figure 49. Network Diagram for a user classified as a leader. 

                                                 
4
 For the game known as Eve Online it has been shown that leaders are most often utilizing voice 

communications such as Skype rather than IRC chat. 
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Figure 50. Network Diagram for a user classified as a worker. 

 

 

 

 

 
Figure 51. Network Diagram for a user classified as a spy. 
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From the network diagram classification it was possible to determine specific 

network motifs. These motifs were discovered during the pattern recognition phase of 

this research. The motifs alone are sufficient for correctly classifying the network 

diagrams. It was discovered that this classification was accurate to above 80% for the 

data tested. The IRC logs indicated that some users only communicated once or twice 

during the period considered and as such these may have been misclassified. 

 In addition to performing a pattern discovery analysis of the network diagrams, 

research was performed to understand if the data representing user chats in IRC channels 

was nonlinear (deterministically chaotic). To determine if the user data in the IRC 

channels comes from a deterministically chaotic distribution a dataset was created of the 

user data which utilized the timestamp and the length of the message. These values form 

a vector for each communication event. The timestamp is transformed to represent the 

hour in which the message was sent but the temporal order is maintained during the 

transformation. The text length is used to represent the size of the message. The message 

content is not used for this research which presents a large benefit for the analysis of 

large datasets. 

Transforming the IRC data into embedding phase space utilizes the embedding 

theorems discussed in Chapter 2 of this thesis. This results in visualization (in 2 or 3 

dimensions in these cases) of the chaotic system. The ergodicity of the orbits in the 

trajectory offer a unique classification point that will be discussed shortly. Fig. 52-54 

illustrates the chaotic attractors for the users whose network diagrams are given in Fig. 

49-51. 
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Figure 52. Chaotic Attractor for user in Fig. 47. 

 

 

 

 
Figure 53. Chaotic Attractor for user in Fig. 48. 
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Figure 54. Chaotic Attractor for user in Fig. 49. 

 

 

As can be seen in Fig. 52-54, the attractors for each specific type of user are 

distinct. This uniqueness between classes was discovered to exist in common for the 

users when classified by their network diagrams. Since the network diagrams and the 

chaotic attractors represent two distinct types of information from the dataset it is 

possible to conclude that the classifications are distinct enough as well.  

The plots in Fig. 52-54 are difficult to read and extract understandable 

information from. However, these plots can be used as another form of classification. It 

was discovered that leaders communicated with short directed messages while workers 

had a tendency to communicate with longer, more disjoint, messages and for a longer 
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time. The users classified as spies tended to closely mimic the workers with the addition 

of some of the leader characteristics. This discovery is seen graphically in Fig. 53-55. 

Since the data from the IRC channels if from a chaotic distribution it is ergodic. 

To better visualize the embedding phase spaces, Ergodicity Plots were constructed by 

following the methods described in section 3 of this thesis. The EP is a condensed version 

of the chaotic attractor and is suitable for rapid classification of users based upon 

communications data. Fig. 55-57 illustrates the Ergodicity Plots for the attractors given in 

Fig. 52-54. The EPs of Fig. 55-57 have been colored red to highlight their differences 

from the chaotic attractors. 

 

 

Figure 55. EP for the attractor shown in Fig. 50. 
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Figure 56. EP for the attractor shown in Fig. 51. 

 

 

 

 
Figure 57. EP for the attractor shown in Fig. 52. 
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The research discussed in this section has shown that using simply the time stamp 

and message size of a log of messages for a specific user it is possible to classify the user 

as a leader, a worker or a spy (as well as other classes defined by the user)  in the MMO 

environment. The computation time of this classification is greatly reduced over semantic 

mining of the tests of communications thus offering an added benefit to the algorithm. 

Further, the work presented in this section has highlighted an application of the novel 

Ergodicity Plot (EP). The EP is easily utilized in a classification, or pattern recognition, 

scenario in a far more efficient manner than the simple reconstruction of the attractor of 

the nonlinear system. The use of the EPs for classifying the users in the MMO 

environment presented an accuracy of 81%. This compares very well with the 

computationally more intense method of developing network diagrams for each user. 

 

6.2 Chaotic Attractors for Cyber Security 

Cyber security is critical for uninterrupted functioning of our government, private 

and public enterprises. Realizing the cyber security threat, the Cyber Command has been 

created by our government to protect our infrastructure. Protection of such national 

infrastructure depends upon real time detection of cyber threats and subsequent remedial 

action. Extensive resources are being leveraged by government and private enterprises for 

cyber security but the complexity of the problem requires new ideas to be developed and 

implemented to overcome it.  Many companies face cyber attacks daily because of the 

nature of their business. This section presents the theory and results of a unique research 

project to develop an innovative attractor model for cyber security. 
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Today’s advanced, targeted malware typically goes undetected by commercial 

anti-virus software. The Advanced Persistent Threat (APT), in particular, is a 

classification of adversary which uses social engineering and sophisticated malicious 

code to gain a persistent presence inside an organization and, over time, to exfiltrate 

sensitive and proprietary company information [65]. Since these attacks change rapidly 

and are highly targeted, knowledge of past attacks is not sufficient to prevent future 

attacks. In particular, the traditional reactive approach of creating and using security 

patches does not root out the next threat. Rather, a robust and dynamic model of normal 

behavior (for a computer, user, network, etc.) is needed in order to identify malicious or 

abnormal patterns of behavior. Most approaches to modeling system behavior do not take 

into account the non-linearity (i.e., time dependence) of the data. The proposed 

methodology, however, will leverage deterministic chaos to learn the behavioral norm for 

systems in an adaptive fashion. The proposed evolutionary attractor model adapts as new 

information comes in. This case study project uses the theory of deterministic chaos and 

chaotic attractors to develop an adaptive model of normal behavior for individual user 

email. The intent is to use such models to detect behaviors that lie outside the region of 

normal behavior, thus identifying sophisticated attacks such as the APT attack in real 

time.  

6.2.1 Normal Cyber Activity 

Users operate in the cyber domain as part of their daily activity. Various tasks are 

accomplished in this domain including communications, planning, productivity, 

transactions, and entertainment. By nature, users perform these actions within some 

relative pattern. These patterns are governed by many factors including sleeping habits, 
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family life, and work schedules. These patterns are inherently nonlinear (time-dependent) 

due to many intervening events. This section discusses the exploitation of these patterns 

for determining a strange attractor which represents a user’s “normal” cyber activity and 

how that normality may be used to detect cyber attacks. 

Consider a user in a corporate environment. On a given day that user checks 

email, surfs the Internet, interacts with software (causing file I/O operations to take 

place), sends instant messages, checks social networking sites, banks online, and so forth. 

Those actions can all be considered linked to cyber activity directly or indirectly. 

Monitoring these activities in some form of a log file generates a time series data set 

which can be analyzed for nonlinearity. It is hypothesized that while exact activity at the 

same time every day is an unlikely event, certain forms of cyber activity will be 

conducted in relative proximity to a pattern of some given time interval. This pattern 

forms a strange attractor. 

Translation of the monitoring log into values that can be utilized by a nonlinear 

analysis is not a trivial task. Email activity is logged containing parameters for the 

sender’s email address, the recipient’s email address, the size of the email in bytes, the 

number of attachments, the time it was sent, the GMT time offset, and the content of the 

subject line. The majority of this data is non-numeric and therefore must undergo some 

transformation, or discretization, to be utilized in the reconstruction of a nonlinear phase 

portrait for that user.  

Email addresses can be transformed simply through the assignment of a unique 

identifying integer or through more complicated means such as clustering by domain. 

The size of emails and number of attachments already represent a real-valued 
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measurement. The GMT time offset is also an integer value and can remain as such. The 

subject line transformation poses an interesting problem as it is not easily transformed 

into a real value. To transform the subject line into a real value, a cluster analysis can be 

performed on all of the subject lines in a given training dataset. Each subject line will 

therefore belong to a specific cluster. The number of that cluster can be used to represent 

the subject line for the email under consideration. Time should also be truncated to an 

integer value for the hour of the day to avoid setting the granularity of the model too fine. 

Other forms of cyber activity may be transformed similar to email activity. Once the 

transformation of the cyber activity logs into real-valued space has been performed, the 

data may be analyzed to determine if the activity represents a deterministically chaotic 

system. This determination was performed following the methods given in Chapter 2 of 

this thesis. 

Knowing that the system is deterministically chaotic indicates a strange attractor 

can be recreated in embedding phase space to properly represent the dynamics of the 

system. The attractor reconstruction is performed as explained in Chapter 2 of this thesis. 

If the data used to reconstruct the attractor is known to come from normal cyber activity 

and that there were no cyber attacks recorded in the data, then the strange attractor can be 

used as the boundaries of normality for the training data. This normality can be 

associated with a single user if the training data represents the cyber activity of that user 

only. Each user will have a unique normality attractor. This is a fact that should be 

exploited to monitor for cyber attacks. 

A cyber attack can be detected as an outlier to the attractor of normal behavior. A 

point would be considered an outlier if it is outside the boundaries of the attractor of 
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normality for the user under consideration as discussed in Chapter 3 of this thesis. 

However, not all points that fall outside the attractor will be from a cyber attack. Often 

times a user’s work details changes, this will have an impact on normality for that user. 

Hence, points outside the bounds of the attractor are flagged as anomalous and 

monitored. Should further activity, similar to the anomalous behavior, be detected the 

attractor can be evolved to include that activity. Other heuristics may also be used. 

Initially, this would be a manual process to ensure proper characterization of the 

anomalous behavior. Should no further activity correlate to the anomalous detected 

activity, then that activity is most likely something that should be considered for deeper 

analysis by a technician. 

The monitoring of cyber activity for outliers to the bounds of the attractor could 

be adjusted such that the number of false positives being reported is reduced. Conversely, 

the system could be adjusted to report every anomaly without evolution of the attractor. 

Evolution and reporting are fully customizable by the end user to assure satisfactory 

results. 

6.2.2 Case Study Results 

For this project, 28 users were chosen as test subjects. The dataset collected for 

building the attractors contained metadata on email into and out of a government 

contractor company for each individual user. A training set of two months’ worth of 

email was collected for each user and was used to create chaotic attractors for each user. 

The email address parameter and the email size parameter were large enough that they 

could have overwhelmed the remaining parameters of the email data. Therefore, all 

parameters are normalized such that they reside in a similar (albeit not the same) interval 
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to avoid this problem. Additionally, the reconstruction of phase space is performed on the 

norm of the vector of all the parameters for each email as opposed to individual 

parameters alone. This allows for a better understanding of the data in general and a 

cleaner attractor representation for detection. With the norm calculated it is possible to 

determine if the system is truly nonlinear by calculating the maximum Lyapunov 

exponent of the data. Fig. 58 illustrates the raw data that has been normalized for the 

emails of a specific user. The Lyapunov exponent of this data was calculated to be 3.4328 

which clearly indicates a chaotic system. 

 

 
Figure 58. Raw normalized, timestamp ordered email data for a single user. 

 

 

Fig. 59 displays the embedded phase space for the data in Fig. 58. It is easy to see 

the ergodicity of the cyber behavior of this user from the repetitious revisiting of specific 

regions within the phase space. New emails were added to the attractor generated in Fig. 
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59. As this new email data was evaluated, points which were outside the bounds of the 

attractor were automatically flagged as anomalous and therefore highlighted to be 

monitored. Fig. 60 depicts this activity and the flagged data points. Since the emails 

identified here were responded to and were from the same (new) sender email address, 

the emails are likely legitimate. It may be desirable to include this as a rule for when to 

include outliers and evolve the attractor. Fig. 61 indicates another email attractor for a 

separate user. In this figure the outliers are identified and labeled.  

 

 

Figure 59. Embedded Phase Space for the data in Fig. 56. 

 

 

 



 

Figure 

 

 This section has presented the results of a cyber security project. An explanation 

of the use of strange attractors to model normal cyber behavior

successfully shown in this case study that cyber activity is deterministically chaotic. 

Further, the novel methodologies of section 3 of this thesis were supported through the 

detection of email anomalies in the cyber data set.

 

 

 
Figure 60. Email Attractor with detected anomalies. 

This section has presented the results of a cyber security project. An explanation 

of the use of strange attractors to model normal cyber behavior was given. It was 

successfully shown in this case study that cyber activity is deterministically chaotic. 

Further, the novel methodologies of section 3 of this thesis were supported through the 

detection of email anomalies in the cyber data set. 

106 

 

This section has presented the results of a cyber security project. An explanation 

was given. It was 

successfully shown in this case study that cyber activity is deterministically chaotic. 

Further, the novel methodologies of section 3 of this thesis were supported through the 
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 Figure 61. Email attractor with outliers described.  

 

 

  

Email from co-worker’s home email 

that was replied to immediately 

Email from competitor for data analysis 

(only 1 time) 

Email from father’s work email. Only 

one of its type. 
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6.3 ETMs for Anomaly and State Change Detection Case Study 

 This section presents case studies supporting the proposed system state change 

detection algorithm described in Chapter 5.2. The case studies presented use data from 

both mathematical difference equations and real world systems. The difference equations 

considered in this section are the Duffing Map and the Henon Map. The real world 

systems observed here consist of a cyber security dataset and a dataset captured from 

existing wind turbines in service. 

 

6.3.1 EMTs for the Duffing and Henon Maps 

 The Duffing map, given in Eq. (12), is a well known chaotic system. In order to 

represent the effectiveness of the proposed detection methodology a set of 4000 iterations 

is used as the initial training set forming the #�*(�o�. The first 4000 iterations of the 

Duffing map were illustrated in Fig. 23 for the x axis. The #�*(�o� for this initial set 

was generated, using a 15 by 15 square partition,  and is plotted as a contour map in Fig. 

62. 

 

Figure 62. Contour plot of the ETM of Normality for the first 4000 iterations of the 

Duffing Map. 
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As would be expected for the Duffing Map, the majority of the transitions take 

place in the periphery of the attractor. For the purposes of simple change detection 

illustration, the second 4000 points of the Duffing Map were generated and ran as 

streaming data to the change detection algorithm. The mean orbit length of the Duffing 

Map’s EP for a phase space generated with delay τ = 1 and embedding dimension d = 2 

was calculated as 219 iterations. Therefore, a buffer window of size 876 iterations was 

used to compare the second 4000 iterations to the first. Table 11 illustrates the mean 

differences, δmean, minimum differences, δmin, (greater than zero) and the maximum 

differences, δmax, between the #�*(�o� and the #�*���� for the streaming of the 

second 4000 iterations. 

 

Table 11. Differences between the ETM of Normality and the buffer ETM for the 1st and 

2nd 4000 iterations of the Duffing Map 

Buffer 

Number 
δmin δmax δmean 

1 1.05E-04 0.0186 4.58E-06 

2 3.98E-05 0.0211 8.53E-06 

3 3.98E-05 0.0452 1.59E-05 

4 1.05E-04 0.0532 1.80E-05 

5 1.05E-04 0.0727 2.12E-05 

6 3.98E-05 0.0612 2.05E-05 

7 3.98E-05 0.0383 1.33E-05 

8 1.05E-04 0.0163 8.29E-06 

9 1.05E-04 0.0320 1.13E-05 

10 1.08E-04 0.0457 1.37E-05 

11 3.46E-05 0.0293 1.00E-05 

12 4.26E-05 0.0174 7.80E-06 

13 3.98E-05 0.0271 1.08E-05 

14 1.05E-04 0.0467 1.72E-05 

15 1.05E-04 0.0467 1.72E-05 
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To better illustrate the absolute differences between the ETMNorm (first 4000 

iterations) of the Duffing Map and the ETM for the second 4000 iterations Fig. 63 plots 

the absolute difference between the cells of the compared ETMs as a line graph. The plot 

in Fig. 63, considers an ETM for the entire second 4000 points as opposed to the buffer 

methodology whose results were illustrated in Table 11. As can be seen in Fig. 63, the 

absolute differences between the two ETMs are relatively small. This illustrates the 

ability of the proposed detection methodology to detect even small state changes in the 

system. 

To complete the case study of the Duffing Map the third 4000 iterations of the 

map were streamed against the initial 4000 iterations in a manner similar to the second 

4000 iterations. The buffer size remained constant at 876 iterations. Table 12 illustrates 

the differences between the #�*(�o�and the #�*���� for the streaming of the third 

4000 iterations in a manner identical to that of Table 10. 

 

 
Figure 63. Absolute differences between the ETM of Normality and the ETM of the 

second 4000 iterations of the Duffing Map. 
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Table 12. Differences between the ETM of Normality and buffer ETM for the 1st and 3rd 

4000 iterations of the Duffing Map 
Buffer 

Number 
δmin δmax δmean 

1 3.46E-05 7.35E-02 2.00E-05 

2 3.98E-05 6.69E-02 1.99E-05 

3 3.98E-05 5.12E-02 1.76E-05 

4 3.98E-05 3.16E-02 1.16E-05 

5 1.05E-04 1.94E-02 7.67E-06 

6 3.46E-05 2.25E-02 8.67E-06 

7 3.46E-05 2.09E-02 8.27E-06 

8 3.46E-05 2.00E-02 8.22E-06 

9 3.46E-05 1.29E-02 7.82E-06 

10 4.26E-05 1.26E-02 7.09E-06 

11 1.42E-04 3.41E-02 1.18E-05 

12 3.46E-05 5.15E-02 1.79E-05 

13 1.08E-04 5.45E-02 1.91E-05 

14 1.05E-04 5.33E-02 1.77E-05 

15 6.22E-05 3.43E-02 1.22E-05 

 

 

The example of the Duffing map has illustrated that the proposed state change 

detection methodology is highly effective at detecting even small changes to the system. 

It was shown that the Duffing map does experience slight system shifts as it moves 

through time and that these shifts can be detected as state changes to the system. 

However, the Duffing Map case study does not directly indicate the ability of the 

proposed algorithm to detect direct outliers of the system. To illustrate this ability the 

Henon map, given in Eq. (14), is used. 

 The generation of the ETMNorm for the Henon map (with a = 1.4 and b  = 0.3) is 

performed using the first 4000 iterations of the difference equation for the embedding of 
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the x axis data with a square 20 by 20 partition. Fig. 64 displays the EP for the Henon 

map and Fig. 65 illustrates the contour plot for the ETMNorm for this system. 

 

 
Figure 64. EP of the first 4000 iterations of the Henon Map 

 
Figure 65. Contour plot of the ETM of Normality for the first 4000 iterations of the 

Henon Map 
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To illustrate the ability of the proposed methodology to detect direct anomalies in 

a chaotic system, a single point is modified in the first buffer of the Henon map. The 

mean orbit length of the Henon map with an imposed 20 by 20 square partition is 76; 

therefore, a sufficient buffer size is 304 iterations. Fig. 66 displays the contour plot of the 

first buffer of the Henon map with a single point modified by 10% to form an anomaly. 

Fig. 67 displays the contour plot of the absolute differences between the ETMNorm and the 

ETM of the first buffer for the Henon Map.  

 

 
Figure 66. Contour plot of the ETM of the first buffer of the Henon Map with a single 

point modified manually by 10% to be an anomaly. 
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Figure 67. Contour plot of the absolute differences of the ETM of Normality and the 

ETM of the first buffer (with a single point modified) for the Henon Map. 

  

 As can be seen in Fig. 67, the proposed methodology correctly displays a shift in 

the system for a single anomalous point. This detection is highly effective at detecting 

even small anomalies. The data point which was changed to develop the ETMs for Fig. 

16-17 was originally -1.0667 and was changed by 10%; however the proposed 

methodology detected this anomaly as a direct outlier in the system showing a maximum 

B� = 0.0106. Given that the mean difference between the ETMNorm and the first buffer of 

the Henon map is ~0.00205, the maximum difference would be detected even though a 

threshold may have been set to filter out the small changes of the system. 

 This sub-section has illustrated the use of the proposed methodology on two well 

known; the difference equations of the Henon map and the Duffing map. The use of the 

Duffing map illustrated the ability of the system to detect even small shifts in the chaotic 



115 

 

 

 

system which could indicate state changes forthcoming. The Henon map was used to 

illustrate the ability of the proposed methodology to detect direct anomalies. Further, this 

sub-section has illustrated the effectiveness of the novel Ergodic Transition Matrix to 

detect system state changes and anomalies. It was show, using two deterministically 

chaotic systems that the ETM detection algorithm is highly accurate and is capable of 

detecting extremely small system state changes as well as direct anomalies in 

mathematical difference equations. 

 

6.3.2 ETMs for Cyber Security 

 This sub-section presents the results of a case study in which the proposed chaotic 

state change and anomaly detection algorithms were applied to a cyber security dataset. 

The dataset used for this study was originally produced by the Massachusetts Institute of 

Technology’s (MIT) Lincoln Laboratory for the Defense Advanced Research Projects 

Agency (DARPA) [66]. The dataset consists of network data captured from a simulated 

United States military network. The simulated network was representational of a true 

military cyber network while maintaining obvious identification constraints pertinent to 

the national security level of the network. The captured data was organized into 5, week 

long, increments. The first, week long, increment of data represented a clean network 

with no intrusions or attacks. The second week of data represented the network in normal 

operation with 43 intrusions/attacks tagged with their attack name and time. The 

remaining 3, week long, increments represented normal network operations without 

tagging the intrusions/attacks. 
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 For the purposes of this case study, only week 1 and week 2 data was used. This 

constraint was placed to illustrate clearly the ability of the proposed ETMs to capture 

anomalies present in the data. The ETM of Normality, ETMNorm was generated using the 

data from week 1. The continuous buffer ETM, ETMBuff was created using through 

streaming the data from week 2. The ETMBuff was generated for in segments of 4 mean 

orbits of the data, where each orbit consisted of 228 records captured from the network. 

 The DARPA Intrusion Detection dataset used here was the 1999 version of the 

available datasets (3 dataset were available: 1998, 1999 and 2000). This version consisted 

of 6 files for each day of the week being considered – a Transmission Control Protocal 

(tcp) dump of data being received from outside the network, a tcp dump of data generated 

inside of the network, Solaris BSM audit data, NT audit data, dumps of selected 

directories and a file system listing record. Of these 6 files, only two were considered for 

this case study: the tcp dumps from both internal and external sources. These two files 

contained the same variables – a record identification number, the time of the record, the 

source address of the record, the destination address of the record, the protocol which was 

used, and a comment field. There exist a total of 14,406,511 records for week 1 and 

13,178,081 records for week 2 in the files being considered. 

 The proposed ETM state change and anomaly detection methodology functions 

best when the system dynamics are represented by a single variable. In order to utilize the 

ETM methodology on the DARPA dataset a transformation was required to render the 

data useful. This transformation consisted of discretizing the source, destination and 

protocol fields. The identification, time and comment fields were removed from the 

dataset while the time-based ordering of the data was preserved, as is required for chaotic 
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systems. The number of distinct values for the three variables considered is given in 

Table 13, where only week 1 and week 2 were considered. 

 

Table 13. Number of distinct values for the variables considered in the DARPA case 

study. 

Week Variable Number of Distinct Values 

1 Source 1631 

2 Source 1610 

1 Destination 1638 

2 Destination 1616 

1 Protocol 47 

2 Protocol 47 

 

  

 To facilitate the most complete representation of the system, each record was 

appended with an integer value which represented the string concatenation of the three 

variables considered. Thus a record which contained a discretized source of 1245, a 

discretized destination of 1047 and a discretized protocol of 25 was appended with the 

integer 1245104725. It is this integer value that is used to create the embedding phase 

space for the intrusion detection dataset, which is also used to form the ETMs which will 

be considered here. 

 Initially, it was hypothesized that a single ETM of Normality would be generated 

based on the training data from week 1. Following this methodology, the validation data 

of week 2 would be streamed into the ETM system in buffers whose sizes are four mean 

orbits. The ETM of the buffer is compared to the ETM of Normality for detection of 

system shifts or anomalies. The ETM partition size that showed optimal results was a 15 

x 15 square partition (this was based on an embedding phase space reconstruction with a 

time delay of 8 and an embedding dimension of 3).  
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 Disappointingly, it was discovered that this process was not effective at detecting 

intrusions/attacks. It was determined that this was due to the overwhelming size, and 

variance, of the training data. Table 14 illustrates this fact through the use of a confusion 

matrix of the single ETM of Normality ran on the cyber dataset. The confusion matrix 

indicates the number of actual intrusion/attacks that were detected in the system (upper 

left cell), the number of records which were falsely determined to be intrusions/attacks 

(upper right cell), the number of intrusions/attacks which were not detected (lower left 

cell) and the number of records which were not intrusions/attacks and were not detected 

as an intrusion/attack (lower right cell). 

 

Table 14. Confusion matrix for the proposed ETM detection system on the DARPA 

dataset with a single ETM of Normality. 
 True Anomaly False Anomaly 

True Anomaly 24 345 

False Anomaly 19 13177693 

 

 

 As can be seen in Table 14, the single ETM of Normality misclassified 345 

records sets as intrusions/attacks which were not of such a class. Also, the system also 

ignored 19 intrusions/attacks which were present in the system. The false positive rate of 

the single ETM of Normality for the system is unacceptable for use as a true cyber 

security detection system. Further, the number of intrusions/attacks which were missed 

by the system is also too high to be acceptable.  

 To facilitate a more robust detection system, it was determined that an ensemble 

of ETMs of Normality should be created from the week 1 training data. To perform this 

task, it was determined to split the training data into a number of segments, each of which 

consisted of a relatively equal number of mean orbits. After much trial and error it was 



119 

 

 

 

found that 18 segments worked most effectively for the cyber security dataset. Therefore, 

an ensemble of 18 ETMs of Normality was generated. Fig 68 illustrates two of these 

ETMs of Normality in the form of a surface plot of the ETM. 

 

 

 
Figure 68. Two examples from the ensemble of ETMs of Normality for the DARPA 

dataset. 

 

 

 The use of the ensemble of ETMs of Normality inherently increased the 

computation cost of comparison to the buffer ETM. Each buffer ETM was required to be 

compared to the full ensemble of ETMs of Normality. This required a determination of 

which ETM in the ensemble of ETMs of Normality best matched the buffer ETM, and 

calculation of the differences between that ETM of Normality and the buffer ETM. If the 

difference between the two ETMs was above the given threshold then the buffered record 

set was flagged as containing an intrusion/attack. While there was an increase in 

computation, it was discovered that the system still operated in near real-time conditions 

due to the sparse matrix format of the ETMs. Table 15 illustrates, in the form of a 

confusion matrix, the gain in accuracy that was achieved through the use of the ensemble 

of ETMs of Normality.  
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Table 15. Confusion matrix for the DARPA dataset using an ensemble of ETMs of 

Normality. 
 True Anomaly False Anomaly 

True Anomaly 42 8 

False Anomaly 1 13178030 

 

 

 

 As can be seen in Table 15, the use of an ensemble of ETMs of Normality greatly 

increased the accuracy of the detection system. With a single missed intrusion/attack and 

only 8 record sets misclassified as intrusions/attacks, the detection system is highly useful 

as a cyber security intrusion/attack detection system. Thus, this it has been successfully 

shown that the ETM detection system proposed in this thesis is effective at detection of 

anomalies and can be made to perform very well even with extreme dataset sizes. 

 

6.3.3 ETMs for the Detection of Mechanical System Change 

 This sub-section highlights a case study of system change detection, using the 

proposed ETM change detection system, in a mechanical system. The system under 

consideration for this study is a wind turbine in existing use on a wind farm in Iowa. Data 

from the wind turbine Supervisory Control and Data Acquisition (SCADA) system was 

collected by the Intelligent Systems Laboratory of the University of Iowa [35]. The 

captured data was continuous for only short times due to the collection system deployed 

at the time of the data capture. Thus, the case study of this sub-section uses this SCADA 

data to build a model of continuous wind turbine data which is then slowly modified to 

indicate a shift in the mechanical system. 

 The SCADA data used in this study consisted of 105 different variables, along 

with time, date, and the turbine number, for each record. The data used here was 

collected every 10 minutes from a single wind turbine. For the purposes of this study only 
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two variables were used from the 105 available variables – wind speed and torque. Other 

variables were initially considered, such as bearing temperatures and drive train 

acceleration; however it was discovered that each of these variables varied 

proportionately with the wind speed. Thus, it was decided that wind speed and torque 

would suffice for the study.  

 The SCADA data was used to form a model of torque versus wind speed. To 

facilitate an accurate model, many different samples of data were extracted from the 

SCADA data (Fig. 69 illustrates an instance, of the torque measurement over time, from 

the samples extracted). This extracted data was then used to generate an equation in 

which torque is a function of wind speed. The equation generation was performed using a 

genetic program which evolved a population, of randomly defined equations. The genetic 

program’s fitness function was the calculation of the MAE of the evolved equation from 

the actual data.  

 
Figure 69. Torque (vertical axis) given in relation to time for a single wind turbine for 

17.36 days. 
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 The software used to generate model equation for torque, using the genetic 

program algorithm, is a freely available solution created at Cornell University entitled 

Eureqa [67]. This software generate the equation used for this case study as a function of 

wind, as given in Eq. (30) where � is the wind speed at a given time. This model 

produced a polynomial whose MAE to the actual data was 0.0178.  

 

+wY ¡- � f¢�N£¤ � f¢¥fN¦� , ¦£¢£�/ � �¦¢§¦�i , f¢���¨ � �¢��N�© , �¢��fN�©      (30) 

 

 To generate the data for the ETM system shift and anomaly detection algorithm to 

use, wind speed must be given for each time increment. Rather than develop a model for 

wind speed, which could introduce further differences between the model and the real 

data, it was decided to use data collected from an anemometer. The author purchased and 

installed a commercial anemometer at a height of 30 feet above the ground in an open 

area with no buildings or significant contours within 500 feet of the site. Data was 

captured for a period of three months from this instrument and was used to generate the 

model data for this case study. 

 An ETM of Normality was generated using two months worth of the model data. 

For this time frame no anomalies or shifts were allowed to enter the torque model, thus 

forming the normal operating conditions of the modeled turbine. The embedding phase 

space for this system was generated with a time delay of 2 and an embedding dimension 

of 3. The ETM’s for this system were created based upon a 10 x 10 square partitioning of 

the embedding phase space. The ETM of Normality for this time period is presented in 

the surface plot of Fig. 70. 
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Figure 70. ETM of Normality for the wind turbine torque model. 

 

 

 

 To simulate the wind turbine experiencing small system changes in the torque 

parameter, the model equation was modified to include a very small increase in the 

torque value. This was accomplished through the addition of a value proportionate to the 

torque value as given in Eq. (31). This modified data was then streamed into the ETM 

detection system as a buffer, in a manner similar to previous case studies in this thesis. 

Fig. 71 illustrates an example ETM for this buffer. 

 

+wY ¡- � +wY ¡- , �+w¡Y ¡- ª �¢����   (31) 
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Figure 71. Buffer ETM for the wind turbine torque model. 

 

 

 

 It is very difficult to detect the differences present between the ETM of Normality 

given in Fig. 70 and the Buffer ETM given in Fig. 71. To facilitate ease of observation, a 

surface plot of the absolute differences between these ETMs is given in Fig. 72. As can 

be seen from Fig. 72, the ETM system change and anomaly detection methodology was 

successful at capturing the extremely small system shift introduced in this model. In fact, 

it was discovered that the system detected the small perturbations in the first buffer ETM 

that contained the perturbations. 

 Fig. 72 definitively illustrates that the ETM system shift and anomaly detection 

methodology effectively captures minute system changes. The scale of the absolute 

difference (vertical axis) in Fig. 72 is in the level of 10
-4

, hence even very small system 

shifts are able to be captured using the ETM methodology. 

 

 



125 

 

 

 

 
Figure 72. Absolute difference between the ETM of Normality (Fig.  70) and the buffer 

ETM (Fig. 71) for the wind turbine torque model. 

 

 

 This section has effectively illustrated that the ETM system shift and anomaly 

detection methodology is adept at detecting direct anomalies (e.g. the Duffing Map) and 

system shifts (e.g. the Henon Map) in mathematical difference equations. Further, this 

section has show that this methodology is effective at detecting direct anomalies (e.g. 

DARPA Intrusion Detection dataset) and system shifts (e.g. the wind turbine torque 

model) in real world systems as well. The results of the case studies in this section 

indicate that there is just cause to pursue further research into the application of the  

detection methodology presented in Section 5.2   
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CHAPTER 7. CONCLUSIONS 

 This thesis has presented research related to the detection of normality and non-

normality in deterministically chaotic systems. The research presented illustrated a 

number of novel techniques for accomplishing this detection. This concluding section 

highlights these techniques and the results of the use of these techniques in the various 

case studies which were presented. 

 In Section 3, a new methodology for visualizing the states of a chaotic system was 

introduced. The traversal of system states was represented by this visualization known 

herein as the Ergodicity Plot (EP). The proposed EP represented system dynamics in a 

much clearer fashion than has been given in standard Recursion Plots and can be used to 

detect system normality. Further, the use of the EP allowed for detection of frequent 

system state change motifs which are then used to predict the next system states. 

 A new prediction technique for chaotic systems was presented in Section 4 of this 

thesis. This technique took into account the sensitive dependence on initial conditions, 

which is a hallmark of chaotic systems, to produce more accurate results in prediction. 

The technique was validated on three dataset, the standard Henon and Duffing maps as 

well as a dataset captured from a working industrial wind turbine. The results of the 

prediction technique on these datasets indicated that it is a viable technique for 

determining future values of a chaotic system, 

 Section 5 presented a novel anomaly and state change detection technique. This 

technique utilized the inherent ergodicity of chaotic systems to determine normality of 

the system and to detect small system shifts as well as direct anomalies. It was shown that 

the presented technique offers a unique ability to detect such changes and does so in a 
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computationally small manner which allows for real time deployment of the technique. 

The technique was validated in Section 6 using the standard Henon map, a mechanical 

system and a cyber security dataset. The results of these validation case studies clearly 

indicated the viability of the technique in real world scenarios. 

 

7.1 Future Research 

 The research described above has illustrated that there is merit in pursuing further 

work related to the domain of normality and anomaly/state change detection in chaotic 

systems. The encouraging results of the presented novel algorithms and methodologies, 

as seen in the successful case studies, should be extended to facilitate better 

understanding of deterministically chaotic systems and to assist in real time monitoring of 

such systems. This section describes future work extending the research of the previous 

sections.  

 The novel Ergodic Transition Matrix of Chapter 5 accurately detects outliers, 

anomalies and system state changes in deterministically chaotic systems. Future work 

concerning the ETMs includes applying the ETM detection methodology to embedded 

devices to facilitate real-time anomaly and system shift detection in mission critical 

electronic devices. Devices such as critical communications systems and air 

navigation/collision avoidance systems may benefit from the application of this detection 

methodology. 

 Finally, future research in this domain includes the use of Ergodic Transition 

Matrices on human physiological data. Some initial work performed in this area has 

indicated the ability to accurately monitor and detect anomalies in the human heart. 
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Future research should explore the possibilities of the detection of such ailments as 

epileptic seizures prior to their attack, detection of heart arrhythmias prior to a heart 

attack or stroke, and possible detection of heightened stress in soldiers as they enter 

combat arenas.  
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APPENDIX 

 

C# Method for the Calculation of Lyapunov Exponent 

 This section presents a sample C# method for the calculation of the Lyapunov 

exponent discussed in Chapter 2 of this thesis. The method assumes that the time series 

dataset has been stored in a C# data table object and that the embedding dimension of the 

reconstructed phase space has been stored as an integer in a variable called 

_embeddingDim. Finally, the method presented here assumes that the time delay 

parameter of the reconstructed phase space has been stored as an integer in a variable 

called _timeDelay. Fig A1-A2 presents the C# code for this method. 

 

 

 

 

 

 

 

 

Figure A1. C# Method for calculating the Lyapunov exponent of a time series. 

 

 

 

 

 

private double CalculateLyapunov() 
{ 
      double sum = 0.0; 
      int cnt = 0; 
      int embedDim = _embeddingDim; 
      int _tau = _timeDelay; 
             
      for (int tt = 0; tt < _currentData.Rows.Count - (int)(embedDim * _tau);  
     t++) 
      { 
           //create a vector for the initial point 
           Dictionary<int, double> initPt = new Dictionary<int, double>(); 
           for (int m = 0; m < embedDim; m++) 
           { 
             initPt.Add(m,  
     Convert.ToDouble(_currentData.Rows[tt + (int)(m * _tau)][0])); 
           } 
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Figure A2. Method for calculating the Lyapunov exponent of a time series continued. 

//find the closest point to the initial point 
Dictionary<int, double> closePoints = new Dictionary<int, double>(); 
for (int uu = 0; uu < _currentData.Rows.Count - (int)(embedDim * _tau); uu++) 
{ 
   if (uu == tt) 
      continue; 
   Dictionary<int, double> pt = new Dictionary<int, double>(); 
   for (int n = 0; n < embedDim; n++) 
   { 
      pt.Add(n,Convert.ToDouble(_currentData.Rows[uu + (int)(n * _tau)][0])); 
   } 
   //calculate the Euclidean distance between these points 
   double tempDist = 0.0; 
   foreach (int d in initPt.Keys) 
   { 
       tempDist += Math.Pow(initPt[d] - pt[d], 2); 
   } 
   tempDist = Math.Sqrt(tempDist); 
   closePoints.Add(uu, tempDist); 
} 
int closestPt = -1; 
double distance = double.MaxValue; 
foreach (int w in closePoints.Keys) 
   if (closePoints[w] < distance) 
   { 
       distance = closePoints[w]; 
       closestPt = w; 
   } 
//Evolve the attractor by _tau and recalclate the distance of each point 
Dictionary<int, double> initPt2 = new Dictionary<int, double>(); 
for (int m = 0; m < embedDim; m++) 
{ 
   initPt2.Add(m, Convert.ToDouble(_currentData.Rows[tt + (int)_tau +  
               (int)(m * _tau)][0])); 
} 
 
Dictionary<int, double> closePt2 = new Dictionary<int, double>(); 
for (int m = 0; m < embedDim; m++) 
{ 
    closePt2.Add(m, Convert.ToDouble(_currentData.Rows[closestPt +  
  (int)_tau + (int)(m * _tau)][0])); 
} 
double tDist = 0.0; 
foreach (int d in initPt2.Keys) 
{ 
    tDist += Math.Pow(initPt2[d] - closePt2[d], 2); 
} 
tDist = Math.Sqrt(tDist); 
//calculate the sum 
double val = Math.Abs(tDist / distance); 
if (val != 0.0) 
{ 
   if (val < double.MaxValue) 
       sum += Math.Log(val, 2); 
   if (sum < double.MinValue || sum > double.MaxValue) 
        break; 
} 
cnt++; 
tt += (int)_tau; 
} 
if (sum == 0.0) 
  return sum; 
sum = sum * (1.0 / (double)(cnt * _tau)); 
  return sum; 
} 
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Pseudocode Method for Creating an Ergodicity Plot 

 This section presents pseudocode for a computer software method for creating an 

ergodicity plot discussed in Chapter 3 of this thesis. The code supplied here assumes that 

the time series has been transformed into embedding phase space using the time delay 

and embedding dimension parameters discussed in Chapter 2 of this thesis. The code also 

assumes a user supplied parameter, gridSize, of the size of the partition to be imposed on 

the phase space. Figure A3 presents this pseudocode. 

 

 
Figure A3. Pseudocode method for creating an ergodicity plot. 

 

CreateErgodicityPlot(int gridSize) 
{ 
   //determine the maximum and minimum values of the phase space 
   //methods are not supplied as they are intuitive 
   double max = MaximumPhaseSpaceValue(); 
   double min = MinimimPhaseSpaceValue(); 
   double binSize = (max-min)/gridSize; 
   List bins = new List(); 
   for tt=0; tt<gridSize; tt++ 
  for ii=0; ii<gridSize; ii++; 
       { 
   Bin.LowY = min + (tt * binSize); 
   Bin.HighY = min + (tt * binSize) + binSize; 
    Bin.LowX = min + (ii*binSize); 
   Bin.HighX = min + (ii*binSize) + binSize; 
   bins.Add(Bin); 
 } 
   //assign each point to the centroid of the bin that contains that point 
   for tt=0; tt<embeddingPhaseSpace.Size; tt++ 
   { 
 double x = embeddingPhaseSpace[tt].X; 
 double y = embeddingPhaseSpace[tt].Y; 
 foreach Bin in bins 
 { 
   if(x>=Bin.LowX and x<=Bin.HighX) 
      if(y>=Bin.LowY and y<=Bin.HighY) 
         Bin.Points.Add(x,y); 
 } 
   } 
   //plot the centroids following the time series order, place the bin in an orbit 
   List orbits = new List(); //list of bins in order of traversal 
   foreach point in embeddingPhaseSpace 
 foreach Bin in bins 
    if(Bin.Points.Contains(point)) 
           { 
   Plot(Bin.Center); 
               Orbits.Add(Bin); 
     } 
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Pseudocode Method for Creation of an ETM 

 This section presents a pseudocode method for the creation of an Ergodicity 

Transition Matrix discussed in Chapter 5 of this thesis. The presented method assumes 

that an Ergodicity Plot, whose pseudocode presentation was given in previous appendix, 

has previously been created and uses the Orbits parameter, and the Bin structures, of that 

method. The code also assumes a user supplied parameter, gridSize, of the size of the 

partition to be imposed on the phase space. Figure A4 presents this pseudocode. 

 

 
Figure A4. Pseudocode method for the creation of an ETM. 

 

 

CreateErgodicityTransitionMatix(gridSize, Orbits) 
{ 
   size = gridSize * gridSize; 
   double[,] transitions = new double[size,size]; 
 
   //initialize the array 
   for ii=0; ii<size; ii++ 
   { 
 for tt=0; tt<size; tt++; 
    transitions[ii,tt] = 0; 
   } 
   
   //using the bins of the Ergodicity Plot, create the ETM 
   for (int tt = 1; tt < orbits.Count; tt++) 
   { 
       Bin toCell = orbits[tt]; 
       Bin fromCell = orbits[tt - 1]; 
       row = (gridSize * fromCell.Center) + fromCell.Center; 
       col = (gridSize * toCell.Center) + toCell.Center; 
       transitions[row, col] += 1; 
   } 
   for (int r = 0; r < gridsize * gridsize; r++) 
   { 
        for (int c = 0; c < gridsize * gridsize; c++) 
             transitions[r, c] = (transitions[r, c]/orbits.Count); 
   } 
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Pseudocode Method for Using ETMs of Normality and Streaming Data to Detect 

Anomalies 

 This section presents a pseudocode method for a computer software program for 

the detection of anomalies or system state changes in a chaotic system using the 

methodology described in Chapter 5 of this thesis. The presented method assumes that 

the time series data for the training set has been transformed into embedding phase space 

as described in Chapter 2 of this thesis. The method also assumes that the user is 

supplying the streaming data as a parameter in segments of 3-4 mean orbit lengths. 

Finally, the method requires a user supplied parameter which determines the threshold of 

differences between the training data ETM and the streamed data ETM. Methods of 

previous appendices are also utilized. Fig. A5 illustrates the pseudocode method. 

 

 
Figure A5. Pseudocode method for the detection of anomalies or system shifts in 

streamed data into the ETM methodology. 

  

DetectShiftsAndAnomalies(trainingData, streamedData, gridSize, deviation) 
{ 
    
   //create the etm of the training data    
   Orbits = CreateErgodicityPlot(trainingData, gridSize); 
   normETM = CreateErgodicityTransitionMatrix(trainingData, gridSize, Orbits); 
    
   //create the etm of the streaming data 
   SOrbits = CreateErgodicityPlot(streamedData, gridSize); 
   buffETM = CreateErgodicityTransitionMatrix(streamedData, gridSize, SOrbits); 
 
   //compare the matrices 
   for ii=0; ii<gridSize*gridSize; ii++ 
 for tt=0; tt<gridSize*gridSize; tt++ 
    if(AbosluteValue(normETM[ii,tt]-buffETM[ii,tt])>deviation) 
  return true; 
 
   //no anomalies or shifts are detected if execution arrives at this point 
   return false; 
} 
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