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Figure 3.5 Validation of the energy consumption model with 442 data instances 

 
Figure 3.6 Validation of the room temperature model with 442 data instances 

3.4 Model Optimization 

     3.4.1 Optimization model formulation 

To minimize the energy consumption of the HVAC system, the objective function 
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acceptable range in search of the optimal supply air temperature and the supply air duct 

static pressure set points at the time      . The observed room temperature can be 

calibrated by the sensors originally installed in the system while the observed energy 

consumption can be computed from Equations (3.4)-(3.7). The constraints in the model 

are identified by setting the lower and upper bounds of the control parameters and 

assigning an acceptable range for room temperature. These settings are restricted within 

the following limits: 

 The supply air temperature set point varies from 50°F (10°C) to 64°F 

(17.7 °C).  

 The supply air duct static pressure set point varies between 1.2 in. WG 

(0.3 kPa) to 1.8 in. WG (0.45 kPa). 

 The room temperature is maintained between 70.5°F (21.39°C) and 71.5°F 

(21.94°C). 

These three limits are determined by the design of the HVAC system and 

preferences of the occupants. Therefore, the optimization model is formulated as 

Equation (3.10): 

1 2( ), ( )

1 1 2 3 4 5 6 7 1 2

2

min ( )

subject to:

 ( ) ( ( ), ( ), ( 2 ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ))

                   ( ) ( ( ), ( ), ( 2 ), ( ), ( ), (

c t d c t d

x x x x x x x

y t d

x t d f x t x t d x t d y t v t v t v t v t v t v t v t c t d c t d

y t d f y t y t d y t d x t d x t x t

 



     
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                   ( ), ( 2 ), ( ), ( ), ( 2 ), ( ), ( )
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 1.2 ( ) 1.8
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v t d v t d v t v t d v t d c t d c t d
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

     

  

  

  

   (3.10) 

where   ̂(   ) is the predicted value of indoor room temperature by applying 

the original supply air temperature set point   (   ) and the supply air duct static 

pressure set point    (   ). In minimizing the energy consumption at time stamp    
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  , the room temperature is maintained within a pre-set range. The constrained model 

(3.10) is transformed to a bi-objective optimization model with the objective functions 

(3.11) and (3.12): 

      ̂(   )                                                                                              (3.11) 

                 ̂(   )          ̂(   )                              (3.12) 

Then the bi-objective optimization model is presented as Equation (3.13): 

1 2( ), ( )

1 1 2 3 4 5 6 7 1 2

2 1 2
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subject to:
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  
   

(3.13) 

Note that when Obj2 is equal to 0, all constraints of the model in Equation (3.13) 

are satisfied.  

3.4.2 Multi-objective particle swarm optimization algorithm 

Since the optimization model derived from the MLP ensemble algorithm is 

complex, it is difficult to solve it with traditional algorithms. Particle swarm optimization 

(PSO) inspired by natural bird flocks is a suitable optimization algorithm [36]. The PSO 

algorithm is easy to implement and there are few parameters to adjust. In recent years, 

many modifications have been made to the original algorithm [58]. Among those 

modifications, constant inertia weight particle swarm optimization (CIWPSO), 

constricted particle swarm optimization (CPSO), and decreasing inertia weight particle 

swarm optimization (DIWPSO) have good performance in most cases. Hence, these three 

PSO variants were applied in this research. The PSO in its original form [58] is presented 

next: 
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Step 1: Initialize a group of particles with random positions      and velocities 

      in the search space; 

Perform the next steps until the pre-set requirements are satisfied. 

Step 2: For each particle, compute fitness for each particle by using 

function   ( ). 

Step 3: Compare each particle’ fitness with its past best value,       . If current 

value is better than       , then using current value instead of and update       with 

current location   ; compare all of the particles’ and find the best one assigned as and set 

its current location as      . 

Step 4: Update the particles’ velocities and positions based on the follo ing 

Equation (3.14): 

1 2(0, ) ( ) (0, ) ( )i i i i g i

i i i

v v U p x U p x

x x v

       

                                                                  (3.14) 

Step 5: If the stop criterion is satisfied,      is the final solution and the final 

optimal fitness.  

Note that  (   ) represents the uniform distribution in [   ]; and   should be 

within the range[          ].  

In order to get CIWPSO, CPSO, and DIWPSO, the concrete modifications to the 

original PSO are listed in the following: 

1) For constant inertia weight particle swarm optimization Equation (3.14) is 

transformed into Equation (3.15). 

1 2(0, ) ( ) (0, ) ( )i i i i g i

i i i

v v U p x U p x

x x v

        

                                                  (3.15) 
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Where is the inertia weight that can reduce the importance of      to 

satisfy the requirement of controlling the scope of the search? For 

constant inertial particle swarm optimization  is a constant.  

2) For constricted particle swarm optimization Equation (3.14) is expresses 

as Equation (3.16). 

 

1 2( (0, ) ( ) (0, ) ( ))i i i i g i

i i i

v v U p x U p x

x x v

        

                                               (3.16) 

where   is the constriction coefficient that can control the convergence of 

the particle and prevent explosion of the particle’s velocity. Usually this 

constriction coefficient is set to 0.7298.  

3) For decreasing inertia weight particle swarm optimization Equation (3.14) 

is expressed as Equation (3.17).  

 
1

1 2

1 1

(0, ) ( ) (0, ) ( )t t t t t t t

i i i i i i

t t t

i i i

v v U p x U p x

x x v

  

 

      

                                              (3.17) 

In equation (3.17),    is a time function. It is updated based on Equation 

(3.18).  

                                                  max

max min min

max

( )t t t

t


   




  

                                           (3.18) 

To adopt the above three algorithms for solving a multi-objective optimization 

model, the following modifications are made according to [59].  

Modification 1: Create a set   to store the non-dominated solutions for     particle 

up to the current time. 

Modification 2: Create a set   to store the non-dominated solutions from all    at 

each iteration. 
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Modification 3: Create an external set   to store the non-dominated solutions 

from   at each iteration. 

Modification 4: Process to update  : At each iteration, compare the current 

particle solution with the stored solutions. Dominated solutions are removed while non-

dominated solutions are kept. 

Modification 5: Process to update  : At each iteration, copy all to   where 

dominated solutions are removed. 

Modification 6: Process to update external non-dominated set  : At each iteration, 

copy solutions from   to  . Remove the dominated solutions from  . 

Modification 7: Process to generate local and global best solution: For each 

particle at each iteration, the Euclidean distance among solutions from the corresponding 

local non-dominated set and global non-dominated set are measured. The pair with 

minimum distance in the search space is selected as the local and global best for this 

particle in under-taking the later velocity and position updating process. 

In contrast to CIWPSO, DIWPSO, and CPSO that were designed for solving 

single objective models, multi-objective CIWPSO (MO-CIWPSO), multi-objective 

DIWPSO (MO-DIWPSO), and multi-objective CPSO (MO-CPSO) are aimed at solving 

multi-objective models. Figure 3.7 shows the flow chart for the multi-objective particle 

swarm optimization algorithm.  

3.4.3 Optimization results and analysis 

To solve the optimization model represented by (3.10), the above-mentioned three 

multi-objective PSO variants are applied and the detailed parameters for the algorithms 

are listed in Table 3.6.  
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for the population at each iteration
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N
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Figure 3.7 The flow chart of multi-objective particle swarm optimization algorithm 

Data set 4 in Table 3.1 is used to run the variants of the PSO algorithm defined in 

Table 3.6. The optimal solution is selected from the final elite set based on the weighted 

normalized objective function (3.19).  

min min
1 2

max min max min

1 1 2 2

1 1 2 2

Obj Obj Obj Obj
Obj w w

Obj Obj Obj Obj

 
 

                                                         
(3.19)            

where    and    are the user-defined weights indicating the preference of the 

corresponding objective,         and         are the maximum and the minimum 
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values of Obj1  in the final elite set. Similar notation is used for         and        . 

Note that        , with   and   being either constants or functions of other 

objectives.  

Table 3.6 Settings for the three multi-objective PSO variants 

Algorithm Settings 

MO-CIWPSO 

Acceleration coefficients are set to ϕ1=ϕ2=2.05. Inertia 

weight is set to 0.95. Population size and the number of 

iterations are set to 100 and 50, respectively.  

MO-DIWPSO 

Acceleration coefficients are set to ϕ1=ϕ2=2.05. Linearly 

decreasing inertia weight from 0.9 to 0.4 and the final value is 

reach at the end of the run. Population size and iteration 

number are set to 100 and 50, respectively. 

MO-CPSO 

Acceleration coefficients ϕ=4.1. Constriction factor χ=0.729. 

Population size and the number of iterations are set to 100 

and 50, respectively. 

Table 3.7 presents two scenarios that represent different preferences to the 

objectives. Scenario 1 means that energy consumption is the only criterion to be 

considered when selecting the single best solution among the non-dominated solutions. 

Scenario 2 means energy consumption and room temperature are both important criterion 

when selecting the single best solution among the non-dominated solutions.  

Table 3.7 Two scenarios involving different weight values 

Scenario Weights Description 

1 1 21, 0w w   No AQI constraints 

2 
2 2

1 2

1        y [70.5,71.5] 0        y [70.5,71.5]
,

0.5    otherwise 0.5    otherwise

if if
w w

  
  
 

 
Consider room 

temperature as 

constraint 

In order to eliminate the bias of the algorithms, each of the three multi-objective 

PSO variants was run ten times and the average values and the corresponding standard 
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deviation were calculated. The results provided by the three variants of the PSO 

algorithm are listed in Table 3.8 that illustrates the multi-objective DIWPSO outperforms 

other two multi-objective PSO variants, and therefore, the DIWPSO is used in the 

following analysis.  

Table 3.8 Performance of the three multi-objective PSO variants 

Algorithm Energy Savings in Scenario 1 Energy Savings in Scenario 2 

MO-CIWPSO 22.77%  0.12% 21.83%  0.13% 

MO-DIWPSO 23.00%  0.06%
 

22.04%  0.13% 

MO-CPSO 22.86%  0.13% 21.89%  0.12% 

Figures 3.8- 3.9 compare the observed and the optimized values on data set 4 for 

Scenario 1 and 2. In most cases, the energy consumption of the optimized process is less 

than the observed one, which means the proposed model can save energy.  Figures 3.10-

3.11 illustrate the room temperature for Scenario 1 and 2.  In most cases, the indoor room 

temperature can be kept in the range from 68°F (20°C) to 72°F (22.22°C) (desired room 

temperature range).  Since Scenario 2 considers the room temperature as a constraint 

when selecting the single best solution among the non-dominated solutions, the number 

of the points which room temperature violates the desired room temperature range is less 

than the one in Scenario 1. Figures 3.12-3.13 present the supply air temperature set point 

and the supply air duct static pressure set point. Based on these set points, the energy 

savings which is the difference between the observed and optimized energy consumption 

shown in Figures 3.8 and 3.9 can be achieved.  

The actual implementation and validation of the DIWPSO algorithm for Scenario 

2 is discussed in the next section 



49 

 

 
 

 
Figure 3.8 Comparison between the observed and optimized energy consumption in 

Scenario 1 

 
Figure 3.9 Comparison between the observed and optimized energy consumption in 

Scenario 2 
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Figure 3.10 Comparison between the observed and optimized room temperature in 

Scenario 1  

 
Figure 3.11 Comparison between the observed and optimized room temperature in 

Scenario 2  
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Figure 3.12 Recommended supply air temperature set point compared to the observed 

value in Scenario 1  

 
Figure 3.13 Recommended supply air duct static pressure set point compared to the 

observed value in Scenario 1  
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Center from May 15 to 22, 2011. In the experiment, AHU-A and AHU-B were operated 

simultaneously. The AHU-A and AHU-B serve four identical thermal areas. The only 

difference between the two systems was that the AHU-A was controlled by the proposed 

approach while the AHU-B was controlled by the traditional approach. The experiment 

included two stages. The first stage from May 15 to 20, 2011 aimed at collecting data 

from the two systems while the second stage from May 21 to 22, 2011 was to establish 

the energy consumption bias between the two systems controlled by the traditional 

approach. At the first stage, AHU-A was controlled by the optimization model while 

AHU-B operated with fixed set points: the supply air temperature set at 55°F (12.78°C) 

and the supply air duct static pressure set at 1.4 in. WG (0.35 kPa). Since these two 

systems use identical devices and they serve identical test areas, the difference in energy 

consumption points to the effectiveness of the proposed optimization approach. As shown 

in Figure 3.14, the energy consumption for AHU-A and AHU-B are 568.88and 781.16 

kWh, respectively. AHU-A therefore consumed less energy than AHU-B, thus producing 

an energy savings of 27.18%. Figure 3.15 illustrates the room temperature for AHU-A 

and AHU-B. Although the range of indoor room temperature of AHU-A is larger than for 

AHU-B, it usually falls in the normal range of 68°F (20°C) to 72°F (22.22°C). Only for a 

limited time does it exceed the present constraints. Thus, the indoor room temperature is 

considered to be at an acceptable level. In the second stage, the two systems were 

operated with identical fixed set points: the supply air temperature was set at 55°F 

(12.78°C) and the supply air duct static pressure was set at 1.4 in. WG (0.35 kPa). As 

shown in Figure 3.16, the energy consumption of AHU- A and AHU-B are 277.22 and 

266.49 kWh, respectively. AHU- A therefore consumes 3.87% more energy than AHU- 

B for the same control settings. Considering for the bias between the two systems, the 

energy savings provided by the optimization model are adjusted to 29.99%.  Figure 3.17 

show the adjusted energy comparison after the adjustment.  
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Figure 3.14 Energy consumption of AHU-A and AHU-B at the first stage 

 
Figure 3.15 Room temperature of AHU-A and AHU-B at the first stage 
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Figure 3.16 Comparison of energy consumption of AHU-A and AHU-B for the same set 

points at the second stage 

 
Figure 3.17 Comparison of the bias-adjusted energy consumption of AHU-A and AHU-B 
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HVAC system in order to provide energy savings while maintaining the room 

temperature within an acceptable range. Three modified multi-objective particle swarm 

optimization (MO-PSO) algorithms were applied to solve the optimization model. The 

computational results indicated that the multi-objective decreasing inertia weight particle 

swarm optimization (MO-DIWPSO) outperformed two other variants of the same 

algorithm. The MO-DIWPSO algorithm was implemented on the actual HVAC system. 

The experiments demonstrated that the optimization model saved 29.99% in energy 

consumption. Future research will focus on improving the accuracy of the model and 

approaches to improve handling of user preferences. 
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CHAPTER 4 

CONTROLLING AN HVAC SYSTEM WITH SWARM 

INTELLIGENCE AND DATA-DRIVEN APPROACH 

4.1 Introduction 

In this chapter, a robust control strategy for an HVAC system, shown in Figure 

4.1, is presented. A time-series approach is used to describe the system, and then a neural 

network is applied to develop a predictive model of energy consumption, which includes 

the energy consumed by chillers, pumps, fans, and reheating natural gas. The model 

involves optimization of two set points, the supply air static pressure and the supply air 

temperature, with a multi-objective particle swarm optimization algorithm.  It is noted 

that the changes of the supply air temperature are constrained to small increments due to 

the considerable time needed to arrive at a steady state. In addition, the two set points 

minimize the energy consumption while maintaining the indoor temperature at an 

acceptable interval. To meet these requirements, a particle swarm optimization algorithm 

is integrated with fuzzy rules for solving the optimization models. The proposed 

approach has been validated on an industrial HVAC system. 

V-1 V-3
V-4

Damper

Damper

Damper

Return air

Supply air

Exhaust air

Outside air

Cooling coil Heating coil

Valve Valve
Valve

VAV 

terminals

Diffuser

Exhaust 

grille

Mixed air

 
Figure 4.1 Schematic diagram of a typical HVAC system 



57 

 

 
 

4.2 Data Description 

The data set in this research was obtained from an experiment conducted by the 

Energy Resource Station (ERS) in Ankeny, Iowa, which is an energy laboratory for 

testing and demonstrating commercial HVAC systems. The experiment aimed to assess 

the relationship between the states of the HVAC system, such as energy consumption and 

indoor temperature  and t o of the system’s controllable set points – supply air static 

pressure set point (SA-SPSPT) and supply air temperature set point (SAT-SPT). In 

particular, SA-SPSPT varied from 0.4 in. WG (0.1 kPa) to 1.8 in. WG (0.45 kPa) with 0.2 

in. WG (0.05 kPa) increments; whereas SAT-SPT varied from 50°F (10 °C) to 65 °F 

(18.33 °C) at 1 °F (0.556 °C) increments over the course of the experiment. 

Corresponding to the change of the two set points, more than 300 parameters, including 

weather conditions, energy consumption, and indoor temperature, was recorded at 1-

minute intervals by sensors installed in the systems. The data was collected July 31– 

August 16, 2009; September 21 – October 7, 2009; August 17 – September 6, 2010; and 

June 22 to July 27, 2011, respectively. Table 4.1 describes the experimental data in detail. 

The data set used in this research uses a 30-min sampling interval. It was derived from 

the originally collected 1-min data. 

Table 4.1 Description of data sets 

Number of 

data set 
Data Set Type Time Period 

Number of 

Instances 

1 Entire data set 
07/31-08/15/2010; 09/21-10/07/2010; 

08/01-09/06/2010; 06/22-07/27/2011 
3532 

2 Training data set Randomly selected from data set 1 2472 

3 Test data set Randomly selected from data set 1 529 

4 Validation data set Randomly selected from data set 1 527 
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4.4 Model Development 

4.4.1 Parameter selection 

Before a predictive model is developed, it is essential to select most important 

parameters to ensure comprehensibility, scalability, and accuracy of the resulting models 

[48]. The boosting tree algorithm is applied for parameter selection as it has demonstrated 

good performance [49]. Tables 4.3 and 4.4 include the parameters used as the inputs to 

the energy consumption prediction model and the indoor temperature prediction model 

selected by the correlation coefficient analysis approach and the boosting tree algorithm. 

Table 4.3 Parameters selected for building the energy consumption model 

Parameter Parameter Name Description Unit 

Energyy
 

Energy 

Consumption 

HVAC-consumed Energy in 30 

min 
kWh 

SASP SPTx   SASP-SPT 
Supply air duct static pressure set 

point 
in.WG (kPa) 

SAT SPTx   SAT-SPT 
AHU supply air temperature set 

point 
°F (°C) 

OAI TEMPv   OAI-TEMP Outside air inlet temperature °F (°C) 

CHWC VLVv   CHWC-VLV Chilled water coil valve position % Open 

MA TEMPv   MA-TEMP Mixed air temperature °F (°C) 

CHWC MWTv   CHWC-MWT 
Chilled water coil mixed water 

temperature 
°F (°C) 

IR RADIAv   IR-RADIA Infrared radiation B/h ft
2 
(W/m

2
) 

OA TEMPv   OA-TEMP Outside air temperature °F (°C) 

SOL HORZv   SOL-HORZ Solar normal flux B/h ft
2
 (W/m

2
) 

SA CFMv   SA-CFM Supply air fan speed CFM 

SA HUMDv   SA-HUMD Supply air humidity % RH 

TEMPy
 RM-TEMP Indoor temperature °F (°C) 

4.4.2 Predictive model formulation 

A typical HVAC system includes components such as fans, cooling coil, heating 

coil, humidifier, filter and ductwork. Due to the physical properties of these components 
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and the structure of the building, HVAC is a dynamic, complex, and time-delayed 

system. A time-series approach – namely, nonlinear auto-regression with external inputs 

– is applied to model the dynamic HVAC system. In model development, 1-time 

increment and 2-time increment predictions are adopted. The boosting tree algorithm is 

also applied to determine the time lag of each parameter and to decide the time increment 

with the greatest impact on the system state. The energy consumption and the indoor 

temperature prediction models are expressed in Equations (4.2) - (4.5). 
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Table 4.4 Parameters selected for building the indoor temperature model 

Parameter Parameter Name Description Unit 

TEMPy  RA-TEMP Indoor temperature °F (°C) 

SASP SPTx   SASP-SPT 
Supply air duct static pressure set 

point 
in.WG (kPa) 

SAT SPTx   SAT-SPT 
AHU supply air temperature set 

point 
°F (°C) 

Energyy
 Energy consumption 

Energy consumed by HVAC 

systems in 30 min 
kWh 

SA CFMv   SA-CFM Supply air fan speed CFM 

RA TEMPv   RA-TEMP Return air temperature °F (°C) 

OAI CFMv   OAI-CFM Outside air injection air flow CFM 

The multi-layer perception (MLP) ensemble approach is used to build predictive 

models of energy consumption and indoor temperature. Since it has supervised-learning 

pattern recognition and parallel distributed processing ability, MLP can approximate 

system with complex and nonlinear problems.  The MLP ensemble performs better than 

other algorithms, such as the chi-squared automatic interaction detector (CHAID), 

classification and regression tree (C&RT) algorithm, support vector machine (SVM), 

boosting tree, random forest, and the multivariate adaptive regression spline 

(MARSpline) algorithm [31]. To derive the model expressed in Equations (4.2)-(4.5), 

data set 1 (3,532 data instances) was divided into three parts: a training data set (2,472 

data instances), a test data set (529 data instances), and a validation data set (527 data 

instances). 

4.4.3 Model validation 

The fourth metrics in Chapter 2 (Equations (2.17) – (2.22)) are also applied here 

to validate the predictive models in the above section. The data in Table 4.5 illustrates 

performance of the energy consumption and the indoor temperature models built by the 

MLP ensemble algorithm. The MAPE values for the indoor temperature prediction model 

in Table V indicate satisfactory accuracies of 99.6% and 99.3% using the predictive 
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models for 1-time increment and 2-time increment predictions, respectively. The MAPE 

value of the energy consumption for 1-time increment predictions is 92.3% for validation 

data set. The 2-time increment prediction of energy consumption is 88.2% accurate. As 

shown in Figures 4.7-4.10, the correlation coefficients between the predicted values and 

the corresponding observed values are 0.965, 0.937, 0.976, and 0.951 for energy 

consumption 1-time increment and 2-time increment models, indoor temperature 1-time 

increment and 2-time increment models, respectively. Therefore, the four predictive 

models, including the 1-time increment and 2-time increment predictions, are employed 

to construct the overall HVAC system optimization model.  

Table 4.5 Performance of the MLP ensemble models of energy consumption and indoor 

temperature 

Objective Data Set MAE MAPE Std_AE Std_APE 

Energy 

consumption 

1 

 

Train 141.2 0.067 130.1 0.119 

Test 167.5 0.076 181.25 0.099 

Valid. 213.4 0.083 311.0 0.200 

2 

Train 196.9 0.093 189.8 0.126 

Test 213.3 0.114 284.3 0.294 

Valid. 211.7 0.118 254.2 0.418 

Indoor 

Temperature 

1 

Train 0.263 0.004 0.310 0.004 

Test 0.263 0.004 0.294 0.004 

Valid. 0.298 0.004 0.343 0.005 

2 

Train 0.447 0.006 0.474 0.007 

Test 0.422 0.006 0.417 0.006 

Valid. 0.474 0.007 0.467 0.006 
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Figure 4.7 The correlation coefficient between predicted and observed values for 1-

increment ahead prediction of energy consumption  

 
Figure 4.8 The correlation coefficient between predicted and observed values for 2-

increment ahead prediction of energy consumption 
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Figure 4.9 The correlation coefficient between predicted and observed values for 1-

increment ahead prediction of indoor temperature 

 
Figure 4.10 The correlation coefficient between predicted and observed values for 2-

increment ahead prediction of indoor temperature 

Predicted indoor temperature (°F) = 4.1154+0.9419*x; 0.95 CI

66 68 70 72 74 76 78 80

Observed indoor temperature (°F)

66

68

70

72

74

76

78

80

P
re

d
ic

te
d

 i
n

d
o

o
r 

te
m

p
e

ra
tu

re
 (

°F
)

Predicted indoor temperature (°F) = 7.2601+0.8982*x; 0.95 CI

66 68 70 72 74 76 78

Observed indoor temperature (°F)

66

68

70

72

74

76

78

P
re

d
ic

te
d

 i
n

d
o

o
r 

te
m

p
e

ra
tu

re
 (

°F
)



68 

 

 
 

4.5 Multi-objective Optimization Model 

4.5.1 Optimization model formulation 

To optimize and control the HVAC system, Equations (4.2) and (4.3) are used in 

the model objective.  Equations (4.4) and (4.5) are used as the constraints. Two values of 

two set points – the supply air temperature set point and the supply air duct static pressure 

set point – at time t + T and t + 2T are the decision variables of the HVAC optimization 

model. Lower and upper bounds of the control parameters and the constraint functions 

are imposed as follows:  

 The supply air temperature set point varies from 50°F (10°C) to 65°F 

(18.3 °C); 

 The change interval of the supply air temperature set point should refer to 

the fuzzy function expressed in Equation (4.1); 

 The supply air duct static pressure set point varies between 0.6 in. WG 

(0.1 kPa) and 1.8 in. WG (0.45 kPa); 

 The indoor temperature is maintained between 68°F (20°C) and 72°F 

(22.2°C). 

The above four constraints depend on the actual design of the HVAC system and 

the preferences of the occupants.  The constraints are classified as hard or soft 

constraints. Hard constraints need to always be respected, while soft constraints can, to 

some degree, be violated.  The HVAC optimization model is expressed in (4.6)-(4.18). 

Note that (4.16) and (4.17) can be considered as soft constraints:   

 

( ), ( 2 ), ( ), ( 2 )

min ( ) ( 2 )
SASP SPT SASP SPT SAT SPT SAT SPT

Energy Energy

x t T x t T x t T x t T

y t T y t T
      

                                (4.6) 
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Where ( ) ( 2 )Energy Energyy t T y t T    is the sum of the predicted energy consumption at 

t + T and t + 2T, ( )TEMPy t T  and ( 2 )
TEMP

y t T  are the predicted values of indoor 

temperature at t + T and t + 2T. Applying the optimal supply air temperature set point 

( ) ( 2 )SAT SPT SAT SPTx t T x t T    and the supply air duct static pressure set point 

( )SASP SPTx t T  and ( 2 )SASP SPTx t T  . In minimizing the energy consumption at time stamp t 

+ T and t + 2T, the indoor temperature at time stamp t + T and t + 2T is maintained within 

a pre-set range. The constrained model (4.6)-(4.18) is transformed into a multi-objective 

optimization model with the objective functions (4.19)-(4.21) by converting the soft 

constraints into objective functions: 

             (   )         (    )                                                         (4.19) 

                        (   )                (   )                   (4.20) 

 

                            (    )                (    )              (4.21) 

The multi-objective optimization model is presented in (4.22). Note that, when 

Obj2 and Obj3 are equal 0, constraints (4.11)-(4.18) are all satisfied: 
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4.5.2 Multi-objective rule-based particle swarm 

optimization algorithm 

The HVAC optimization model derived from data-driven approach is non-

parametric and non-convex complex and therefore cannot be easily solved by traditional 

gradient-descent-based algorithms. Rather, a particle swarm optimization (PSO) 

algorithm inspired by the social behavior of flocks of birds and schools of fish is used 

[62]. To solve multi-objective optimization problems, the general single objective PSO 
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algorithm is extended to multi-objective PSO algorithm by integrating a Pareto optimal 

set. Since the Pareto optimal set includes many non-dominated solutions, the leader in the 

general single objective PSO has to be changed. In MOPSO, every non-dominated 

solution can be considered as a new leader, then one leader is selected using a quality 

measure reflecting the goodness of the leader. The nearest neighbor density estimator is 

used as the quality measure. It corresponds to the perimeter of the cuboid formed by the 

nearest neighbors as the vertices. The larger value of the perimeter is preferred. An 

external archive is used in MOPSO to retain non-dominated solutions. A solution enters 

the archive provided that it meets the following two standards:  

 It is non-dominated with respect to the content of the archive or  

 It dominates all the solutions in the archive.  

The steps of the MOPSO are shown next:  

Begin 

          Initialize swarm in the search space nR   

          Initialize leaders in an external archive A 

          Quality leaders 

          gen = 0  

          While gen < gen_max  

                    For each particle   

                              Select leader  

                              Update position  

                              Evaluation  

                              Update pbest  

                    EndFor  

                    Update leaders in the external archive  

                    Quality leaders  

                     gen = gen + 1  

          EndWhile  

          Report results in the external archive  

End 

 

To control the HVAC system, the rules shown in Table 4.2 are embedded in a 

multi-objective particle swarm optimization, thus leading to the multi-objective rule-

based particle swarm optimization (MORBPSO) algorithm. These rules manage the 
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update interval of the supply air temperature set point. The steps of MORBPSO are as 

follows:  

Begin 

          Initialize search space based on rule set S 

          Initialize swarm in the search space  nR  

          Initialize leaders in an external archive A 

          Quality leaders  

          gen = 0   

          While gen < gen_max  

                    For each particle  

                              Select leader  

                              Update position  

                              Evaluation  

                              Update pbest  

                    EndFor  

                    Update leaders in the external archive  

                    Quality leaders  

                     gen = gen + 1  

          EndWhile  

          Report results in the external archive  

End 

4.6 Computational Results  

4.6.1 Representative points used in optimization 

In this section, the multi-objective rule-based PSO algorithm is demonstrated with 

the nine representative points selected from the validation data set of Table 4.1. Each of 

these nine representative points listed in Table 4.6 reflects one of the rules listed in Table 

4.2. Since the multi-objective rule-based PSO algorithm provides a set of non-dominated 

solutions, a user-defined weight vector is applied to the non-dominated solutions. The 

weighted normalized objective function is expressed in Equation (4.23): 

min min min

1 2 3

max min max min max min

1 1 2 2 3 3

1 1 2 2 3 3

OBJ OBJ OBJ OBJ OBJ OBJ
OBJ w w w

OBJ OBJ OBJ OBJ OBJ OBJ

  
  

                   
(4.23)     
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Where   ,   and   are the user-defined weights indicating the preference of the 

corresponding objective, and max1OBJ  and min1OBJ are the maximum and the minimum 

values of the final non-dominated set. Similar notation is used for max2OBJ , min2OBJ ,

max3OBJ , and max3OBJ . Note that 1 2 3 1w w w   , with 1 2 3, w w and w being either constants or 

functions of other objectives. In this chapter, three scenarios listed in Table 4.7 are 

considered to demonstrate the impact of the user preferences on the optimized solutions.  

Figure 4.11 shows a comparison between the observed energy consumption and the 

optimized one at t + T and t + 2T.  It indicates that in most cases, the optimized energy 

consumption for three scenarios have the same values. This is because the corresponding 

optimized indoor temperature falls between 68°F (20 °C) and 72°F (22.2 °C) as shown in 

Figures 4.12 – 4.13, and in this situation the values of Obj1 and Obj2 are zero. Therefore, 

in the three scenarios, only the energy consumption is optimized; however, for data 

points 2 and 4, the optimized indoor temperature is outside the 68°F (20°C) - 72°F 

(22.2°C) interval. As the user-defined weights vary for the three scenarios, the 

corresponding optimal solutions differ. As shown in Figure 4.11 and Table 4.7, the higher 

the weight assigned to the indoor temperature, the smaller the energy savings. For 

example, for data point 2, the optimized energy consumption for scenario 1, 2, and 3 is 

4.04, 4.80, and 5.16 kWh, respectively.  

 
Figure 4.11 The observed and optimized energy consumption for the three scenarios  
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Table 4.6 Nine representative points selected from the validation data set 

No. 
Current 

SAT-SPT 

Current 

Indoor Temp. 

Energy 

(t + T) 

Energy 

(t + 2T) 

Indoor 

Temp. (t + T) 

Indoor Temp. 

(t + 2T) 

1 55 67.9 2119.2 2098.2 68 68 

2 55 72.7 2805.6 3857.4 72.4 72.5 

3 55 70.5 1596.1 1954.3 69.7 71.6 

4 50.2 71.9 4527.4 5850 71.9 72.7 

5 50.2 70.4 1830.8 2487 72.0 72.1 

6 64.9 72.1 2393.1 2301.1 71.6 70.9 

7 64.9 70.8 2865.7 1363.7 69.9 68.5 

8 61.1 68.1 1994.3 3431.2 71.2 73 

9 53 68 2461.2 4273.6 71.6 70.7 

Table 4.7 Three weight scenarios for energy consumption and indoor temperature 

preference  

Scenario 

No. 

Weight assigned to energy 

at t + T and t + 2T 

Weight assigned to indoor 

temperature at t + T 

Weight assigned to 

indoor temperature at t 

+ 2T 

1 1 0 0 

2 0.4 0.3 0.3 

3 0 0.5 0.5 
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Figure 4.12 The observed and optimized indoor temperature at time t + T for the three 

scenarios 

 
Figure 4.13 The observed and optimized indoor temperature at time t + 2T for the three 

scenarios 

4.6.2 Optimization of multiple data points  

In this section, 100 data points from the validation data set in Table 4.1 are 

selected to demonstrate performance of the multi-objective rule-based PSO algorithm, 

and three scenarios from Table 4.7 are considered. Figure 4.14 compares the sum of 
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observed and optimized energy consumption of the 100 points for these three scenarios. 

Note that the energy consumption in Figure 4.14 is expressed as the sum of energy at 

time increments: t + T and t + 2T. The optimized energy consumption in scenario 1 is the 

lowest as this scenario considers only the energy consumed while choosing the optimized 

solution from the non-dominated set; however, since scenario 3 is only concerned with 

indoor temperature, the corresponding optimized energy consumption is the highest. The 

optimization algorithm, therefore, saves 34.4%, 28.5%, and 26.2% for scenarios 1, 2, and 

3, respectively. Figures 4.15 – 4.16 illustrate the indoor room temperature at t + T and t + 

2T for the three scenarios.  In most cases, the indoor temperature remains within the 

desired interval from 68°F (20°C) to 72°F (22.2°C), in the three scenarios. In a limited 

number of cases, the indoor temperature falls outside of the desired interval. The 

optimization algorithm selects different values for each of the three scenarios based on 

the weights. Figures 4.17 – 4.18 illustrate the recommended set points for scenario 3, 

which is concerned with the indoor temperature violating the constraint.  

 
Figure 4.14 The sum of the observed and optimized energy consumption of the 100 

points for the three scenarios 
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Figure 4.15 The observed and optimized indoor temperature at time t + T for the three 

scenarios  

 
Figure 4.16 The observed and optimized indoor temperature at t + 2T for the three 

scenarios  
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Figure 4.17 The recommended set point of the supply air static pressure at t + T and t + 

2T 

 
Figure 4.18 The recommended set point of the supply air temperature at t + T and t + 2T  

4.7 Summary 

In this chapter, a model was developed to optimize energy consumption of an 

HVAC system. The model and an optimization algorithm were applied on an industrial-

grade HVAC system. To control the system, a set of rules updating the set points was 

integrated into the optimization algorithm. An experiment was designed to collect data 

utilized to build, train, and validate the optimization model. Computational experience 
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with representative single- and multi-point case studies demonstrated that energy savings 

ranging from 26.2% to 34.4% can be achieved by the proposed data-driven approach. The 

approximate 8% margin of energy savings is determined by the user comfort preferences. 
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CHAPTER 5  

CONCLUSION 

A data-driven methodology to model heating, ventilating, and air-conditioning 

(HVAC) systems was studied. It included analysis of experimental data, parameter 

selection, building HVAC models, and investigating optimization of system performance 

by considering energy consumption and thermal comfort. The research reported in the 

Thesis shed light on a new perspective of saving energy in building energy area. 

 In Chapter 2, a predictive model and a simulation model were built. The 

predictive model was used to predict the energy consumption and indoor temperature of 

an HVAC system, while the simulation model is to simulate the HVAC system behavior. 

Then the predictive model was converted to an optimization model. A nonlinear interior-

point algorithm was employed to optimize the proposed optimization model. A 

comparison between the optimized and simulated result was analyzed in the end.  

In Chapter 3, a time series based neural network was applied to build models for 

an HVAC system. After converting the data-approach model into an optimization model, 

three multi-objective particle swarm optimization algorithm were proposed and the best 

one was chosen to solve the optimization model.  The proposed data-driven approach was 

implemented and was proved to save energy up to 30%. 

In Chapter 4, a robust control strategy for an HVAC system was presented. A 

time series approach was used to describe the system and neural network was employed 

to build models with two set points as controllable variables. A fuzzy rule was adopted to 

control the set points in the model when applying a multi-objective particle swarm 

optimization algorithm to solve the optimization model.  The proposed approach was 

validated with two cases: representative single data points and multiple data points.  

One of the challenges for future research is to develop hybrid model based on the 

combination of physical equations and data-driven approach. Some components which 

have simple physical principle can apply mathematical equation to describe. For the 
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complex process, data-driven approach can be utilized to simplify the description without 

sacrificing accuracy.   
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