

71

Figure 39. Relative error of the nearest neighbor prediction technique on the Duffing

Map.

 In the case of the Duffing Map, the neural network prediction methodology

outperformed the two chaotic techniques. Disappointingly, the proposed technique was

not as accurate as the neural network technique for prediction. However, it did

outperform the nearest neighbor technique. Table 4 illustrates directly the performance of

the three techniques on the Duffing Map. It is hypothesized that the cause of this poor

performance was the sparseness of data in the center of the Duffing Map. As will be seen

in the next sub-section, the new technique performs far better when the phase space does

not contain this sparseness.

Table 3. Comparison of the mean absolute error of the prediction techniques on the

Duffing Map.
Prediction Technique Mean Absolute Error

Neural Network 0.3278

Nearest Neighbor 1.1519

Proposed Technique 0.9969

0

0.5

1

1.5

2

2.5

3

3.5

1 11 21 31 41 51 61 71 81 91

72

4.2.2 Prediction with the Henon Map

 The Henon Map, as described in Eq. (27), is another well known difference

equation with well understood dynamics. As with the Duffing map, the validation of the

proposed prediction methodology uses the first 10,000 data points as the training set of

the prediction algorithm. The prediction algorithm is then used to predict the next 100

points. The Lyapunov exponent for the 10,000 points of the Henon Map was calculated to

be 0.427386 (given a = 1.25 and b = 0.3) and the optimal constant for the prediction

algorithm given in Eq. (24) was generated by the modified evolutionary algorithm to be -

4.4055. Table 4 illustrates the prediction accuracy for the first 10 points of the prediction.

g
��
 � �� , � � �
�/
���
 � h
�

j (27)

 As can be seen from Table 4, the prediction algorithm does much better with the

Henon Map dataset than it did with the Duffing Map dataset. This is partly due to the

lower Lyapunov exponent value of the first 10,000 points of the Henon Map and the lack

of the sparse center region found in the Duffing Map. Fig. 40 shows the relative error for

the 100 predictions of the Henon Map. Clearly, the prediction schema does fairly well

with most of the 100 predictions. While there are some larger relative errors in the

predictions, there is not the large error exhibited in the Duffing Map. The mean absolute

error for the predictions of the Henon Map was calculated to be 0.512295.

73

Table 4. Prediction Accuracy for the First 10 Predictions for the Henon Map

Actual Predicted
Absolute

Error
Relative

Error

1.148 1.177 0.029 0.025

-0.933 -1.030 0.097 0.104

0.125 -0.133 0.258 2.064

0.698 0.666 0.032 0.046

0.355 0.339 0.016 0.045

1.0328 1.039 0.006 0.006

-0.387 -0.411 0.024 0.062

1.101 1.07561 0.025 0.023

-0.812 -0.743 0.069 0.0850
0.408 0.550 0.142 0.348

Figure 40. Relative error the proposed prediction technique on the Henon Map

 Again, the results of the new prediction methodology should be compared with

those of existing methods. Using the same initial conditions as those which created the

results in Fig. 40, a neural network, with the topology as described for the Duffing Map

example, was used to predict the next 100 points of the Henon Map. The neural network

produced a mean absolute error of 0.8857. Fig. 41 shows the relative error of the neural

network for the 100 prediction points.

0

2

4

6

8

10

12

1 11 21 31 41 51 61 71 81 91

74

Figure 41. Relative error of the neural network on the Henon Map

 To complete the comparison of the new prediction methodology to existing

methodologies on the Henon Map, the nearest neighbor methodology, as described above

in the Duffing Map example, was used to predict the next 100 points of the map. The

nearest neighbor prediction methodology produced a mean absolute error of 0.6242. Fig.

42 plots the relative error of the nearest neighbor method prediction of the Henon Map.

Figure 42. Relative error of the nearest neighbor prediction methodology on the Henon

Map.

 It is easily seen that the proposed prediction methodology outperforms the

existing methodology techniques. It is also shown that the neural network technique

0

100

200

300

400

1 11 21 31 41 51 61 71 81 91

0

50

100

150

200

250

300

1 11 21 31 41 51 61 71 81 91

75

performs the worst of the three techniques. With the lack of sparseness that was

experienced in the Duffing Map, it is clearly shown that chaotic prediction techniques are

more adept than standard stochastic techniques for deterministically chaotic systems.

This statement is especially true of those systems which do not contain sparse regions of

phase space within the orbits of the system. Table 5 illustrates directly the comparison of

the three prediction techniques.

Table 5. Comparison of errors for prediction of the Henon Map.
Prediction Technique Mean Absolute Error

Neural Network 0.8857

Nearest Neighbor 0.6242

Proposed Technique 0.5123

4.2.3 Prediction on Wind Turbine Generator Speed.

 For this section, data from a commercial wind turbine in service was captured at

10 second intervals. From the over 100 parameters of the captured SCADA data two

parameters were used for this example, the generator speed and the wind speed. The

combination of these two parameters was used in this prediction exercise. 4000 data

points were used as the training set for the prediction algorithm and the generator speed

was selected as the variable to predict. The original 4000 points of the generator speed

are shown in Fig. 39, with the corresponding wind speed, and the phase portrait of those

4000 points is given in Fig. 44.

76

Figure 43. The first 4000 data points for the generator speed of a given wind turbine at 10

second intervals

Figure 44. Phase Portrait of first 4000 points for generator speed of a given wind turbine.

77

The prediction algorithm is used to predict the next 100 points of the generator

speed for the given turbine. The Lyapunov exponent for the first 4,000 points of the

generator speed was calculated to be 0.17662 and the optimal constant for the prediction

algorithm, given in Eq. (24), was generated by the modified evolutionary algorithm to be

-3.6091. Table 4 illustrates the prediction accuracy for the first 10 points of the

prediction.

Table 6. Prediction Accuracy for the First 10 Predictions for the Generator Speed

Actual Predicted
Absolute

Error
Relative

Error

869.8 870.7 0.9 0.001

870 869.7 0.3 0.0003

870.5 870.0 0.5 0.0006

868.8 868.6 0.2 0.0002

868.1 871.9 3.8 0.004

871.7 870.8 0.9 0.001

870.1 870.2 0.1 0.0001

870.2 871.4 1.2 0.001

868.7 869.4 0.7 0.0008

870 868.84 1.16 0.001

As can be seen from Table 6, the prediction algorithm does very well with the

prediction of generator speed. Fig. 45 illustrates the relative error for the 100 predictions

of the generator speed. Clearly, the prediction schema does extremely well with the 100

predictions. The mean absolute error for the predictions of the generator speed was

calculated to be 11.95782. The mean absolute error is influenced by the large values of

the actual data. The mean relative error better illustrates the error rate for this data set.

78

The mean relative error for the 100 predictions of generator speed was calculated to be

0.013143 which is a strong validation of the proposed prediction methodology.

Figure 45. Relative error for generator speed predictions.

 Again, a comparison was performed between the three prediction methodologies

discussed above. The neural network prediction algorithm was configured as in the

previous two examples and produced results with a mean absolute error of 25.6415 for

the next 100 points in the wind dataset. For the same dataset and prediction points the

nearest neighbor methodology performed better, producing results with a mean absolute

error of 14.2319. The results of the neural network and nearest neighbor methodologies

are given in Fig. 46 and 47 respectively. The direct comparison of the errors for the three

prediction techniques is given in Table 7.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 11 21 31 41 51 61 71 81 91

79

Figure 46. Relative error of the neural network for generator speed predictions.

Figure 47. Relative error of the nearest neighbor methodology for generator speed

predictions.

Table 7. Comparison of the prediction methodologies mean absolute error for the wind

dataset.
Prediction Technique Mean Absolute Error

Neural Network 25.6415

Nearest Neighbor 14.2319

Proposed Technique 11.9578

 It is clear to see from Table 7 that the chaotic prediction methodologies again

performed far better than the non-chaotic neural network on the chaotic dataset.

0

0.1

0.2

0.3

0.4

0.5

1 11 21 31 41 51 61 71 81 91

0

0.1

0.2

0.3

0.4

0.5

1 11 21 31 41 51 61 71 81 91

80

However, due to the nature of the data set, with its divergent regions of values, it is

desirable to choose multiple regions of the dataset and compare the predictions of the

three methodologies for each region. Table 8 describes the results of this comparison.

The first column of Table 8 is the index from which the predictions began in each region.

Table 8. Mean absolute error of prediction of the wind generator dataset.

Starting Index Proposed Technique Nearest Neighbor Neural Network

1001 9.879 9.983 11.388

2001 6.448 7.053 8.981

2901 5.310 6.753 93.513

3501 7.662 8.082 9.564

 As can be seen from Table 8, the proposed prediction technique does very well

with the wind turbine generator dataset. The technique was able to adequately predict

data points in all regions. In the region which produced the most difficulty for the neural

network, the region where the data tends to zero, the proposed technique was able to

respond with accurate predictions. These results clearly indicate that the proposed

technique is a viable prediction algorithm.

4.3 Discussion of Prediction Results

The results of the examples given above indicate that the proposed prediction

methodology does well in practice and remains fairly accurate over the length of the

predictions to the limit of the Lyapunov exponent. It is also clear that the algorithm does

81

much better for Lyapunov exponents which are smaller in value, as would be expected.

Table 9 illustrates this fact through comparison of the three examples above.

Table 9. Prediction Methodology Accuracy

Dataset λ value MAE MRE

Duffing Map 0.505 0.997 2.153

Henon Map 0.427 0.512 1.433

Generator Speed 0.177 11.958 0.0131

 The results given in Table 9 hold great promise for the proposed methodology’s

accuracy. An additional benefit of the proposed prediction methodology is that it can be

customized to the given dataset. Should a dataset produce prediction errors larger than

desired it is possible to increase the frequency of the calculation of the constant c by the

evolutionary algorithm. Additionally, the computation time for the predictions is

moderate, relative to the dataset. Thus, the algorithm is appealing for control strategies as

well as basic predictions.

82

CHAPTER 5. SYSTEM STATE CHANGE AND ANOMALY DETECTION IN

CHAOTIC SYSTEMS

 Many domains, such as industrial control systems, health care, and computer

networking, are concerned with system state change detection. The early detection of

system changes can assist in preventing catastrophic failure in critical systems such as the

power grid. Additionally, state change detection can warn of such issues as cyber attacks

on computing networks. The detection of these phenomena can be a challenging task.

However, this task becomes more difficult when the system under question is represented

by deterministically chaotic data.

 The literature contains many references related to anomaly detection in linear,

linearized, and stochastic systems. As examples, in the computer network/cyber domain

research has been presented by Patcha et al. [54], Wang et al [55] and Fang et al [56].

Work was also reported in the medical domain such as the survey presented by Chandola

et al [57] or the work of Chuah et al [58]. The state change detection domain is also well

represented for the linear, linearized and stochastic realms. Azad et al [59] presented

research related to state change detection in active and inactive systems and Radke et al

[60] presented a survey of change detection techniques for the image domain.

Unfortunately, the techniques of linear and stochastic state change, detection algorithms

are insufficient for use on deterministically chaotic systems.

Rapid advances in technology, especially in safety critical domains, have resulted

in a greater need for accurate description and anomaly detection of deterministically

chaotic systems. Domains such as the Smart Grid [7], alternative energy control,

advanced cryptographic communications and even the human heart are driven by

83

deterministic chaos and require accurate state characterization and early detection of

forthcoming anomalies.

Limited research has been conducted in the domain of chaotic system state change

detection. Tykierko [61] presented work which utilized changes in invariant metrics

related to the chaotic system, such as the fractal dimension or the maximal Lyapunov

exponent, to detect state changes. Chakraborty et al [62] proposed the use of symbolic

dynamics filtering for anomaly detection. Ref. [62] was extended by Rao et al [63] in

their review of the topic. However, these methodologies lack the ability to be readily

visualized by the user and are computationally intense, therefore inappropriate for real

time implementation.

This section presents a system state change detection algorithm specifically for

systems exhibiting deterministic chaos. The presented material takes advantage of the

reconstructed phase space of the chaotic system through the course grained Ergodicity

Plot and a novel transition matrix. The novel transition matrix can be utilized to detect

system changes as new data is streamed into the algorithm. As will be shown, the

proposed algorithm can be used in real time systems due to its extremely small

computational footprint and is highly effective at detecting small changes in a chaotic

system as well as direct anomalies. Further, the proposed algorithm is tunable with user

defined parameters to assist in reducing false positive rates.

5.1 Ergodic Transition Matrixes

 It is possible to utilize the new Ergodicity Plot to better understand

mathematically the regions of phase space which are visited by the orbits of the chaotic

84

system. To do so, a matrix of the transitions can be generated. Transition probability

matrices are not novel in of themselves. The Markov Chain has been well studied and

well represents the transition probabilities of a system [64]. However the matrix that will

be generated here diverges from the standard Markov model through the use of the local

Lyapunov exponent of the region represented by a member of the partition of the

previous section to generate a transition measure rather than a transition probability.

The calculation of the local Lyapunov exponent is performed as given in Chapter

2, with only the data in the local region being considered. With the local Lyapunov

exponent calculated for each region in the partitioned embedding phase space the Ergodic

Transition Matrix can be generated as follows. Consider a equivariant partition I on the

embedding phase space resulting in a

�� �

�� square matrix. For each cell, mi,j of the

matrix, calculate the probability, ρ, that the orbit transitions from the ith region of the

partitioned phase space to the jth region. Then the ergodic transition measure etm(●) for

the cell mi,j is given in Eq. (28). The appendix of this thesis contains a pseudocode

method of computer software for the creation of the ETM as described here. Table 9

illustrates a small portion the Ergodic Transition Matrix for the data used to generate the

EP for the Cedar Rapids, IA temperature data discussed in Chapter 3 and illustrated in

Fig. 34.

-+�n�& .p � >F (28)

85

Table 10.Portion of the Ergodic Transition Matrix for the EP in Fig. 34.

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0.000779 0.000779 0 0 0 0

As can be seen in Table 10, The Ergodic Transition Matrix is often a sparse matrix. This

is extremely beneficial though when seeking to perform real time analysis as will be

shown in Chapter 6 with case studies. To facilitate the visualization of the entire Ergodic

Transition Matrix the matrix is plotted as a surface plot in Fig. 48.

Figure 48. Surface Plot of the Ergodic Transition Matrix for the Data in Fig. 16.

86

The Ergodic Transition Matrix (ETM) is highly effective at representing the

manners by which the chaotic system traverses the embedding phase space. More

importantly though, the partitioning of the embedding phase space can be viewed as the

generation of system states where each member of the partition represents a specific

system state. Then, the ETM can be viewed as representational of the traversal of system

states by the chaotic system. As such it can be used for system state change and anomaly

detection as presented next.

5.2 Change Detection using the ETM

 The ETM is a concise and manageable representation of the ergodicity of the

chaotic system. As such, it contains useful information pertaining to the normal operating

conditions of the chaotic system under consideration. It is possible to utilize the ETM to

determine when the chaotic system is experiencing small state changes which could

indicate the early occurrence of anomalous features (e.g. changes in the system states

which indicate system degradation, possibly to failure). This section defines the use of

the ETM for state change detection. Actual case study examples of this methodology are

left for presentation in Chapter 6.

 Consider a chaotic system which is currently operating without anomalies or

outliers and is not experiencing changes in the system states. The attractor representing

that system is representational of the system’s normal operating conditions. As such, it is

possible to form the EP and ETM from the system’s attractor of normality. The ETM

generated from the system’s attractor, and EP, forms a baseline pattern of trajectory

87

traversal within the embedding phase space and may be used as a benchmark by which

future traversals may be measured. Define this type of ETM as the ETM of Normality,

ETMNorm. It should be noted that, as with all machine learning techniques, the larger the

training, or in this case normal, dataset available, within a reasonable limit, the more

accurate the model will be. Thus, a sufficient sized sample of the normal operating states

is desirous for the algorithm; however, this is subjective and dependent upon the system

under consideration.

 Given the ETM of Normality, ETMNorm, for the system under consideration, it is

possible to stream new data into the algorithm and compare the ETM of the new data to

the ETMNorm. To facilitate the comparison, a buffer is maintained, in a moving window

method, of the new streaming data, as single data points do not facilitate the generation of

an ETM. The size of this buffer is system dependent but a sufficient buffer size consists

of 4-5 complete orbits of the chaotic system. The ETM of the streaming data is created

each time a complete (mean) orbit has been added to the buffer. As the new orbit is added

to the buffer, the previous first orbit of the buffer is removed to facilitate maintaining a

constant buffer size. The absolute difference between the ETM for the buffer, #�*���,

and the, ETMNorm represents the degree of system state change, ∆s, as given in Eq. (29).

B� � �#�*(�o� � #�*���� (29)

The degree of system state change, ∆s, can be used to warn of systems which may

be experiencing shifts in their operating states, as these phenomena will appear as

differences between the buffer ETM from the ETM of Normality. It is possible to set a

88

threshold, �, based on the degree of state change metric, ∆s, such that a warning is given

for state changes B� � �. The degree of system state change metric is sensitive to even

small changes in the system operation and is therefore highly effective for state change

detection. The use of the alarm threshold affords the tuning of the state change detection

algorithm to reduce false positive rates.

The buffer of the detection algorithm forms a moving window as new data is

streamed into the system. Therefore, it is possible to continue to compare new data as it is

encountered. Additionally, it is possible to evolve the ETMNorm to include recently

encountered data, such as may be desired for systems which may include a break in

period. In such systems it would then be more desirable to consider the initial data as

transient to the actual ETMNorm. Obviously, evolution of the #�*(�o� is system

dependent.

Due to the compact size of the ETM, as a real valued matrix, it is easy to see how

this methodology could be used in a real time monitoring system with little

computational overhead. The ETMNorm is only a matrix of state change metrics, double

precision, which is easily stored in resident memory for even the smallest of systems. The

buffer ETM is easily generated with little overhead as well, making the proposed

algorithm a very attractive near real-time detection system. The appendix of this thesis

contains a pseudocode method for a computer program to perform anomaly and system

state change detection as described here.

In conclusion, this section has presented a novel anomaly and state change

detection technique. The validity of this technique on actual chaotic systems is given in

Chapter 6. The technique has been shown to be computationally simple and maintains a

89

small system footprint allowing it to be utilized in a near real-time environment on

smaller embedded devices.

90

CHAPTER 6. CASE STUDIES

 This section illustrates the effectiveness of the techniques proposed in this thesis

through case studies in various domains. The case studies presented here represent real

world systems and actual collected data. However, due to the sensitivity of some of the

data presented, any information reflecting specific individuals has been cleansed and

represented by discrete naming conventions which protect individual identities. The

studies utilize one or more techniques from the material presented in the previous

sections of this thesis.

6.1 Classification of MMO Users through Ergodicity Plots

This section describes research conducted in the domain of motif detection and

association in Massive Multiplayer Online (MMO) environments. This research included

classifying user types through network motif pattern recognition techniques, comparing

these motifs to chaotic attractors reconstructed for each user, and determining if any such

comparisons could be used as classification techniques in their own right. This case study

illustrates the ability of chaotic attractors and EPs to be used as classifiers for instances of

chaotic systems.

 The dataset used for the research conducted was gleaned from publicly available

Internet Relay Chat (IRC) logs for the online game Eve Online
®

. The dataset represented

individual messages posted to the IRC logs by members of the gaming community. There

were 274 channels from which the data was taken. Combined, there were 1,075,490

messages logged. Each message consisted of a timestamp indicating when the message

91

posted to the IRC channel, the username (avatar name) of the user posting the message,

and the message content.

 The data obtained from the IRC logs represented a time span beginning on

November 2006 and ending on May 2010. These logs were parsed into a SQL server

database to facilitate easy retrieval of the data. In addition to the simple parsing of the

data, a database of id numbers for each user (avatar) which consisted of simple integer

values was generated. This was done in order to preserve privacy of the individual users

during the course of the research. Additionally, a database of relations was generated to

indicate the relationships between users in the IRC channels. These relations were

generated based on temporal proximity to a given message. Therefore, distinct users who

had posted messages to the IRC channel in a given time prior and following the posting

of a message are considered to have a relationship, albeit implicit.

 A network diagram was generated for each user in the database using an open

source network software tool. A visual inspection of these diagrams revealed patterns

which could be used for classification. Due to these patterns being detected the author

undertook a pattern analysis of the network diagrams and discovered a number of distinct

classes of patterns. For the sake of the present study, the number of classes was limited

to be three; however this is a user selected parameter and can be changed. These classes

were related to the user’s role within the game. The three classifications that emerged

were the leader role (one who leads missions within the MMO environment), workers

(one who follows instructions and works at a low level to perform tasks during MMO

missions) and finally spies (one who communicates with both their own team and the

opposing team in the MMO environment). These classifications were confirmed through

92

polling users of the IRC logs in this particular MMO environment. Fig. 47 illustrates the

network diagram for a user classified as a leader, while Fig. 48 shows a follower and Fig.

49 a spy.

As can be clearly seen in Fig. 49-51 there are distinct relationship link motifs for

each class of user. Leaders link to a select few other users in the IRC channels
4
 whereas

workers link to a large number of other users. It is clear from Fig. 51 that users classified

as spies link to two or more distinct user groups. Assumptions concerning different IRC

channels and chat rooms were taken into account in developing these diagrams and do

not influence the classifications presented herein.

Figure 49. Network Diagram for a user classified as a leader.

4
 For the game known as Eve Online it has been shown that leaders are most often utilizing voice

communications such as Skype rather than IRC chat.

93

Figure 50. Network Diagram for a user classified as a worker.

Figure 51. Network Diagram for a user classified as a spy.

94

From the network diagram classification it was possible to determine specific

network motifs. These motifs were discovered during the pattern recognition phase of

this research. The motifs alone are sufficient for correctly classifying the network

diagrams. It was discovered that this classification was accurate to above 80% for the

data tested. The IRC logs indicated that some users only communicated once or twice

during the period considered and as such these may have been misclassified.

 In addition to performing a pattern discovery analysis of the network diagrams,

research was performed to understand if the data representing user chats in IRC channels

was nonlinear (deterministically chaotic). To determine if the user data in the IRC

channels comes from a deterministically chaotic distribution a dataset was created of the

user data which utilized the timestamp and the length of the message. These values form

a vector for each communication event. The timestamp is transformed to represent the

hour in which the message was sent but the temporal order is maintained during the

transformation. The text length is used to represent the size of the message. The message

content is not used for this research which presents a large benefit for the analysis of

large datasets.

Transforming the IRC data into embedding phase space utilizes the embedding

theorems discussed in Chapter 2 of this thesis. This results in visualization (in 2 or 3

dimensions in these cases) of the chaotic system. The ergodicity of the orbits in the

trajectory offer a unique classification point that will be discussed shortly. Fig. 52-54

illustrates the chaotic attractors for the users whose network diagrams are given in Fig.

49-51.

95

Figure 52. Chaotic Attractor for user in Fig. 47.

Figure 53. Chaotic Attractor for user in Fig. 48.

96

Figure 54. Chaotic Attractor for user in Fig. 49.

As can be seen in Fig. 52-54, the attractors for each specific type of user are

distinct. This uniqueness between classes was discovered to exist in common for the

users when classified by their network diagrams. Since the network diagrams and the

chaotic attractors represent two distinct types of information from the dataset it is

possible to conclude that the classifications are distinct enough as well.

The plots in Fig. 52-54 are difficult to read and extract understandable

information from. However, these plots can be used as another form of classification. It

was discovered that leaders communicated with short directed messages while workers

had a tendency to communicate with longer, more disjoint, messages and for a longer

97

time. The users classified as spies tended to closely mimic the workers with the addition

of some of the leader characteristics. This discovery is seen graphically in Fig. 53-55.

Since the data from the IRC channels if from a chaotic distribution it is ergodic.

To better visualize the embedding phase spaces, Ergodicity Plots were constructed by

following the methods described in section 3 of this thesis. The EP is a condensed version

of the chaotic attractor and is suitable for rapid classification of users based upon

communications data. Fig. 55-57 illustrates the Ergodicity Plots for the attractors given in

Fig. 52-54. The EPs of Fig. 55-57 have been colored red to highlight their differences

from the chaotic attractors.

Figure 55. EP for the attractor shown in Fig. 50.

98

Figure 56. EP for the attractor shown in Fig. 51.

Figure 57. EP for the attractor shown in Fig. 52.

99

The research discussed in this section has shown that using simply the time stamp

and message size of a log of messages for a specific user it is possible to classify the user

as a leader, a worker or a spy (as well as other classes defined by the user) in the MMO

environment. The computation time of this classification is greatly reduced over semantic

mining of the tests of communications thus offering an added benefit to the algorithm.

Further, the work presented in this section has highlighted an application of the novel

Ergodicity Plot (EP). The EP is easily utilized in a classification, or pattern recognition,

scenario in a far more efficient manner than the simple reconstruction of the attractor of

the nonlinear system. The use of the EPs for classifying the users in the MMO

environment presented an accuracy of 81%. This compares very well with the

computationally more intense method of developing network diagrams for each user.

6.2 Chaotic Attractors for Cyber Security

Cyber security is critical for uninterrupted functioning of our government, private

and public enterprises. Realizing the cyber security threat, the Cyber Command has been

created by our government to protect our infrastructure. Protection of such national

infrastructure depends upon real time detection of cyber threats and subsequent remedial

action. Extensive resources are being leveraged by government and private enterprises for

cyber security but the complexity of the problem requires new ideas to be developed and

implemented to overcome it. Many companies face cyber attacks daily because of the

nature of their business. This section presents the theory and results of a unique research

project to develop an innovative attractor model for cyber security.

100

Today’s advanced, targeted malware typically goes undetected by commercial

anti-virus software. The Advanced Persistent Threat (APT), in particular, is a

classification of adversary which uses social engineering and sophisticated malicious

code to gain a persistent presence inside an organization and, over time, to exfiltrate

sensitive and proprietary company information [65]. Since these attacks change rapidly

and are highly targeted, knowledge of past attacks is not sufficient to prevent future

attacks. In particular, the traditional reactive approach of creating and using security

patches does not root out the next threat. Rather, a robust and dynamic model of normal

behavior (for a computer, user, network, etc.) is needed in order to identify malicious or

abnormal patterns of behavior. Most approaches to modeling system behavior do not take

into account the non-linearity (i.e., time dependence) of the data. The proposed

methodology, however, will leverage deterministic chaos to learn the behavioral norm for

systems in an adaptive fashion. The proposed evolutionary attractor model adapts as new

information comes in. This case study project uses the theory of deterministic chaos and

chaotic attractors to develop an adaptive model of normal behavior for individual user

email. The intent is to use such models to detect behaviors that lie outside the region of

normal behavior, thus identifying sophisticated attacks such as the APT attack in real

time.

6.2.1 Normal Cyber Activity

Users operate in the cyber domain as part of their daily activity. Various tasks are

accomplished in this domain including communications, planning, productivity,

transactions, and entertainment. By nature, users perform these actions within some

relative pattern. These patterns are governed by many factors including sleeping habits,

101

family life, and work schedules. These patterns are inherently nonlinear (time-dependent)

due to many intervening events. This section discusses the exploitation of these patterns

for determining a strange attractor which represents a user’s “normal” cyber activity and

how that normality may be used to detect cyber attacks.

Consider a user in a corporate environment. On a given day that user checks

email, surfs the Internet, interacts with software (causing file I/O operations to take

place), sends instant messages, checks social networking sites, banks online, and so forth.

Those actions can all be considered linked to cyber activity directly or indirectly.

Monitoring these activities in some form of a log file generates a time series data set

which can be analyzed for nonlinearity. It is hypothesized that while exact activity at the

same time every day is an unlikely event, certain forms of cyber activity will be

conducted in relative proximity to a pattern of some given time interval. This pattern

forms a strange attractor.

Translation of the monitoring log into values that can be utilized by a nonlinear

analysis is not a trivial task. Email activity is logged containing parameters for the

sender’s email address, the recipient’s email address, the size of the email in bytes, the

number of attachments, the time it was sent, the GMT time offset, and the content of the

subject line. The majority of this data is non-numeric and therefore must undergo some

transformation, or discretization, to be utilized in the reconstruction of a nonlinear phase

portrait for that user.

Email addresses can be transformed simply through the assignment of a unique

identifying integer or through more complicated means such as clustering by domain.

The size of emails and number of attachments already represent a real-valued

102

measurement. The GMT time offset is also an integer value and can remain as such. The

subject line transformation poses an interesting problem as it is not easily transformed

into a real value. To transform the subject line into a real value, a cluster analysis can be

performed on all of the subject lines in a given training dataset. Each subject line will

therefore belong to a specific cluster. The number of that cluster can be used to represent

the subject line for the email under consideration. Time should also be truncated to an

integer value for the hour of the day to avoid setting the granularity of the model too fine.

Other forms of cyber activity may be transformed similar to email activity. Once the

transformation of the cyber activity logs into real-valued space has been performed, the

data may be analyzed to determine if the activity represents a deterministically chaotic

system. This determination was performed following the methods given in Chapter 2 of

this thesis.

Knowing that the system is deterministically chaotic indicates a strange attractor

can be recreated in embedding phase space to properly represent the dynamics of the

system. The attractor reconstruction is performed as explained in Chapter 2 of this thesis.

If the data used to reconstruct the attractor is known to come from normal cyber activity

and that there were no cyber attacks recorded in the data, then the strange attractor can be

used as the boundaries of normality for the training data. This normality can be

associated with a single user if the training data represents the cyber activity of that user

only. Each user will have a unique normality attractor. This is a fact that should be

exploited to monitor for cyber attacks.

A cyber attack can be detected as an outlier to the attractor of normal behavior. A

point would be considered an outlier if it is outside the boundaries of the attractor of

103

normality for the user under consideration as discussed in Chapter 3 of this thesis.

However, not all points that fall outside the attractor will be from a cyber attack. Often

times a user’s work details changes, this will have an impact on normality for that user.

Hence, points outside the bounds of the attractor are flagged as anomalous and

monitored. Should further activity, similar to the anomalous behavior, be detected the

attractor can be evolved to include that activity. Other heuristics may also be used.

Initially, this would be a manual process to ensure proper characterization of the

anomalous behavior. Should no further activity correlate to the anomalous detected

activity, then that activity is most likely something that should be considered for deeper

analysis by a technician.

The monitoring of cyber activity for outliers to the bounds of the attractor could

be adjusted such that the number of false positives being reported is reduced. Conversely,

the system could be adjusted to report every anomaly without evolution of the attractor.

Evolution and reporting are fully customizable by the end user to assure satisfactory

results.

6.2.2 Case Study Results

For this project, 28 users were chosen as test subjects. The dataset collected for

building the attractors contained metadata on email into and out of a government

contractor company for each individual user. A training set of two months’ worth of

email was collected for each user and was used to create chaotic attractors for each user.

The email address parameter and the email size parameter were large enough that they

could have overwhelmed the remaining parameters of the email data. Therefore, all

parameters are normalized such that they reside in a similar (albeit not the same) interval

104

to avoid this problem. Additionally, the reconstruction of phase space is performed on the

norm of the vector of all the parameters for each email as opposed to individual

parameters alone. This allows for a better understanding of the data in general and a

cleaner attractor representation for detection. With the norm calculated it is possible to

determine if the system is truly nonlinear by calculating the maximum Lyapunov

exponent of the data. Fig. 58 illustrates the raw data that has been normalized for the

emails of a specific user. The Lyapunov exponent of this data was calculated to be 3.4328

which clearly indicates a chaotic system.

Figure 58. Raw normalized, timestamp ordered email data for a single user.

Fig. 59 displays the embedded phase space for the data in Fig. 58. It is easy to see

the ergodicity of the cyber behavior of this user from the repetitious revisiting of specific

regions within the phase space. New emails were added to the attractor generated in Fig.

105

59. As this new email data was evaluated, points which were outside the bounds of the

attractor were automatically flagged as anomalous and therefore highlighted to be

monitored. Fig. 60 depicts this activity and the flagged data points. Since the emails

identified here were responded to and were from the same (new) sender email address,

the emails are likely legitimate. It may be desirable to include this as a rule for when to

include outliers and evolve the attractor. Fig. 61 indicates another email attractor for a

separate user. In this figure the outliers are identified and labeled.

Figure 59. Embedded Phase Space for the data in Fig. 56.

Figure

 This section has presented the results of a cyber security project. An explanation

of the use of strange attractors to model normal cyber behavior

successfully shown in this case study that cyber activity is deterministically chaotic.

Further, the novel methodologies of section 3 of this thesis were supported through the

detection of email anomalies in the cyber data set.

Figure 60. Email Attractor with detected anomalies.

This section has presented the results of a cyber security project. An explanation

of the use of strange attractors to model normal cyber behavior was given. It was

successfully shown in this case study that cyber activity is deterministically chaotic.

Further, the novel methodologies of section 3 of this thesis were supported through the

detection of email anomalies in the cyber data set.

106

This section has presented the results of a cyber security project. An explanation

was given. It was

successfully shown in this case study that cyber activity is deterministically chaotic.

Further, the novel methodologies of section 3 of this thesis were supported through the

107

 Figure 61. Email attractor with outliers described.

Email from co-worker’s home email

that was replied to immediately

Email from competitor for data analysis

(only 1 time)

Email from father’s work email. Only

one of its type.

108

6.3 ETMs for Anomaly and State Change Detection Case Study

 This section presents case studies supporting the proposed system state change

detection algorithm described in Chapter 5.2. The case studies presented use data from

both mathematical difference equations and real world systems. The difference equations

considered in this section are the Duffing Map and the Henon Map. The real world

systems observed here consist of a cyber security dataset and a dataset captured from

existing wind turbines in service.

6.3.1 EMTs for the Duffing and Henon Maps

 The Duffing map, given in Eq. (12), is a well known chaotic system. In order to

represent the effectiveness of the proposed detection methodology a set of 4000 iterations

is used as the initial training set forming the #�*(�o�. The first 4000 iterations of the

Duffing map were illustrated in Fig. 23 for the x axis. The #�*(�o� for this initial set

was generated, using a 15 by 15 square partition, and is plotted as a contour map in Fig.

62.

Figure 62. Contour plot of the ETM of Normality for the first 4000 iterations of the

Duffing Map.

109

As would be expected for the Duffing Map, the majority of the transitions take

place in the periphery of the attractor. For the purposes of simple change detection

illustration, the second 4000 points of the Duffing Map were generated and ran as

streaming data to the change detection algorithm. The mean orbit length of the Duffing

Map’s EP for a phase space generated with delay τ = 1 and embedding dimension d = 2

was calculated as 219 iterations. Therefore, a buffer window of size 876 iterations was

used to compare the second 4000 iterations to the first. Table 11 illustrates the mean

differences, δmean, minimum differences, δmin, (greater than zero) and the maximum

differences, δmax, between the #�*(�o� and the #�*���� for the streaming of the

second 4000 iterations.

Table 11. Differences between the ETM of Normality and the buffer ETM for the 1st and

2nd 4000 iterations of the Duffing Map

Buffer

Number
δmin δmax δmean

1 1.05E-04 0.0186 4.58E-06

2 3.98E-05 0.0211 8.53E-06

3 3.98E-05 0.0452 1.59E-05

4 1.05E-04 0.0532 1.80E-05

5 1.05E-04 0.0727 2.12E-05

6 3.98E-05 0.0612 2.05E-05

7 3.98E-05 0.0383 1.33E-05

8 1.05E-04 0.0163 8.29E-06

9 1.05E-04 0.0320 1.13E-05

10 1.08E-04 0.0457 1.37E-05

11 3.46E-05 0.0293 1.00E-05

12 4.26E-05 0.0174 7.80E-06

13 3.98E-05 0.0271 1.08E-05

14 1.05E-04 0.0467 1.72E-05

15 1.05E-04 0.0467 1.72E-05

110

To better illustrate the absolute differences between the ETMNorm (first 4000

iterations) of the Duffing Map and the ETM for the second 4000 iterations Fig. 63 plots

the absolute difference between the cells of the compared ETMs as a line graph. The plot

in Fig. 63, considers an ETM for the entire second 4000 points as opposed to the buffer

methodology whose results were illustrated in Table 11. As can be seen in Fig. 63, the

absolute differences between the two ETMs are relatively small. This illustrates the

ability of the proposed detection methodology to detect even small state changes in the

system.

To complete the case study of the Duffing Map the third 4000 iterations of the

map were streamed against the initial 4000 iterations in a manner similar to the second

4000 iterations. The buffer size remained constant at 876 iterations. Table 12 illustrates

the differences between the #�*(�o�and the #�*���� for the streaming of the third

4000 iterations in a manner identical to that of Table 10.

Figure 63. Absolute differences between the ETM of Normality and the ETM of the

second 4000 iterations of the Duffing Map.

111

Table 12. Differences between the ETM of Normality and buffer ETM for the 1st and 3rd

4000 iterations of the Duffing Map
Buffer

Number
δmin δmax δmean

1 3.46E-05 7.35E-02 2.00E-05

2 3.98E-05 6.69E-02 1.99E-05

3 3.98E-05 5.12E-02 1.76E-05

4 3.98E-05 3.16E-02 1.16E-05

5 1.05E-04 1.94E-02 7.67E-06

6 3.46E-05 2.25E-02 8.67E-06

7 3.46E-05 2.09E-02 8.27E-06

8 3.46E-05 2.00E-02 8.22E-06

9 3.46E-05 1.29E-02 7.82E-06

10 4.26E-05 1.26E-02 7.09E-06

11 1.42E-04 3.41E-02 1.18E-05

12 3.46E-05 5.15E-02 1.79E-05

13 1.08E-04 5.45E-02 1.91E-05

14 1.05E-04 5.33E-02 1.77E-05

15 6.22E-05 3.43E-02 1.22E-05

The example of the Duffing map has illustrated that the proposed state change

detection methodology is highly effective at detecting even small changes to the system.

It was shown that the Duffing map does experience slight system shifts as it moves

through time and that these shifts can be detected as state changes to the system.

However, the Duffing Map case study does not directly indicate the ability of the

proposed algorithm to detect direct outliers of the system. To illustrate this ability the

Henon map, given in Eq. (14), is used.

 The generation of the ETMNorm for the Henon map (with a = 1.4 and b = 0.3) is

performed using the first 4000 iterations of the difference equation for the embedding of

112

the x axis data with a square 20 by 20 partition. Fig. 64 displays the EP for the Henon

map and Fig. 65 illustrates the contour plot for the ETMNorm for this system.

Figure 64. EP of the first 4000 iterations of the Henon Map

Figure 65. Contour plot of the ETM of Normality for the first 4000 iterations of the

Henon Map

113

To illustrate the ability of the proposed methodology to detect direct anomalies in

a chaotic system, a single point is modified in the first buffer of the Henon map. The

mean orbit length of the Henon map with an imposed 20 by 20 square partition is 76;

therefore, a sufficient buffer size is 304 iterations. Fig. 66 displays the contour plot of the

first buffer of the Henon map with a single point modified by 10% to form an anomaly.

Fig. 67 displays the contour plot of the absolute differences between the ETMNorm and the

ETM of the first buffer for the Henon Map.

Figure 66. Contour plot of the ETM of the first buffer of the Henon Map with a single

point modified manually by 10% to be an anomaly.

114

Figure 67. Contour plot of the absolute differences of the ETM of Normality and the

ETM of the first buffer (with a single point modified) for the Henon Map.

 As can be seen in Fig. 67, the proposed methodology correctly displays a shift in

the system for a single anomalous point. This detection is highly effective at detecting

even small anomalies. The data point which was changed to develop the ETMs for Fig.

16-17 was originally -1.0667 and was changed by 10%; however the proposed

methodology detected this anomaly as a direct outlier in the system showing a maximum

B� = 0.0106. Given that the mean difference between the ETMNorm and the first buffer of

the Henon map is ~0.00205, the maximum difference would be detected even though a

threshold may have been set to filter out the small changes of the system.

 This sub-section has illustrated the use of the proposed methodology on two well

known; the difference equations of the Henon map and the Duffing map. The use of the

Duffing map illustrated the ability of the system to detect even small shifts in the chaotic

115

system which could indicate state changes forthcoming. The Henon map was used to

illustrate the ability of the proposed methodology to detect direct anomalies. Further, this

sub-section has illustrated the effectiveness of the novel Ergodic Transition Matrix to

detect system state changes and anomalies. It was show, using two deterministically

chaotic systems that the ETM detection algorithm is highly accurate and is capable of

detecting extremely small system state changes as well as direct anomalies in

mathematical difference equations.

6.3.2 ETMs for Cyber Security

 This sub-section presents the results of a case study in which the proposed chaotic

state change and anomaly detection algorithms were applied to a cyber security dataset.

The dataset used for this study was originally produced by the Massachusetts Institute of

Technology’s (MIT) Lincoln Laboratory for the Defense Advanced Research Projects

Agency (DARPA) [66]. The dataset consists of network data captured from a simulated

United States military network. The simulated network was representational of a true

military cyber network while maintaining obvious identification constraints pertinent to

the national security level of the network. The captured data was organized into 5, week

long, increments. The first, week long, increment of data represented a clean network

with no intrusions or attacks. The second week of data represented the network in normal

operation with 43 intrusions/attacks tagged with their attack name and time. The

remaining 3, week long, increments represented normal network operations without

tagging the intrusions/attacks.

116

 For the purposes of this case study, only week 1 and week 2 data was used. This

constraint was placed to illustrate clearly the ability of the proposed ETMs to capture

anomalies present in the data. The ETM of Normality, ETMNorm was generated using the

data from week 1. The continuous buffer ETM, ETMBuff was created using through

streaming the data from week 2. The ETMBuff was generated for in segments of 4 mean

orbits of the data, where each orbit consisted of 228 records captured from the network.

 The DARPA Intrusion Detection dataset used here was the 1999 version of the

available datasets (3 dataset were available: 1998, 1999 and 2000). This version consisted

of 6 files for each day of the week being considered – a Transmission Control Protocal

(tcp) dump of data being received from outside the network, a tcp dump of data generated

inside of the network, Solaris BSM audit data, NT audit data, dumps of selected

directories and a file system listing record. Of these 6 files, only two were considered for

this case study: the tcp dumps from both internal and external sources. These two files

contained the same variables – a record identification number, the time of the record, the

source address of the record, the destination address of the record, the protocol which was

used, and a comment field. There exist a total of 14,406,511 records for week 1 and

13,178,081 records for week 2 in the files being considered.

 The proposed ETM state change and anomaly detection methodology functions

best when the system dynamics are represented by a single variable. In order to utilize the

ETM methodology on the DARPA dataset a transformation was required to render the

data useful. This transformation consisted of discretizing the source, destination and

protocol fields. The identification, time and comment fields were removed from the

dataset while the time-based ordering of the data was preserved, as is required for chaotic

117

systems. The number of distinct values for the three variables considered is given in

Table 13, where only week 1 and week 2 were considered.

Table 13. Number of distinct values for the variables considered in the DARPA case

study.

Week Variable Number of Distinct Values

1 Source 1631

2 Source 1610

1 Destination 1638

2 Destination 1616

1 Protocol 47

2 Protocol 47

 To facilitate the most complete representation of the system, each record was

appended with an integer value which represented the string concatenation of the three

variables considered. Thus a record which contained a discretized source of 1245, a

discretized destination of 1047 and a discretized protocol of 25 was appended with the

integer 1245104725. It is this integer value that is used to create the embedding phase

space for the intrusion detection dataset, which is also used to form the ETMs which will

be considered here.

 Initially, it was hypothesized that a single ETM of Normality would be generated

based on the training data from week 1. Following this methodology, the validation data

of week 2 would be streamed into the ETM system in buffers whose sizes are four mean

orbits. The ETM of the buffer is compared to the ETM of Normality for detection of

system shifts or anomalies. The ETM partition size that showed optimal results was a 15

x 15 square partition (this was based on an embedding phase space reconstruction with a

time delay of 8 and an embedding dimension of 3).

118

 Disappointingly, it was discovered that this process was not effective at detecting

intrusions/attacks. It was determined that this was due to the overwhelming size, and

variance, of the training data. Table 14 illustrates this fact through the use of a confusion

matrix of the single ETM of Normality ran on the cyber dataset. The confusion matrix

indicates the number of actual intrusion/attacks that were detected in the system (upper

left cell), the number of records which were falsely determined to be intrusions/attacks

(upper right cell), the number of intrusions/attacks which were not detected (lower left

cell) and the number of records which were not intrusions/attacks and were not detected

as an intrusion/attack (lower right cell).

Table 14. Confusion matrix for the proposed ETM detection system on the DARPA

dataset with a single ETM of Normality.
 True Anomaly False Anomaly

True Anomaly 24 345

False Anomaly 19 13177693

 As can be seen in Table 14, the single ETM of Normality misclassified 345

records sets as intrusions/attacks which were not of such a class. Also, the system also

ignored 19 intrusions/attacks which were present in the system. The false positive rate of

the single ETM of Normality for the system is unacceptable for use as a true cyber

security detection system. Further, the number of intrusions/attacks which were missed

by the system is also too high to be acceptable.

 To facilitate a more robust detection system, it was determined that an ensemble

of ETMs of Normality should be created from the week 1 training data. To perform this

task, it was determined to split the training data into a number of segments, each of which

consisted of a relatively equal number of mean orbits. After much trial and error it was

119

found that 18 segments worked most effectively for the cyber security dataset. Therefore,

an ensemble of 18 ETMs of Normality was generated. Fig 68 illustrates two of these

ETMs of Normality in the form of a surface plot of the ETM.

Figure 68. Two examples from the ensemble of ETMs of Normality for the DARPA

dataset.

 The use of the ensemble of ETMs of Normality inherently increased the

computation cost of comparison to the buffer ETM. Each buffer ETM was required to be

compared to the full ensemble of ETMs of Normality. This required a determination of

which ETM in the ensemble of ETMs of Normality best matched the buffer ETM, and

calculation of the differences between that ETM of Normality and the buffer ETM. If the

difference between the two ETMs was above the given threshold then the buffered record

set was flagged as containing an intrusion/attack. While there was an increase in

computation, it was discovered that the system still operated in near real-time conditions

due to the sparse matrix format of the ETMs. Table 15 illustrates, in the form of a

confusion matrix, the gain in accuracy that was achieved through the use of the ensemble

of ETMs of Normality.

120

Table 15. Confusion matrix for the DARPA dataset using an ensemble of ETMs of

Normality.
 True Anomaly False Anomaly

True Anomaly 42 8

False Anomaly 1 13178030

 As can be seen in Table 15, the use of an ensemble of ETMs of Normality greatly

increased the accuracy of the detection system. With a single missed intrusion/attack and

only 8 record sets misclassified as intrusions/attacks, the detection system is highly useful

as a cyber security intrusion/attack detection system. Thus, this it has been successfully

shown that the ETM detection system proposed in this thesis is effective at detection of

anomalies and can be made to perform very well even with extreme dataset sizes.

6.3.3 ETMs for the Detection of Mechanical System Change

 This sub-section highlights a case study of system change detection, using the

proposed ETM change detection system, in a mechanical system. The system under

consideration for this study is a wind turbine in existing use on a wind farm in Iowa. Data

from the wind turbine Supervisory Control and Data Acquisition (SCADA) system was

collected by the Intelligent Systems Laboratory of the University of Iowa [35]. The

captured data was continuous for only short times due to the collection system deployed

at the time of the data capture. Thus, the case study of this sub-section uses this SCADA

data to build a model of continuous wind turbine data which is then slowly modified to

indicate a shift in the mechanical system.

 The SCADA data used in this study consisted of 105 different variables, along

with time, date, and the turbine number, for each record. The data used here was

collected every 10 minutes from a single wind turbine. For the purposes of this study only

121

two variables were used from the 105 available variables – wind speed and torque. Other

variables were initially considered, such as bearing temperatures and drive train

acceleration; however it was discovered that each of these variables varied

proportionately with the wind speed. Thus, it was decided that wind speed and torque

would suffice for the study.

 The SCADA data was used to form a model of torque versus wind speed. To

facilitate an accurate model, many different samples of data were extracted from the

SCADA data (Fig. 69 illustrates an instance, of the torque measurement over time, from

the samples extracted). This extracted data was then used to generate an equation in

which torque is a function of wind speed. The equation generation was performed using a

genetic program which evolved a population, of randomly defined equations. The genetic

program’s fitness function was the calculation of the MAE of the evolved equation from

the actual data.

Figure 69. Torque (vertical axis) given in relation to time for a single wind turbine for

17.36 days.

122

 The software used to generate model equation for torque, using the genetic

program algorithm, is a freely available solution created at Cornell University entitled

Eureqa [67]. This software generate the equation used for this case study as a function of

wind, as given in Eq. (30) where � is the wind speed at a given time. This model

produced a polynomial whose MAE to the actual data was 0.0178.

+wY ¡- � f¢�N£¤ � f¢¥fN¦� , ¦£¢£�/ � �¦¢§¦�i , f¢���¨ � �¢��N�© , �¢��fN�© (30)

 To generate the data for the ETM system shift and anomaly detection algorithm to

use, wind speed must be given for each time increment. Rather than develop a model for

wind speed, which could introduce further differences between the model and the real

data, it was decided to use data collected from an anemometer. The author purchased and

installed a commercial anemometer at a height of 30 feet above the ground in an open

area with no buildings or significant contours within 500 feet of the site. Data was

captured for a period of three months from this instrument and was used to generate the

model data for this case study.

 An ETM of Normality was generated using two months worth of the model data.

For this time frame no anomalies or shifts were allowed to enter the torque model, thus

forming the normal operating conditions of the modeled turbine. The embedding phase

space for this system was generated with a time delay of 2 and an embedding dimension

of 3. The ETM’s for this system were created based upon a 10 x 10 square partitioning of

the embedding phase space. The ETM of Normality for this time period is presented in

the surface plot of Fig. 70.

123

Figure 70. ETM of Normality for the wind turbine torque model.

 To simulate the wind turbine experiencing small system changes in the torque

parameter, the model equation was modified to include a very small increase in the

torque value. This was accomplished through the addition of a value proportionate to the

torque value as given in Eq. (31). This modified data was then streamed into the ETM

detection system as a buffer, in a manner similar to previous case studies in this thesis.

Fig. 71 illustrates an example ETM for this buffer.

+wY ¡- � +wY ¡- , �+w¡Y ¡- ª �¢���� (31)

124

Figure 71. Buffer ETM for the wind turbine torque model.

 It is very difficult to detect the differences present between the ETM of Normality

given in Fig. 70 and the Buffer ETM given in Fig. 71. To facilitate ease of observation, a

surface plot of the absolute differences between these ETMs is given in Fig. 72. As can

be seen from Fig. 72, the ETM system change and anomaly detection methodology was

successful at capturing the extremely small system shift introduced in this model. In fact,

it was discovered that the system detected the small perturbations in the first buffer ETM

that contained the perturbations.

 Fig. 72 definitively illustrates that the ETM system shift and anomaly detection

methodology effectively captures minute system changes. The scale of the absolute

difference (vertical axis) in Fig. 72 is in the level of 10
-4

, hence even very small system

shifts are able to be captured using the ETM methodology.

125

Figure 72. Absolute difference between the ETM of Normality (Fig. 70) and the buffer

ETM (Fig. 71) for the wind turbine torque model.

 This section has effectively illustrated that the ETM system shift and anomaly

detection methodology is adept at detecting direct anomalies (e.g. the Duffing Map) and

system shifts (e.g. the Henon Map) in mathematical difference equations. Further, this

section has show that this methodology is effective at detecting direct anomalies (e.g.

DARPA Intrusion Detection dataset) and system shifts (e.g. the wind turbine torque

model) in real world systems as well. The results of the case studies in this section

indicate that there is just cause to pursue further research into the application of the

detection methodology presented in Section 5.2

126

CHAPTER 7. CONCLUSIONS

 This thesis has presented research related to the detection of normality and non-

normality in deterministically chaotic systems. The research presented illustrated a

number of novel techniques for accomplishing this detection. This concluding section

highlights these techniques and the results of the use of these techniques in the various

case studies which were presented.

 In Section 3, a new methodology for visualizing the states of a chaotic system was

introduced. The traversal of system states was represented by this visualization known

herein as the Ergodicity Plot (EP). The proposed EP represented system dynamics in a

much clearer fashion than has been given in standard Recursion Plots and can be used to

detect system normality. Further, the use of the EP allowed for detection of frequent

system state change motifs which are then used to predict the next system states.

 A new prediction technique for chaotic systems was presented in Section 4 of this

thesis. This technique took into account the sensitive dependence on initial conditions,

which is a hallmark of chaotic systems, to produce more accurate results in prediction.

The technique was validated on three dataset, the standard Henon and Duffing maps as

well as a dataset captured from a working industrial wind turbine. The results of the

prediction technique on these datasets indicated that it is a viable technique for

determining future values of a chaotic system,

 Section 5 presented a novel anomaly and state change detection technique. This

technique utilized the inherent ergodicity of chaotic systems to determine normality of

the system and to detect small system shifts as well as direct anomalies. It was shown that

the presented technique offers a unique ability to detect such changes and does so in a

127

computationally small manner which allows for real time deployment of the technique.

The technique was validated in Section 6 using the standard Henon map, a mechanical

system and a cyber security dataset. The results of these validation case studies clearly

indicated the viability of the technique in real world scenarios.

7.1 Future Research

 The research described above has illustrated that there is merit in pursuing further

work related to the domain of normality and anomaly/state change detection in chaotic

systems. The encouraging results of the presented novel algorithms and methodologies,

as seen in the successful case studies, should be extended to facilitate better

understanding of deterministically chaotic systems and to assist in real time monitoring of

such systems. This section describes future work extending the research of the previous

sections.

 The novel Ergodic Transition Matrix of Chapter 5 accurately detects outliers,

anomalies and system state changes in deterministically chaotic systems. Future work

concerning the ETMs includes applying the ETM detection methodology to embedded

devices to facilitate real-time anomaly and system shift detection in mission critical

electronic devices. Devices such as critical communications systems and air

navigation/collision avoidance systems may benefit from the application of this detection

methodology.

 Finally, future research in this domain includes the use of Ergodic Transition

Matrices on human physiological data. Some initial work performed in this area has

indicated the ability to accurately monitor and detect anomalies in the human heart.

128

Future research should explore the possibilities of the detection of such ailments as

epileptic seizures prior to their attack, detection of heart arrhythmias prior to a heart

attack or stroke, and possible detection of heightened stress in soldiers as they enter

combat arenas.

129

APPENDIX

C# Method for the Calculation of Lyapunov Exponent

 This section presents a sample C# method for the calculation of the Lyapunov

exponent discussed in Chapter 2 of this thesis. The method assumes that the time series

dataset has been stored in a C# data table object and that the embedding dimension of the

reconstructed phase space has been stored as an integer in a variable called

_embeddingDim. Finally, the method presented here assumes that the time delay

parameter of the reconstructed phase space has been stored as an integer in a variable

called _timeDelay. Fig A1-A2 presents the C# code for this method.

Figure A1. C# Method for calculating the Lyapunov exponent of a time series.

private double CalculateLyapunov()
{
 double sum = 0.0;
 int cnt = 0;
 int embedDim = _embeddingDim;
 int _tau = _timeDelay;

 for (int tt = 0; tt < _currentData.Rows.Count - (int)(embedDim * _tau);
 t++)
 {
 //create a vector for the initial point
 Dictionary<int, double> initPt = new Dictionary<int, double>();
 for (int m = 0; m < embedDim; m++)
 {
 initPt.Add(m,
 Convert.ToDouble(_currentData.Rows[tt + (int)(m * _tau)][0]));
 }

130

Figure A2. Method for calculating the Lyapunov exponent of a time series continued.

//find the closest point to the initial point
Dictionary<int, double> closePoints = new Dictionary<int, double>();
for (int uu = 0; uu < _currentData.Rows.Count - (int)(embedDim * _tau); uu++)
{
 if (uu == tt)
 continue;
 Dictionary<int, double> pt = new Dictionary<int, double>();
 for (int n = 0; n < embedDim; n++)
 {
 pt.Add(n,Convert.ToDouble(_currentData.Rows[uu + (int)(n * _tau)][0]));
 }
 //calculate the Euclidean distance between these points
 double tempDist = 0.0;
 foreach (int d in initPt.Keys)
 {
 tempDist += Math.Pow(initPt[d] - pt[d], 2);
 }
 tempDist = Math.Sqrt(tempDist);
 closePoints.Add(uu, tempDist);
}
int closestPt = -1;
double distance = double.MaxValue;
foreach (int w in closePoints.Keys)
 if (closePoints[w] < distance)
 {
 distance = closePoints[w];
 closestPt = w;
 }
//Evolve the attractor by _tau and recalclate the distance of each point
Dictionary<int, double> initPt2 = new Dictionary<int, double>();
for (int m = 0; m < embedDim; m++)
{
 initPt2.Add(m, Convert.ToDouble(_currentData.Rows[tt + (int)_tau +
 (int)(m * _tau)][0]));
}

Dictionary<int, double> closePt2 = new Dictionary<int, double>();
for (int m = 0; m < embedDim; m++)
{
 closePt2.Add(m, Convert.ToDouble(_currentData.Rows[closestPt +
 (int)_tau + (int)(m * _tau)][0]));
}
double tDist = 0.0;
foreach (int d in initPt2.Keys)
{
 tDist += Math.Pow(initPt2[d] - closePt2[d], 2);
}
tDist = Math.Sqrt(tDist);
//calculate the sum
double val = Math.Abs(tDist / distance);
if (val != 0.0)
{
 if (val < double.MaxValue)
 sum += Math.Log(val, 2);
 if (sum < double.MinValue || sum > double.MaxValue)
 break;
}
cnt++;
tt += (int)_tau;
}
if (sum == 0.0)
 return sum;
sum = sum * (1.0 / (double)(cnt * _tau));
 return sum;
}

131

Pseudocode Method for Creating an Ergodicity Plot

 This section presents pseudocode for a computer software method for creating an

ergodicity plot discussed in Chapter 3 of this thesis. The code supplied here assumes that

the time series has been transformed into embedding phase space using the time delay

and embedding dimension parameters discussed in Chapter 2 of this thesis. The code also

assumes a user supplied parameter, gridSize, of the size of the partition to be imposed on

the phase space. Figure A3 presents this pseudocode.

Figure A3. Pseudocode method for creating an ergodicity plot.

CreateErgodicityPlot(int gridSize)
{
 //determine the maximum and minimum values of the phase space
 //methods are not supplied as they are intuitive
 double max = MaximumPhaseSpaceValue();
 double min = MinimimPhaseSpaceValue();
 double binSize = (max-min)/gridSize;
 List bins = new List();
 for tt=0; tt<gridSize; tt++
 for ii=0; ii<gridSize; ii++;
 {
 Bin.LowY = min + (tt * binSize);
 Bin.HighY = min + (tt * binSize) + binSize;
 Bin.LowX = min + (ii*binSize);
 Bin.HighX = min + (ii*binSize) + binSize;
 bins.Add(Bin);
 }
 //assign each point to the centroid of the bin that contains that point
 for tt=0; tt<embeddingPhaseSpace.Size; tt++
 {
 double x = embeddingPhaseSpace[tt].X;
 double y = embeddingPhaseSpace[tt].Y;
 foreach Bin in bins
 {
 if(x>=Bin.LowX and x<=Bin.HighX)
 if(y>=Bin.LowY and y<=Bin.HighY)
 Bin.Points.Add(x,y);
 }
 }
 //plot the centroids following the time series order, place the bin in an orbit
 List orbits = new List(); //list of bins in order of traversal
 foreach point in embeddingPhaseSpace
 foreach Bin in bins
 if(Bin.Points.Contains(point))
 {
 Plot(Bin.Center);
 Orbits.Add(Bin);
 }

132

Pseudocode Method for Creation of an ETM

 This section presents a pseudocode method for the creation of an Ergodicity

Transition Matrix discussed in Chapter 5 of this thesis. The presented method assumes

that an Ergodicity Plot, whose pseudocode presentation was given in previous appendix,

has previously been created and uses the Orbits parameter, and the Bin structures, of that

method. The code also assumes a user supplied parameter, gridSize, of the size of the

partition to be imposed on the phase space. Figure A4 presents this pseudocode.

Figure A4. Pseudocode method for the creation of an ETM.

CreateErgodicityTransitionMatix(gridSize, Orbits)
{
 size = gridSize * gridSize;
 double[,] transitions = new double[size,size];

 //initialize the array
 for ii=0; ii<size; ii++
 {
 for tt=0; tt<size; tt++;
 transitions[ii,tt] = 0;
 }

 //using the bins of the Ergodicity Plot, create the ETM
 for (int tt = 1; tt < orbits.Count; tt++)
 {
 Bin toCell = orbits[tt];
 Bin fromCell = orbits[tt - 1];
 row = (gridSize * fromCell.Center) + fromCell.Center;
 col = (gridSize * toCell.Center) + toCell.Center;
 transitions[row, col] += 1;
 }
 for (int r = 0; r < gridsize * gridsize; r++)
 {
 for (int c = 0; c < gridsize * gridsize; c++)
 transitions[r, c] = (transitions[r, c]/orbits.Count);
 }

133

Pseudocode Method for Using ETMs of Normality and Streaming Data to Detect

Anomalies

 This section presents a pseudocode method for a computer software program for

the detection of anomalies or system state changes in a chaotic system using the

methodology described in Chapter 5 of this thesis. The presented method assumes that

the time series data for the training set has been transformed into embedding phase space

as described in Chapter 2 of this thesis. The method also assumes that the user is

supplying the streaming data as a parameter in segments of 3-4 mean orbit lengths.

Finally, the method requires a user supplied parameter which determines the threshold of

differences between the training data ETM and the streamed data ETM. Methods of

previous appendices are also utilized. Fig. A5 illustrates the pseudocode method.

Figure A5. Pseudocode method for the detection of anomalies or system shifts in

streamed data into the ETM methodology.

DetectShiftsAndAnomalies(trainingData, streamedData, gridSize, deviation)
{

 //create the etm of the training data
 Orbits = CreateErgodicityPlot(trainingData, gridSize);
 normETM = CreateErgodicityTransitionMatrix(trainingData, gridSize, Orbits);

 //create the etm of the streaming data
 SOrbits = CreateErgodicityPlot(streamedData, gridSize);
 buffETM = CreateErgodicityTransitionMatrix(streamedData, gridSize, SOrbits);

 //compare the matrices
 for ii=0; ii<gridSize*gridSize; ii++
 for tt=0; tt<gridSize*gridSize; tt++
 if(AbosluteValue(normETM[ii,tt]-buffETM[ii,tt])>deviation)
 return true;

 //no anomalies or shifts are detected if execution arrives at this point
 return false;
}

134

REFERENCES

[1] E. Lorenz, The Essence of Chaos. Seatle, WA: The University of Washington Press,

1993.

[2] Z. Zhang, K. Lam, W. Yan, H. Gao, and Li.Y, "Time Series Prediction using

Lyapunov Exponents in Embedding Phase Space," Computers and Electrical

Engineering, vol. 30, no. 1, pp. 1-15, 2004.

[3] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, 2nd ed. Cambridge, UK:

Cambridge University Press, 2004.

[4] A. Isidori, Nonlinear Control Systems, 3rd ed. Berlin: Springer, 1995.

[5] P. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. Boston, MA:

Pearson Education, 2006.

[6] T Lefebvre, H. Bruyninckx, and J. De Schutter, "A New Method for the Nonlinear

Transformation of Means and Covariances in Filters and Estimators," IEEE

Transactions on Automatic Control, vol. 47, no. 8, pp. 1406-1409, August 2002.

[7] C. Gellings, The Smart Grid: Enabling Energy Efficency and Demand Response.

Lilburn, GA: The Fairmont Press, 2009.

[8] S. Chaudhury, A. Smith, B. Anderson, S. Ghose, and P. Jessen, "Quantum Signitures

of Chaos in a Kicked Top," Nature, vol. 461, pp. 768-771, October 2009.

[9] E. Lorenz, "Deterministic Nonperiodic Flow," Journal of Atmospheric Science, vol.

20, pp. 130-141, 1963.

[10] T. Li and J. Yorke, "Period Three Implies Chaos," The American Mathematical

Monthly, vol. 82, no. 10, pp. 985-992, 1975.

[11] A. Fraser, "Information and Entropy in Strange Attractors," IEEE Transactions on

Information Theory, vol. 35, no. 2, pp. 245-262, March 1989.

[12] S. Strogatz, Nonlinear Dynamics and Chaos. New York: Westview Press, 1994.

[13] P. Grassberger and I. Procaccia, "Measuring the Strangeness of Strange Attractors,"

Physica , vol. 9D, pp. 189-208, 1983.

[14] E. Glasner and B. Weiss, "Sensitive Dependence on Initial Conditions," Nonlinearity,

vol. 6, no. 6, pp. 1067-1075, 1993.

135

[15] H Furstenberg, "Poincare Recurrence and Number Theory," Bulletin of the American

Mathematical society, vol. 5, no. 3, pp. 211-234, 1981.

[16] W. Briggs and V. Henson, The DFT: An Owner's Manual for the Discrete Fourier

Transform. Philadelphia PA: SIAM, 1987.

[17] I. Daubechies, Ten Lectures on Wavelets. Philadelphia: SIAM, 1992.

[18] J. Gao, Y. Cao, W. Tung, and J. Hu, Multiscale Analysis of complex Time Series.

Hoboken, NJ: Wiley & Sons, 2007.

[19] J. Sprott, Chaos and Time-Series Analysis. Oxford, UK: Oxford University Press,

2003.

[20] A. Wolf, J. Swift, H. Swinney, and J. Vastano, "Determining Lyapunov Exponents

from a Time Series," Physica D: Nonlinear Phenomena, vol. 16, no. 3, pp. 285-317,

1985.

[21] M. Rosenstein, J. Collins, and C. De Luca, "A Practical method for Calculating

Largest Lyapunov Exponents from Small Data Sets," Physica D: Nonlinear

Phenomena, vol. 65, no. 1-2, pp. 117-134, 1993.

[22] J. Holzfuss and U. Parlitz, "Lyapunov Exponents from Time Series," in Lecture

Notes in Mathematics Vol. 1486. Berlin: Springer, 1991, ch. 4, pp. 263-270.

[23] J. Sprott, "A Simple Chaotic Delay Differential Equation," Physics Letters A, vol.

366, no. 4-5, pp. 397-402, 2007.

[24] T. Schreiber and A. Schmitz, "Improved Surrogate Data for Nonlinearity Tests,"

Physical Review Letters, vol. 77, no. 4, pp. 635-638, 1996.

[25] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. Farmer, "Testing for

Nonlinearity in Time Series: The Method of Surrogate data," Physica D, vol. 58, no.

1-4, pp. 77-94, 1992.

[26] R. Steuer, J Kurths, C. Daub, J. Weise, and J. Selbig, "The Mutual Information:

Detecting and Evaluating Dependencies Between Variables," Bioinformatics, vol. 18,

no. 90002, pp. S231-S240, 2002.

[27] F. Takens, "Detecting Strange Attractors in Turbulence," Lecture Notes in

Mathematics, vol. 898, pp. 366-381, 1981.

136

[28] M. Kennel, R. Brown, and H. Abaranel, "Determining embedding Dimension for

Phase-Space Reconstruction using a Geometric Construction," Physical Review A,

vol. 45, no. 6, pp. 3403-3411, 1992.

[29] M. Hong-guang and H. Chong-zhao, "Selection of Embedding Dimenstion and Delay

Time in Phase Space Reconstruction," Journal of Xi'an Jiaotong University, vol. 38,

no. 4, pp. 335-338, 2004.

[30] J. Eckmann and D. Ruelle, "Ergodic Theory of Chaos and Strange Attractors,"

Review of Modern Physics, vol. 57, no. 3, pp. 617-656, 1985.

[31] N. Packard, J. Crutchfield, J. Farmer, and R. Shaw, "Geometry from a Time Series,"

Physical Review Letters, vol. 45, no. 9, pp. 712-716, 1980.

[32] J. Milnor, "On the Concept of Attractor," Communications in Mathematical Physics,

vol. 99, no. 2, pp. 177-195, 1985.

[33] P. Cvitanovic, G. Gunaratne, and I. Procaccia, "Topological and Metric Properties of

Henon-type Strange Attractors," Physical Review A, vol. 38, no. 3, pp. 1503-1520,

1988.

[34] D. Cross and R. Gilmore, "Representation Theory for Strange Attractors," Physical

Review E: Statistical, Nonlinear, and Soft Matter Physics, vol. 80, no. 5, pp. 056207-

1 - 056207-6, 2009.

[35] A. Kusiak, Z. Zhang, and M. Li, "Optimization of Wind Turbine Performance with

Data-Driven Models," IEEE Trans. on Sustainable Energy, vol. 1, no. 2, pp. 66-76,

2010.

[36] N. Packard, J. Crutchfield, J. Farmer, and R. Shaw, "Geometry from a Time Series,"

Physical Review Leters, vol. 45, no. 9, pp. 712-716, 1980.

[37] V. Chandola, A. Banerjee, and V. Kumar, "Anomaly Detection: A Survey," ACM

Computing Surveys, vol. 41, no. 3, 2009.

[38] I. Aydin, M. Karakose, and E. Akin, "Chaotic-based Hybrid Negative Selection

Algorithm and its Application in Fault and Anomaly Detection," Expert Systems with

Applications, vol. 37, no. 7, 5285-5294 2010.

[39] T. Geisel and S. Thomae, "Anomalues Diffusion in Intermittent Chaotic Systems,"

Physical Review Letters, vol. 52, no. 22, pp. 1936-1939, 1984.

137

[40] W. Xiong, H. Hu, Y. Yang, and Q. Wang, "Anomaly Detection of Network Traffic

based on the Largest Lyapunov Exponent," in 2nd Intl Conf on Advanced Computer

Control, Shenyang, 2010, pp. 521-585.

[41] L. Sheu, H. Chen, J. Chen, and L. Tam, "Chaotic Dynamics of the Fractionally

Damped Duffing Equation," Chaos, Solitons & Fractals, vol. 32, no. 4, pp. 1459-

1468, 2007.

[42] J. Chen and W. Chen, "Chaotic Dynamics of the Fractionally Damped van der Pol

Equation," Chaos, Solitons & Fractals, vol. 35, no. 1, pp. 188-198, 2008.

[43] P. Zhao, L. Xing, and J. Yu, "Chaotic Time Series Prediction: From One to Another,"

Physics Letters A, vol. 373, no. 25, pp. 2174-2177, 2009.

[44] J. Eckmann, S. Kamphorst, and D. Ruelle, "Recurrence Plots of Dynamical Systems,"

Europhys. Lett., vol. 4, no. 9, pp. 973-977, 1987.

[45] B. Eckhardt and D. Yao, "Local Lyapunov Exponents in Chaotic Ssytems," Physica

D, vol. 65, no. 1-2, pp. 100-108, 1993.

[46] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding.

Cambridge: Cambridge University Press, 1996.

[47] S. Gupta and A. Ray, "Pattern Identification using Lattice Spin Systems: A

Thermodynamic Formalism," Applied Physics Letters, vol. 91, pp. 194105-1-194105-

3, 2007.

[48] J Crutchfield and D Feldman, "Regularitires Unseen, Randomness Observed: Level

of Entropy Convergence," Chaos, vol. 13, no. 1, pp. 25-60, 2003.

[49] J. Farmer and J. Sidorowich, "Predicting Chaotic Time Series," Physical Review

Letters, vol. 39, no. 8, pp. 845-848, 1987.

[50] M. Casdagli, "Nonlinear Prediction of Chaotic Time Series," Physica D: Nonlinear

Phenomena, vol. 35, no. 3, pp. 335-356, 1989.

[51] D. Karunasingha and S. Liong, "Enhancement of Chaotic Time Series Prediction with

Real-time Noise Reduction," in Proc. of the Intl. Conf. on Small Hydropowere, Sri

Lanka, October 2007.

[52] C. Damle and A. Yalcin, "Flood Prediction Using Time Series Data Mining," Jrnl. of

Hydrology, vol. 333, no. 2-4, pp. 305-316, 2007.

138

[53] A Eiben and J Smith, Introduction to Evolutionary Computation. Berlin: Springer,

2003.

[54] A. Patcha and J. Park, "An Overview of Anomaly Detection Techniques: Existing

Solutions and Latest Technological Trends," Computer Networks, vol. 51, no. 12, pp.

3448-3470, 2007.

[55] K. Wang and S. Stolfo, "Anomalous Payload-based Network Intrusion Detection,"

Lecture Nots in Computer Science: Recent Advances in Intrusion Detection, vol.

3224/2004, pp. 203-222, 2004.

[56] L. Fang and N. Peng, "LAD: Localization Anomaly Detection for Wireless Sensor

Networks," Journal of Parallel and Distributed Computing, vol. 66, no. 7, pp. 874-

886, 2006.

[57] V. Chandola, A. Banerjee, and V. Kumar, "Anomaly Detection: A Survey," ACM

Computing Surveys, vol. 41, no. 3, pp. 1-58, 2009.

[58] M. Chuah and F. Fu, "ECG Anomaly Detection via Time Series Analysis," Lecture

Notes in Computer Science: Frontiers of High Performance Computing and

Networking, vol. 4743, pp. 123-135, 2007.

[59] A. Azad, S. Alouf, E. Altman, V. Borkar, and G. Paschos, "Optimal Sampling for

State Change Detection with Application to the Control of Sleep Mode," in Proc. of

the 48th IEEE Conf on Decision and Control, Shanghai, December 2009, pp. 1645-

1650.

[60] R. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, "Image Change Detection

Algorithms: A Systematic Survey," IEEE Transactions on Image Processing, vol. 14,

no. 3, pp. 294-307, 2005.

[61] M. Tykierko, "Using Invariants to Change Detection in Dynamical Systems with

Chaos," Physica D, vol. 237, no. 1, pp. 6-13, 2008.

[62] S. Chakraborty, S. Sarkar, and A. Ray, "Symbolic Identification and Anomaly

Detection in Complex Dynamical Systems," in 2008 American Control Conference,

Seattle, WA, 2008, pp. 2792-2797.

[63] C. Rao, A. Ray, S. Sarkar, and M. Yasar, "Review and Comparative Evaluation of

Symbolic Dynamic Filtering for Detection of Anomaly Patterns," Signal, Image and

Video Processing, vol. 3, no. 2, pp. 101-114, 2009.

[64] K. Chung, Markov Chains with Stationary Transition Probabilites, 2nd ed. New

York: Springer, 1967.

139

[65] A. Smith and N. Toppel, "Case Study: Using Security Awareness to Combat the

Advanced Persistent Threat," in Proc. of the 13th Colloquium for Information

Systems Security Education, Seattle, WA, 2009, pp. 64-70.

[66] Lincoln Laboratory MIT's. DARPA Intrusion Detection Dataset. A public web site

http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/1999data.html.

[67] M. Schmidt and H. Lipson, "Distilling Free-Form Natural Laws from Experimental

Data," Science, vol. 324, no. 5923, pp. 81-85, 2009.

