






 

 

2

products were phase II metabolites which dominated in the non-adipose tissues and were 

eliminated via the large intestine and urine.  

Overall, differential congener elimination was found after inhalation of airborne 

PCBs, with minimal toxicity. Lower-chlorinated congeners were rapidly and extensively 

metabolized to phase II products and eliminated within hours.  

Abstract Approved:  ____________________________________  
    Thesis Supervisor 

  ____________________________________  
    Title and Department 

  ____________________________________  
    Date 

  

 



 

 

1
 

DISTRIBUTION, ELIMINATION AND TOXICITY ASSESSMENT OF SEMI-

VOLATILE POLYCHLOROBIPHENYLS AFTER INHALATION EXPOSURE 

by 

Xin Hu 

A thesis submitted in partial fulfillment 
of the requirements for the Doctor of 

Philosophy degree in Human Toxicology 
in the Graduate College of 

The University of Iowa 

May 2013 

Thesis Supervisor:  Professor Peter S. Thorne 
 

 



 

 

Graduate College 
The University of Iowa 

Iowa City, Iowa 

CERTIFICATE OF APPROVAL 

_______________________ 

PH.D. THESIS 

_______________ 

This is to certify that the Ph.D. thesis of 

Xin Hu 

has been approved by the Examining Committee 
for the thesis requirement for the Doctor of Philosophy 
degree in Human Toxicology at the May 2013 graduation. 

Thesis Committee:  ___________________________________ 
    Peter S. Thorne, Thesis Supervisor 

  ___________________________________ 
    Hans-Joachim Lehmler 

  ___________________________________ 
    Keri C. Hornbuckle 

  ___________________________________ 
    Larry W. Robertson 

  ___________________________________ 
    T. Renée Anthony 



 

 ii 

2
 

To my mom and dad, for their eternal love. 



 

 iii 

3
 

ACKNOWLEDGMENTS 

I would like to thank my supervisor, Dr. Peter Thorne, for his intellectual and 

patient guidance, encouraging mentoring and constant support throughout the entire time. 

I feel extremely lucky to have such a talented, diligent and experienced mentor who 

guided me through research, writing, communication and many other challenges in 

science while sufficient space was provided to let me work independently. Great 

gratitude is also owed to my other committee members. Dr. Hans-Joachim Lehmler has 

engaged a large amount of time and work in my studies. His intellectual contribution 

greatly improves the work. Dr. Keri Hornbuckle has also worked closely with us. Her 

research work, knowledge and resources were our best support. Drs. Larry Robertson and 

T. Renée Anthony generously gave me their valuable advice that enlightens me 

continuously throughout the study.  

I must express my gratitude to Dr. Andrea Adamcakova-Dodd, who taught me the 

skills of animal work and helped me with exposure and dissection and many other things 

in every study. She is also a great friend that can always relieve my stress.  I also want to 

thank the PTF group, especially Nervana, Kimberly, Brita and Jeanne. They are so 

helpful and lovely that every workday was fun time. I also appreciate the help from Dr. 

Izabela Kania-Korwel, who taught me the analytical techniques and always promptly 

responded to my questions and inquiries. A large amount of my work relied on the 

support from the Lehmler Lab. I want to thank Dr. Dingfei Hu for the excellent congener 

specific GC/MS/MS analysis – a great strength of our studies. Many other people who 

helped me include:  Dr. Wanda Haschek-Hock (tissue pathology), Paul Eastling (PCB 

volatilization model), Dr. Ian Lai (cytochrome P450 activity), Dr. Nukhet Aykin-Burns 

and Dr. Yueming Zhu (glutathione assay), Jeanne DeWall (art of rat drawing).  

My special thanks go to my husband, Xu Liu, a passionate and disciplined 

scientist. His companionship, encouragement and optimism are my best energizer, 



 

 iv 

4
 

making me feel that I can face any challenge. I continually enjoyed the conversations 

with him and his perspectives were always inspiring. The journey is much more joyful 

with him to share it.   



 

 v 

5
 

ABSTRACT 

Inhalation exposure to semi-volatile polychlorobiphenyls (PCBs) that 

ubiquitously exist in the environment has the potential to cause adverse health effects. 

Recently identified sources of airborne PCBs, especially non-legacy sources, stress the 

importance of risk assessment for inhalation exposure. However, the fate of inhaled 

airborne PCBs in biological systems and the resultant toxicity remain unexplored. 

The objective of this thesis research was to investigate the distribution and 

elimination of semi-volatile PCBs in biological systems after inhalation exposure and 

evaluate the biologic and toxicologic consequences. This objective was achieved by 

conducting the following inhalation studies in rats: a short-term exposure study of the 

body burden and elimination; a subchronic exposure toxicity study; an acute exposure 

study of PCB11 metabolism; and a mass balance study of [
14

C]PCB11 following lung 

exposure. 

PCBs found in technical Aroclor mixtures and PCB11 were readily absorbed and 

distributed following nose-only inhalation exposure. PCBs accumulated in adipose tissue, 

but decayed in other tissues with biological half-lives of several hours. Their elimination 

was dependent on the structure of the PCB congeners and the metabolic nature of the 

organ. Lower-chlorinated PCBs exhibited more rapid clearance than higher-chlorinated 

congeners yet differential rates of elimination were also seen within the homologue. A 

distinct congener pattern was found in tissues, ranging from tri- to pentachorobiphenyls 

after subacute and subchronic exposure. 

Rapid elimination of PCB11 and its metabolite, 4-OH-CB11, were detected in 

liver following nose-only inhalation exposure by our established methodology. Further 

investigation revealed that [
14

C]PCB11 was 99.8% absorbed in lung. Elimination of the 

[
14

C]PCB11 and products consisted of an initial fast phase followed by a slow clearance 

phase. [
14

C]PCB11 underwent rapid and extensive metabolism in liver. The major 
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products were phase II metabolites which dominated in the non-adipose tissues and were 

eliminated via the large intestine and urine. 

Overall, differential congener elimination was found after inhalation of airborne 

PCBs, with minimal toxicity. Lower-chlorinated congeners were rapidly and extensively 

metabolized to phase II products and eliminated within hours.
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CHAPTER I 

INTRODUCTION 

Overview 

Polychlorinated biphenyls (PCBs) are a family of 209 synthetic organic chemicals 

(congeners), which were commercially manufactured from the mid 1930s in the United 

States. They were widely utilized as coolants and lubricants in transformers, capacitors 

and other electrical equipment (ATSDR 2000) due to their excelled stability. In the 

United States, PCBs were most commonly produced by progressive chlorination of 

biphenyls. The end product was a mixture of congeners that contained a certain weight 

percentage of chlorine – often shown by the last two digit of the number suffixing the 

trade name Aroclor
®

. For example, Aroclor 1254 contains 54% chlorine by weight and 

thus is higher-chlorinated than Aroclor 1242.  

The 209 congeners varied markedly in physical and chemical properties, mostly 

coming from the differences in chlorine number. The vapor pressure of PCB homologues 

can vary up to 5 orders of magnitude and the octanol-water partition coefficient (Kow) 

also range up to 4 orders of magnitude. In contrast, the homologues have much less 

variability in Henry’s Law constant than other properties (Hornbuckle et al. 2006). The 

lower-chlorinated PCBs are more volatile than the higher-chlorinated congeners, and thus 

are found more abundant in the air. These airborne congeners are also not as lipophilic 

and are less likely to biomagnify through the food chain. The focus of this thesis is the 

inhalation exposure route, which is more important for the lower-chlorinated congeners, 

compared to dietary intake – a common exposure route for higher-chlorinated congeners 

(Norström K et al. 2009).  

The manufacturing of PCB was banned in the United States in 1979 because of 

their environmental persistency and toxicity. Based on recent reassessment of evidence 

from human exposure and experimental animal studies, PCBs are now classified as 
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carcinogenic as a class of compounds to humans (IARC, in press) following the 

identification of 3,4,5,3’,4’-pentachlorobiphenyl (PCB126) as a human carcinogen 

(Cogliano et al. 2011). PCBs were also targeted by the Stockholm Convention as one of 

the 12 most dangerous persistent organic pollutants that need immediate implementation 

– known as “the dirty dozen”. Despite the discontinued manufacturing, PCBs are still 

present in every type of environmental media and biota due to the use and disposal of 

PCBs in history. In addition, PCBs are still being unintentionally produced and released 

from various sources, such as industrial chemical reactions, thermal processes and 

incomplete combustion (Stockholm Convention, 2004). The resultant widespread 

environmental contamination adds to the concern of persisting exposure to PCBs and 

underscores the importance of investigating the association between exposure and 

biological consequences.  

Sources of Airborne PCBs 

The most universal exposure and global transport route of PCBs is atmospheric. 

The long-range transport of PCBs has resulted in contamination of the most remote area 

such as Arctic and Antarctic sites, where high concentrations of atmospheric PCBs were 

intermittently detected (Choi et al. 2008; Eckhardt et al. 2007). The mobility of airborne 

PCBs makes it difficult to assess the source of emissions in a global setting. However, 

studies evaluating the spatial trends in atmospheric PCB showed higher concentrations in 

urban and industrial regions than that in suburban regions which were yet higher than the 

rural locations (for a summary of studies, see U.S. Environmental Protection Agency, 

2007).  The positive correlation of local population and the regional atmospheric PCB 

concentration indicates that the contamination is linked to human activities.  

The exchange of PCBs between atmosphere and large bodies of water (e.g. the 

Great Lakes) is substantial. The volatilization of PCBs was found the major contributor to 

the loss of PCBs at many sites along the Great Lakes (Achman et al. 1993; Jeremiason et 
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al. 1994). Cities in the Great Lake basin bearing a history of heavy PCB use have become 

regional sources to the atmosphere. Other than volatilization from contaminated water 

and soil, PCBs are also being released from industrial facilities, poorly maintained waste 

sites, building demolition, incineration and or dredging of waterways (Hansen and 

O'Keefe 1996; Herrick et al. 2004; Hornbuckle et al. 2006; Martinez et al. 2010; Wallace 

et al. 1996). 

It has long been thought that the environmental PCBs come solely from the 

legacy pollution until recently when a non-Aroclor congener 3,3’-dichlorobiphenyl 

(PCB11) was frequently detected in environmental media including water, sediment, 

biota and consumer goods (Choi et al. 2008; Hu et al. 2008; King et al. 2002; Litten et al. 

2002; Rodenburg et al. 2010). In particular, this congener was one of the most abundant 

and most frequently detected congeners in the Chicago airshed (Hu et al. 2010). The 

prevalence of PCB11 in the atmosphere in the face of its absence in Aroclor indicates that 

it comes from sources other than legacy contamination (Hu et al. 2008).  Further 

investigation identified the production and use of paint and colored products as new 

sources of PCBs – not only PCB11, but also a lot more other congeners (Hu et al. 2008) . 

In fact, these unintentionally produced PCBs as by-products of paint and pigment have 

also become major contaminants in waste water effluents and paper recycling facilities 

(Grossman 2013).  

Monitoring studies conducted in the past decade revealed that the atmospheric 

PCB concentrations were consistently high in urban areas and lacked significant decrease 

in temporal changes (Figure 1-1). The concentrations generally ranged from less than 100 

to near 10000 ng/m
3
. Most of the variability arose from the seasonal cycle, as 

volatilization process depends mainly on temperature (Hornbuckle et al. 2006). The PCB 

concentrations in indoor air are not lower and can even exceed the ambient air level by 

several folds. In buildings where PCB-contained materials were used, the PCB in the 
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indoor environment can be so concentrated that it may reach several micrograms per 

cubic meter (Figure 1-1).  

There are several potential sources that may cause the exceptionally high levels of 

indoor airborne PCBs globally. The PCBs in caulk material (or joint sealant) in many 

school and public buildings exceed the EPA standard of 50 ppm (Herrick et al. 2004) and 

the contamination of the material is clearly associated with elevated indoor concentration 

(Kohler et al. 2005). The recent investigation of PCBs in New York public school 

reported severe contamination with PCB levels at 10,000 to 440,000 ppm (44% by 

weight) in 36 caulk material samples (Thomas et al. 2012). Emission of PCBs from 

burnout of old lighting ballasts has long been recognized yet they are still being used in 

school buildings – the leakage has been recently reported in schools in New York City, 

Oregon, North Dakota and Massachusetts (U.S. Environmental Protection Agency, 

2013). The leakage from lighting ballasts adds to the concern for school children as these 

compounds are potential developmental toxins. 

Inhalation Exposure Route 

The general population is exposed to PCBs primarily from contaminated food and 

by breathing contaminated air. Due to the bioaccumulating and biomagnifying effects of 

some more persistent congeners, PCBs are commonly taken up though diet, especially by 

consumption of contaminated fish, meat and dairy products. Exposure from ingestion was 

considered as the major route (ATSDR 2000) and thus has been well studied to 

demonstrate the potential health hazard of PCBs. In contrast, very limited understanding 

has been established on the inhalation route of exposure. We do not know the uptake rate 

and extent of inhaled PCBs. Neither their distribution nor accumulation has been 

elucidated in biological system.  Few studies have investigated the health impacts of 

inhalation exposure.  
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Inhalation was considered to be a major route of occupational exposure, for 

capacitor manufacturers for example, who may be exposed to 80-275 µg/m
3
 air levels. 

The exposure to air level that was ten-times higher than other workers resulted in 

approximately ten-time higher blood levels of lower-chlorinated PCBs (Wolff 1985), 

indicating a significant contribution of inhalation exposure. For the general population 

who are not exposed occupationally, the importance of inhalation exposure has increased 

over the decade due to the decreasing trend of dietary intake and the ubiquitous nature of 

inhalation exposure. 

Unlike the atmospheric concentration, the PCB levels in wildlife fish and food 

market have substantially declined (Hornbuckle et al. 2006; Huwe 2012), leading to a 

downward trend in the dietary exposure dose (Darnerud et al. 2006) and the resultant 

body burden (Dallaire et al. 2003).  Recent studies on PCB levels in market foods showed 

that the estimated dietary dose (33-615 ng/person/day based on different studies, Figure 

1-1) are approaching low levels that are comparable to inhalation exposure to ambient air 

which may contribute 30-125 ng/day at the highest levels.  Indoor air exposures to PCBs 

can be higher than the dietary intake and even exceeding by 2-3 orders of magnitude in 

contaminated buildings (Figure 1-1). This result is consistent with the finding that 

inhalation can contribute to as much as 63% of overall exposure in studied adults and 

36% in toddlers (Harrad et al. 2006). Although more information is still needed to 

evaluate the relative contributions of different exposure routes, this comparison indicates 

that inhalation exposure can be a major source of PCBs.  

For congener identification purpose, a numbering system, IUPAC identities, was 

developed in which a sequential number was assigned to each of the 209 congeners in 

ascending order of their number of chlorine substituents and chlorine positions on each 

ring within the homologue, numbered PCB1 (monochlorobiphenyl) through PCB209 

(decachlorobiphenyl) (U.S. Environmental Protection Agency 1999). The physical-

chemical properties, binding affinities, agonist potencies and rates of metabolism vary to 
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a large extent among congeners. Structure-activity relationship studies have revealed that 

three-dimensional structure of PCB congeners (coplanarity, hydrophobicity, and 

polarizability etc) determined their affinities towards receptors (e.g., aryl hydrocarbon 

receptor, Ah receptor), leading to different modes of action and dose-response 

relationships (Safe, 1992, Mekenyan et al. 1996). People are exposed via inhalation to a 

distinct profile of congeners that differs markedly from that normally associated with 

food chains (Norström et al. 2009) – the congeners that prevail in the atmosphere are 

penta- and lower-chlorinated (see Table 1-1 for the major components in the Chicago 

airshed). The large volume of work focusing on the exposure to the higher-chlorinated 

congeners cannot be applied directly in the field of inhalation toxicity, which is most 

evident for the lower chlorinated PCBs (Norström et al. 2009). 

Data regarding the impact of inhalation exposure is very scarce. Many 

biomonitoring studies only targeted certain subset of higher-chlorinated congeners (e.g. 

dioxin-like congeners) and did not provide congener-specific analysis. On the other hand, 

the lower-chlorinated congeners are subject to rapid metabolism and may not accumulate 

to detectable levels as the more persistent compounds. One study reported rapid 

absorption and distribution in rats exposed to an aerosol of PCBs (whole body) via 

inhalation yet oral and dermal exposure during the exposure cannot be excluded (Benthe 

et al. 1972). A more recent study in ferrets exposed for 5 years to low levels of airborne 

PCBs reported the resemblance between the congener profile of ambient air (dominated 

by tetrachlorinated congeners) and the profile found in olfactory bulbs, while the 

congener profile in adipose tissue comprising mostly higher chlorinated ones. It showed 

for the first time that inhalation exposure might have significant contribution in tissue 

PCB levels (Apfelbach et al. 1998). The question was raised that whether greater 

disposition in the brain was associated with inhalation exposure. In occupationally 

exposed workers, the serum levels of higher-chlorinated congeners were found 

comparable with the general population, while the lower-chlorinated congeners were 
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much higher (Wolff 1985). It indicated that the contribution of inhalation exposure 

differed among the congeners. Similarly in other human studies, the elevation of levels of 

lower chlorinated PCBs in blood, adipose tissue, breast milk and other tissue sample in 

contaminated indoor region compared the general population level has been considered 

indirect evidence of a widespread exposure to PCBs from inhalation (Gabrio et al. 2000; 

Liebl et al. 2004). 

Biological Fate of PCBs 

The absorption, distribution, metabolism and excretion are important factors that 

affect the behavior of toxins and the body response after exposure. Therefore, it is critical 

to understand the biological fate in order to determine the potential health risk of 

exposure. This information is especially limited for lower chlorinated PCBs. Tanabe et al. 

(1981) investigated 54 individual congeners in the whole body of Wister rats after oral 

administration, evidently showing that the adsorption and elimination efficiencies vary 

among congeners. Lower-chlorinated PCBs were eliminated fast, although a few showed 

biological half-lives (t½) up to 1.4 days (e.g. PCB28) following a first-order pattern. In 

contrast, some most persistent congeners did not show apparent decrease 90 days after 

exposure (Tanabe et al. 1981) while the elimination of some other higher-chlorinated 

PCBs showed a slow washout period after a sharp reduction (Birnbaum 1983; Tanabe et 

al. 1981). The rapid elimination of the lower-chlorinated congeners may explain the 

absence of the congeners in human blood and tissue and implies that the true level of 

human exposure to lower-chlorinated biphenyls may have been underestimated.  

The mechanisms of PCB metabolism have been well explored. Like other 

xenobiotics, biotransformation is responsible for the majority of PCB excretion. There 

are multiple pathways that PCBs can be biotransformed resulting in various types of 

metabolites, as illustrated in Figure 1-2. The initial step involves cytochrome P450 (CYP) 

mediated oxidation of PCBs, either by direct insertion or formation of arene oxides. The 
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arene oxides can be further transformed mainly to hydroxylated aromatic compounds 

(OH-PCBs), while some can undergo mercapturic acid pathway to form a cysteine 

conjugate and ultimately lead to formation of methylsulfonyl metabolites (MeSO2-PCBs) 

or PCB mercapturic acids. Congeners with vicinal hydrogen substituents are favored 

substrates of CYP enzyme (Brown Jr. 1994; Chen and Luo 1982). The metabolic attack 

by CYP proceeds faster if the open area is at adjacent meta and para positions (Brown Jr. 

1994). For congeners with 2,5-dichloro- or 2,3,6-trichloro- substitutions (e.g. PCB31, 52 

and 153), a small portion of the compounds tend to form persistent MeSO2-PCBs besides 

generation of hydroxylated products that do not bioaccumulate (Letcher et al. 2000). To a 

less extent, PCB arene oxides can also generate dihydrodiols via a hydrolytic pathway. 

Although the hydroxylated products are the major PCB metabolites for congeners with 

higher chlorination, OH-PCBs are also susceptible to further conjugation reaction to 

increase the water solubility and facilitate excretion. It has been shown that the 

conjugation reactions proceed faster for lower-chlorinated congeners (James et al. 2008). 

Taken together, the pathways and the susceptibility to metabolism are largely determined 

by the number and the substitution pattern of chlorine atoms (Letcher et al. 2000).  

The fate of PCB metabolites has received growing attention as certain metabolites 

have been found strongly retained in body tissue and can even be persistent. The 

retention of the metabolites is often caused by the binding to tissue proteins. For example, 

the methylsulfonyl metabolites of PCB2 were predominately found in lung and kidney 

due to binding to an uteroglobin-like protein (Lund et al. 1985). Likewise, some 

hydroxylated higher-chlorinated PCBs were found strongly retained in blood due to their 

binding affinity to thyroxin transporter (Bergman et al. 1994; Lans et al. 1993). They 

pose health risks as they may be capable of interfering with thyroid homeostasis. The 

persistency and toxicological effects of the metabolites of the most abundant congeners in 

the Chicago airshed are summarized in Table 1-1. 
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The detection and quantification methods for OH-PCBs are not as well 

established as for the parent compounds and limit the investigation of their biological 

fate. Methodology for OH-PCB measurement has focused on those congeners that are 

strongly retained in blood with pentachlorination or more. Often, they are co-extracted 

from tissue samples with PCBs and other lipophilic compounds by repeated neutral 

solvent and are then partitioned into the aqueous phase under alkaline conditions for 

separation from the less polar compounds (Letcher et al. 2000). Gas chromatography 

separation coupled with electron capture detection (GC-ECD) or mass spectrometry (GC-

MS) has been commonly employed in quantification, although it requires methylation of 

OH-PCBs to less polar methoxylated PCBs (MeO-PCBs) for better performance 

(Gabelish et al. 1996). Alternatively, underivatized OH-PCBs can also be detected by 

high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS) 

after separation from other lipophilic compounds (Berger et al. 2004). More recently, the 

development of the pressurized liquid extraction (PLE) followed by simultaneous cleanup 

and quantification of OH-PCBs and PCBs, help improve the efficiency of extracting PCB 

congeners and metabolites from small amount of tissues (Kania-Korwel et al. 2012). 

Health effects of PCB Exposure 

A wide spectrum of responses associated with exposure to PCBs has been 

reported yet the cellular mechanisms for toxicity are not fully understood. The best 

characterized are alterations in the levels and activities of cytochrome P450 (CYP) 

enzymes. Non-ortho PCB and some mono-ortho PCB with much less potency are shown 

to behave similarly to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) by binding to the 

same cytosol receptor (AhR) as a trigger of the enhancement of CYP 1A gene expression, 

ending in bioactivation of toxicants and/or aberrant change in cellular processes (Connor 

et al. 1995; Safe 1994). Toxic equivalency factors (TEF) are assigned to this category of 

congeners to represent their TCDD-like toxicity (Van den Berg et al. 2005). A toxic 



 

 

10 

1
0
 

equivalency (TEQ) concentration can be calculated based on their individual 

concentration and TEF value to assist risk assessment.  

However, the AhR-based evaluation of health risks from PCB exposure is no 

longer recognized as sufficient for the actions produced by the more volatile, ortho-rich 

congeners, which can also exert toxicities that are receptor-mediated yet independent 

from the AhR pathway. For example, non-dioxin like congeners may cause induction of 

CYP 2B enzyme mediated by constitutively active receptor (CAR) and induction of 

CYP3A enzyme by binding to pregnenolone X receptor (PXR) (Bandiera, 2001). Many 

congeners can also interfere with Ca2+ homeostasis by inducing the activation of 

Ryanodine receptors (RyRs) and contribute to short- and long- term neurotoxic events 

(Pessah et al. 2010). Other toxicities like immunological effects, reproductive toxicity, 

disruption of thyroid hormone homeostasis and cancer are suspected to be a mix of AhR 

dependent and independent mechanisms (ATSDR 2000).  

None of the major congeners (weighing > 2% of total PCBs) in the Chicago 

airshed had a TEF value. Rather, they are either tri- and lower-chlorinated or with at least 

two ortho substitution, which are poor AhR ligands yet are still capable of causing 

various adverse effects, as summarized in Table 1-1. Many of these congeners have been 

shown affecting calcium sequestration and neurotransmitter content in vitro and in vivo 

and can even have long-term damage to behavior and brain functions. Estrogenic toxicity 

has been repeatedly reported for a few congeners, in particular PCB4.  

The toxicological importance associated by the metabolism has also been 

recognized for the lower-chlorinated congeners. Oxidation of the OH-PCBs can further 

lead to formation of semiquinones and/or quinones that in turn may react with 

macromolecules to form adducts and induce oxidative stress (McLean et al. 1996). 

Glutathione depletion and the alteration of related enzyme activities have been reported 

in rats after PCB exposure (Lai et al. 2010; Twaroski et al. 2001). Lower-chlorinated 

PCBs and their metabolites have repeatedly been shown as estrogenic and capable of 
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interfering with endocrine hormone homeostasis (Cooke et al. 2001; Pliskova et al. 

2005). OH-PCBs can interact with metabolic enzymes and binding protein of thyroxine 

(T4), concomitant with the long retention of certain OH-PCBs (Brouwer et al. 1998). 

Thyroid hormone changes and histologic abnormalities were observed in rats exposed to 

Aroclor 1242 vapors for 30 days (Casey et al. 1999). Further toxicities of lower-

chlorinated congeners and their metabolites including mutagenicity and tumor initiation 

have been demonstrated in vivo (Espandiari et al. 2003; Lehmann et al. 2007). It is clear 

that certain metabolites may be more efficacious than their parent compounds as receptor 

agonists (Cheek et al. 1999) and cancer initiators for their reactivity towards cellular 

nucleophiles (Zettner et al. 2007) and the susceptibility to metabolic activation implies a 

larger risk of lower chlorinated compounds.  

In sum, the objective of the present thesis was to investigate the distribution and 

elimination of semi-volatile PCBs in body tissue after inhalation exposure and evaluate 

the biologic/toxicologic consequences. This was addressed by using Sprague-Dawley rats 

as animal model because this strain has been used extensively in medical research due to 

its calmness and ease of handling and also widely used in PCB literature (ATSDR, 2000). 

Four inhalation exposure studies were conducted: the short-term inhalation exposure 

study of body burden and time course of elimination; the long-term inhalation exposure 

study of body burden and toxicity; the acute inhalation exposure study of PCB11 

elimination and metabolism; and the mass balance study after lung exposure of PCB11 

biological. Each of the studies is presented as an individual chapter in this thesis, 

followed by a summary of the findings and a description of further studies that may 

advance our understanding. 
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Table 1-1 Potentially toxic activities of major congeners (>2%) in the Chicago airshed, as reported by various studies.  

Congener 

% of ΣPCB  

(Hu et al. 2010)  

Enzyme Induction 
Carcinogenesis and 

cytotoxicity 
Reproductive toxicity Neurotoxcity Metabolite activities 

PCB4 

4% 

-- cytotoxicity (Kodavanti et al. 

1993) 

delayed pregnancy (Török 1976) 

reproduction inhibition (Bridgham 

1988) 

calcium interference (Bemis and Seegal 2000) 

 dopamine interference (Kodavanti et al. 1993) 

-- 

PCB8 

6% 

-- -- -- -- -- 

PCB11 

4% 

-- -- -- calcium, dopamine and thyroid hormone 

interference (Kodavanti 2006; Shain et al. 1991)  

-- 

PCB18 

6% 

weak induction of 

CYP2B (Li and 

Hansen 1995) 

-- uterine weight increase(Li and 

Hansen 1995) 

-- -- 

PCB28 

6% 

-- -- -- calcium and dopamine interference (Chu et al. 

1996) 

-- 

PCB31 

4% 

-- -- lower implantation rate(Orberg 

1978) 

-- retention of MeSO2 metabolite 

(Bakke et al. 1982) 

PCB52 

4% 

-- tumor promoting (Preston et 

al. 1985), 

impaired mitochondria 

function (Mildaziene et al. 

2002)  

-- impaired learning, memory and behavior, 

nicotinic receptor interference(Eriksson and 

Fredriksson 1996), cell apoptosis(Hwang et al. 

2001) 

retention of MeSO2 metabolite 

(Lund et al. 1985), epoxide 

intermediate causing DNA damage 

and mortality (Preston et al. 1985; 

Stadnicki et al. 1979) 

PCB95 

2% 

Increase in gene 

expression of 

hepatic CYP1A2 

and CYP3A11 

(Kania-Korwal et 

al. 2012) 

-- -- calcium interference, hypoactivity in behavior, 

hippocampal receptor alteration (Schantz et al. 

1997), thyroid stimulating hormone increase 

leading to hypothalamopituitary-thyroid-axis 

interference (Khan and Hansen 2003), 

promoting dendrite growth (Wayman et al. 

2012) 

-- 

PCB101 

2% 

-- -- -- Reduction in serum thyroxine and hypothalamic 

dopamine (Khan et al. 2002) 

retention and persistency of MeSO2 

metabolite (Letcher et al. 2000; 

Wehler et al. 1996) 
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Figure 1-1 Comparison of total PCB levels in urban ambient air and indoor air (in pg/m
3
) 

and comparison of inhalation exposure dose and dietary uptake (in ng/person/day).  

Sources are listed on the y-axis.  

Note: The floating bars in the upper panel present the minimum and maximum range of 
PCB levels. The bars in the lower panel present the dietary intake. To compare the two 
exposure routes, the dose from inhalation exposure is calculated from the air 
concentration assuming the breathing frequency of an adult human is 15 breaths/min and 
the volume is 0.6 L/breath with a complete uptake of airborne PCBs. For example, if the 
air level is 1 µg/m

3
, the dose is estimated to be:  

1 µg/m
3
 × 15 breaths/min × 1440 min/day × 0.6 L/breath = 13000 ng/day 

The estimated dose for the corresponding air level can be found on the bottom x-axis. 
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Introduction 

Polychlorinated biphenyls (PCBs) are a family of synthetic organic chemicals that 

contain 209 congeners with varying chemical structures.  Their industrial usage spanned 

the 50 years until they were banned since 1977 in the United States. PCBs are still being 

emitted from industrial facilities, poorly maintained waste sites, building demolition, 

incineration, caulking material in buildings, or dredging of waterways (Herrick et al. 

2004; Martinez et al. 2010). PCBs are also produced and released through production and 

use of paint and colored products (Hu et al. 2008). Exposure to PCBs from ingestion of 

contaminated food has been well studied (Schecter et al. 2010). Inhalation of PCBs in 

indoor air is found comparable to dietary exposure (Harrad et al. 2006) and can even 

become a major route of exposure to children (Wilson et al. 2001). The majority of this 

pollutant in the ambient air environment exits as a vapor mixture, rather than associated 

with particles (Wethington and Hornbuckle 2005) and the magnitude of airborne 

concentration rises with population density (Sun et al. 2007). Indoor air exposures to 

PCBs may be more significant than ambient air exposure, with at least ten and up to 

100,000-fold higher concentrations (Rudel and Perovich 2009). The lack of temporal 

decline in indoor air exposures as compared to the significant downward trend in dietary 

contamination (Harrad et al. 2006) makes inhalation an increasingly important route of 

PCB exposure. 

The impact of inhalation on overall human exposure of PCBs is most evident for 

the lower chlorinated PCBs, due to their lower lipophilicity, greater volatility and 

susceptibility to metabolism (Norström et al. 2009). Human studies revealed that 

exposure to contaminated indoor air increased the concentrations of lower chlorinated 

congeners in plasma (Gabrio et al. 2000; Liebl et al. 2004). The toxicological importance 

of these more volatile congeners has been recognized recently as the evidence for their 

adverse health effects is mounting. Thyroid hormone elevations and histologic 

abnormalities were observed in rats exposed to Aroclor 1242 vapors for 30 days (Casey 
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In the acute study, animals were randomly assigned into groups (239.9±2.7 g). 

Five groups of PCB-exposed animals (n = 3/group) were exposed for a total of 2 hrs, with 

1 hr break in between. They were serially euthanized at 0 hr, 1 hr, 3 hr, 6 hr, and 12 hr 

post exposure. Two groups of sham animals (n = 2/group) exposed to filtered lab air were 

euthanized at 0 hr and 6 hr post exposure. In both studies, animals were 8-week old at the 

time of euthanization. 

Tissue and XAD Extraction for PCB Analysis 

PCBs were extracted from lung+trachea, liver and brain (0.9-1.2 g each) and 

adipose tissue (0.3-0.4 g) samples using pressurized liquid extraction (ASE 200, Dionex, 

Sunnyvale, CA) as described earlier (Kania-Korwel et al. 2007). Each set of tissue 

samples was accompanied by a method blank, a tissue blank and an ongoing precision 

and recovery (OPR) spike sample. Each sample was spiked with a surrogate standard 

including PCB14 (100 ng) and deuterium-labeled PCB65 (d-PCB 65, 100 ng) in hexane. 

The extracted solutions were concentrated to 0.75 ml (TurboVap II, Caliper Life Sciences 

Inc., Hopkinton, MA) and cleanup was performed (Kania-Korwel et al. 2007) for gas 

chromatography (GC) with mass selective detection (GC tandem mass spectrometry, 

GC/MS/MS) determination. PCBs were extracted from serum samples using the same 

protocol. Lipid content was determined by a standard gravimetric method (Kania-Korwel 

et al. 2007). Total cholesterol and triglycerides in serum samples were determined using a 

commercial test kit (Trig/GB and Chol tests for Roche/Hitachi 917 system; Roche 

Diagnostics, Indianapolis, IN). Blood lipids were calculated using the formula (Philips et 

al. 1989):  

                                                                   

Each XAD cartridge was loaded with 10 g of pre-extracted XAD-2 resin packed 

with filters and cleaned glass wool. After collection, all samples were placed in sealed 
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zip-lock bags, stored at 4°C until analysis and were later extracted using the same 

protocol as above. 

PCB Analysis 

XAD extracts were spiked with 100 ng of PCB204 as internal standard prior to 

analysis. The tissue extract was concentrated to 100 µl for detection of low PCB levels 

and then spiked with 20ng of PCB 204. PCB congeners were analyzed using GC/MS/MS 

modified from the EPA method 1668A (U.S. Environmental Protection Agency 1999) as 

described previously (Hu et al. 2010; Martinez et al. 2010). Briefly, the quantification of 

PCB congeners used an Agilent 6890N GC with an Agilent 7683 series autosampler 

coupled to a Waters Micromass Quattro micro GC MS (Milford, MA), operating under 

electron impact positive mode at 70 eV and multiple reaction monitoring mode with a 

trap current of 200 µA. This method separated the 209 congeners into about 170 peaks. 

PCB congener concentrations were corrected for surrogate recoveries.  

Quality Assurance of PCB Analysis 

The quality of the method was assessed by the method blank samples, the 

recovery of ongoing precision and recovery (OPR) standard, and measurements of 

standard reference materials. Every sample was spiked with surrogates and each PCB 

mass was corrected for recovery. Method detection limit (MDL) was calculated from 

blank samples according to EPA formula: 

               

where    = the mean of replicates of blank measures,      is Student’s t-value for (n-1) 

degrees of freedom at 99% confidence level, and SD is standard deviation of the 

replicates. The results of MDL are presented in Table 2-1, and the summary of surrogate 

and OPR standards are presented in Table 2-2 and Table 2-3, respectively. Standard 

Reference Material 1944, New York, New Jersey Waterway sediment (SRM 1944, 

National Institutes of Standards and Testing) was analyzed and recently reported 



21 
 

 

(Martinez et al. 2010), with an acceptable quantification results with respect to the 

certified values (mean difference between the measured and certified values was 15 ± 

15%). 

Toxicity Assessment 

In the subacute experiment, bronchoalveolar lavage (BAL) fluid was collected, 

processed, and used for enumeration of total and differential cell counts and analysis of 

total protein, lactate dhydrogenase (LDH) activity and cytokine levels as previously 

described (Thorne et al. 2006).  

Total protein was determined using the Bradford protein assay with bovine serum 

albumin as the standard (Bio-Rad Laboratories, Hercules, CA). LDH activity released 

from the cytosol of damaged cells was measured spectrophotometrically (Roche 

Diagnostics, Indianapolis, IN). 

Cytokine assays were performed using a multiplex, suspension array system 

(BioRad, Hercules, CA) including 10 selected cytokines (Invitrogen Corp., Carlsbad, 

CA). Cytokine concentrations below the valid range of the standard curve were assigned 

a value imputed from the lower limit of detection (LLOD) divided by √2 (Hornung and 

Reed 1990).  

Animals were decapitated and the upper respiratory tracts were decalcified and 

trimmed for histologic evaluation (Harkema et al. 2006). Lungs, livers and thymuses 

were fixed and embedded in paraffin. Sections were stained with hematoxylin and eosin, 

and evaluated by a certified veterinary pathologist (Young 1986). 

Statistical analysis 

Statistical analyses were performed using SAS (version 9.2; SAS, Inc., Cary, 

NC). Summary data are generally expressed as the arithmetic mean and standard error. 

Two-way analysis of variance (ANOVA) with time as a repeated measure was used to 

determine differences in body weight gain between PCB-exposed and sham groups. Two-
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sample t-tests for equal or unequal variances were used to compare other measurements 

between exposure and control groups. In all analyses, a p-value < 0.05 was considered 

significant. 

Results 

Characterization of PCB atmospheres 

The performance of the generation system was evaluated by characterization of 

PCBs collected with XAD cartridges. The more volatile congeners were well represented 

in our generated vapor mixture, while hexa-, hepta-, octa- and nonachlorobiphenyls were 

barely detected (Figure 2-2). The lower chlorinated congeners (mono-, di- and 

trichlorobiphenyls) represented 90% of the total PCB load. PCBs 1, 4, 6, 8, 15, 17, 

18+30, 20+28, 21+33, 31, and 52 (the + indicates coelutions that are quantified as the 

sum of the congeners listed) were most abundant by mass, accounting for 83±1 % of 

total, as compared to the much lower prevalence in the source material, Aroclor 1242 

(41%). Our generation system showed a high degree of consistency both in total 

concentration and profile distribution of congeners in airborne vapor production (Figure 

2-2B).  

Subacute exposure  

Rats exposed to a high concentration of PCB vapor mixture for 10 days 

experienced an average concentration of total PCBs of 8.2 ± 0.5 mg/m
3
 (concentrations 

each day: 6.33, 5.46, 9.28, 7.31, 8.07, 8.53, 8.81, 9.90, 9.00, 9.75 mg/m
3
). Assuming a 

breathing frequency of 95 breaths/min, a tidal volume of 1.5 mL/breath and complete 

uptake of inhaled PCBs, we would predict that each rat was nominally exposed to 1400 

µg PCBs. Sham-exposed rats had low, but detectable, levels of PCBs in their tissues 

perhaps from dietary intake or low levels of PCBs in indoor air. However, exposed rats 

had PCB levels from 80-fold (blood) to 700-fold higher (lungs) than sham-exposed 
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animals. Rats exposed for 4 days accumulated 18% as much in the lungs as 10-day 

exposed rats (Table 2-4), yet almost the same amount (89%) in livers as 10-day exposed 

rats. PCBs 20+28, 49+69, 52, 60, 61+70+74+76, 66, 83+99+112, 85+116+117, 

90+101+113, 105, 118 were leading congeners in the tissues (Table 2-5). Toxic 

equivalency (TEQ) concentration, an estimate of the total 2,3,7,8-tetrachlorodibenzo-p-

dioxin (TCDD)-like activity, was calculated according to the reevaluated toxic 

equivalency factors (TEF) (Van den Berg et al. 2005). After exposure to the vapor 

mixture (TEQ = 3.7 ± 0.5 ng/m
3
), the detected congeners with a TEF value included 

PCBs 77, 81, 105, 114, 118, 123, 126. The highest TEQ concentration was found in liver 

as 109 pg/g wet weight and much less in lung (0.43 pg/g wet weight) and blood (0.13 

pg/g wet weight).  

The average weight gain of the PCB-exposed animals was significantly lower 

than sham animals (Figure 2-3, repeated-measures ANOVA: p < 0.01, effect of time   

treatment). However, BAL fluid macrophages, neutrophils and lymphocytes were not 

significantly changed. Total protein and LDH activity measured did not show any 

significant difference (Table 2-6) and this also applied to the measured cytokines (Table 

2-7). Histologic evaluation of the respiratory system and non-respiratory tissue showed 

unremarkable or minimal changes that were not treatment related.  

Time course of PCB distribution and elimination in rat 

tissue 

Following an acute exposure to PCB vapor mixture, we determined all congener 

level and distribution profiles at 5 post-exposure time points. The total concentration of 

PCB congeners to which the animals were exposed was 2.4 mg/m
3
. Each rat was 

estimated to inhale 40 µg PCBs. The sum of total PCB congeners (∑PCB) loaded in lung, 

liver, brain and blood started decaying immediately after exposure in a first-order 

fashion, while PCBs in adipose tissue accumulated before reaching a relatively steady 
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concentration at 3 hr post exposure (Figure 2-4). The rate of elimination varied 

moderately among livers, lungs, brains and blood, with biological half-lives of ∑PCB 

increasing in the order of liver (5.6 hr) < lung (8.2 hr) < brain (8.5 hr) < blood (9.7 hr).  

Congeners that were found ≥ 10-fold higher in most exposed tissue samples 

compared to the background levels of sham/sentinel samples were considered to be 

reliably detected. Due to the relatively low concentrations in blood, congeners with ≥ 2-

fold higher levels were also reported (Figures 2-5 to 2-8). Detected congeners included 

mostly PCBs with mono- or di-ortho-substitution, ranging from mono- to 

pentachlorobiphenyls (PCBs 6, 8, 15, 16, 17, 18+30, 20+28, 21+33, 22, 24, 25, 26+29, 

31, 32, 37, 49+69, 52, 59, 60, 61+70+74+76, 64, 66, 77, 83, 99, 105, 112 and 118) yet the 

majority fell into tri- and tetrachlorobiphenyl categories (Figure 2-9). PCB20+28 (Figures 

2-4 and 2-10) was most abundant in every tissue. Other prevailing congeners included 

PCB 8 and 21+33 in liver, adipose tissue and brain, PCB15 in lung, PCB31 and 66 in all 

tissues, PCB 9+69 in liver and PCB52 in adipose tissue (Figures 2-4 and 2-10). 

Biological half-lives were determined for every congener detected (Table 2-8). It 

was apparent that the time course pattern of elimination depended on the individual 

congener as well as the nature of target tissue. In liver the levels of lower chlorinated 

congeners decreased immediately after exposure with first-order kinetics as represented 

by PCB21+33, while higher chlorinated PCBs exhibited a peak at 1 hr post exposure 

(PCB 60 and 105, Figure 2-4A), whereas in lung most congeners show a consistently 

decreasing trend on the entire time course (Figure 2-4B). Congeners behaved similarly in 

brain yet some relatively higher chlorinated congeners (PCB 52 and 118, Figure 2-4E) 

tended to show slight increase within 6 hr after exposure. Congeners in blood were 

generally eliminated less rapidly compared to the above tissues (Figure 2-4C). In adipose 

tissue, lower chlorinated PCBs increased rapidly during the first hour post exposure 

before reaching a plateau, while higher chlorinated congeners continued a slower increase 

after 1 hr (Figure 2-4D). The only congeners detected that have a TEF value were PCBs 
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77, 105 and 118. The highest TEQ concentration was found in liver, with a peak at 1 hr 

after inhalation (Figure 2-11). TEQ concentration increased steadily in adipose tissue on 

the entire time course suggesting that inhalation exposure produced metabolic decrease of 

TEQ concentration in most tissues and sequestration into adipose tissue. 

Discussion 

As PCBs in the atmospheric environment contain predominantly the more volatile 

congeners, administration of commercial mixtures by feeding or injection cannot well 

represent realistic environmental exposures. We sought to create an inhalation exposure 

regimen that generates a complex mixture with a congener profile resembling the airshed 

of urban areas. We evaluated the efficacy of the system by establishing a model that 

predicts the theoretical concentration and distribution profile of the volatilized mixture 

(see Appendix B). The measured concentration in our acute exposure experiment (2.4 

mg/m
3
) compared favorably with the model prediction of 2.6 mg/m

3
. The congener 

profiles also had a high degree of agreement, evidently showing that there was no 

aerosolization in the process.  

In comparison to the air mixture, it is evident that via inhalation, the majority of 

the material sequestered in the tissue shifted considerably from mono- and di- chlorinated 

PCBs to tri- and tetra- or even higher chlorinated biphenyls (Figure 2-9). One explanation 

was that most of the lower chlorinated compounds were rapidly metabolized and did not 

accumulate appreciably. Our time course study also showed this same shift; after 

exposure the proportion of higher chlorinated PCBs increased along with time in all 

tissue types, most markedly in organs with metabolic enzyme activity (i.e., liver, lung and 

brain) (Figure 2-9). The time course change of individual congener levels showed clearly 

that the differential elimination/accumulation rates led to a characteristic congener 

spectrum. 
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Most congeners showed biological half-lives of hours in tissues other than 

adipose tissue, with only a few exceptions in brain (Table 2-8). The half-lives reported in 

our study were shorter than those reported in the whole body of Wister rats dosed via the 

oral route (Tanabe et al. 1981). This is likely due to rapid uptake and distribution via 

inhalation. It has been recognized that PCB congeners with vicinal hydrogen substituents 

are subject to metabolism (Brown Jr. 1994; Chen and Luo 1982). For non-dioxin like 

congeners, metabolic attack by cytochrome P450 proceeds faster if the open area is at 

adjacent meta and para positions (Brown Jr. 1994). Therefore, those congeners generally 

have shorter half-lives. This structure-activity relationship could also be observed in our 

study, although the impact was less predominant since most lower-chlorinated congeners 

have open m, p positions. Congeners with both para positions substituted appeared more 

persistent than those with at least one open para position in most type of tissue (Figure 2-

10). However as an exception to the rule, PCB52 was more persistent in brain than 

PCB66 suggesting other factors besides metabolism contribute to the elimination of these 

compounds.  

The less frequent detection and lower concentrations of lower-chlorinated 

congeners in human and animal tissues do not necessarily mean that the extent of 

exposure and uptake of these congeners are negligible, as suggested by their particularly 

short half-lives. Nevertheless, many congeners detected in our study have been detected 

repeatedly among the general population in biomonitoring studies as well as populations 

exposed to elevated PCB levels: PCBs 49+69, 52, 60, 66, 74, 81, 87, 99, 101, 105, and 

118 in adult plasma (Dallaire et al. 2009; Minh et al. 2006; Nichols et al. 2007); PCBs 28, 

31, 52, 60, 64, 70, 74, 99, 105 and 118 in human adipose tissue (Bergonzi et al. 2009; 

Johnson-Restrepo et al. 2005; Tan et al. 2008); and PCBs 28, 66, 74, 99 and 118 in 

human breast milk and infant cord serum (Korrick and Altshul 1998). Yet our study also 

provides basic information for organs that are less accessible. For instance, PCB 15 was 
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found of high concentration in lung and PCB 52 appeared particularly persistent in brain 

(Figure 2-10). 

Inhalation was a highly efficient route of exposure for uptake of atmospheric 

PCBs. The first-order kinetics of ∑PCB in most tissues indicates that PCBs gain rapid 

access to circulation via the lung and can be soon distributed into tissues. In contrast, oral 

administration is usually characterized by a delayed peak in tissue concentration hours 

after exposure (Kania-Korwel et al. 2009). Following inhalation, the redistribution into 

adipose tissue and subsequent accumulation were observed. The slow rise in fatty tissue 

level was dwarfed by the rapid decline of PCBs in all other organs and blood suggesting 

that metabolism rather than enrichment in adipose tissue contributed primarily to the 

clearance of the inhaled PCBs. It was noteworthy that the higher chlorinated congeners 

accumulated in liver more than the same congeners in lung, whereas the levels of lower 

chlorinated ones were found consistently higher in the latter (Figure 2-9 and Table 2-5). 

In fact, this discrepancy between profiles in lung and liver was already noticeable at 12 hr 

post acute exposure even though they were very similar when exposure ended. Brain 

tissue was also preferentially taking up higher chlorinated congeners. One possible 

explanation was that the higher chlorinated congeners, which are generally more 

lipophilic, tend to stay in lipid-rich organs, the liver, brain and adipose tissue being main 

sites of their metabolism and storage rather than lung which was the route of entry. 

The animals were exposed to a relatively high dose of PCBs, estimated from the 

inhaled concentration in air as 40 µg per rat. The amount of PCBs measured in the five 

tissues collected was 5 µg per rat. The calculation for the measured body burden (i.e. the 

sum of PCBs loaded at the end of exposure) based on the organ weights of lung, liver and 

brain, and the assumption that serum and adipose tissue respectively account for 3% of 

the total body mass (Calder 1984), divided by the fractional body mass of these organs 

yields an estimated body burden of 33 µg per rat. The difference between the exposure 

and body burden can be ascribed to several plausible explanations: 1.) PCBs likely do not 
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distribute equally to all organs and tissues (Kania-Korwel et al. 2008); 2.) 

Excretion/metabolism during exposure time (3 hr) could contribute considerably to the 

loss; 3.) Exhalation of PCB vapor by animals was likely but not quantified.  

TEQ concentrations were calculated to evaluate the potential toxicity of this 

inhalation exposure based on accumulated parent congeners in tissue. Among dioxin-like 

congeners, only PCBs 77, 105 and 118 were detected after 2 hr inhalation. As the 

exposure was prolonged, more dioxin-like congeners accumulated to reach the lower 

detection limit. The much higher TEQ concentration (mass per wet tissue weight) in liver 

than that in lung resulted primarily from the absence of PCB 126 in lung. A significant 

concentration change in liver was also seen shortly after acute exposure (Figure 2-11). 

We observed that these dioxin-like congeners accumulated in liver which would thus be 

susceptible to toxic effects from inhaled PCBs. Measurement of metabolites of the 

dioxin-like congeners would help to elucidate the true burden of this exposure. In this 

study, we did not observe any significant toxicity, neither histologic abnormalities in 

respiratory system or liver, non-inflammatory responses in the lung. However, it should 

be realized that the biological endpoints investigated in this study were relatively limited 

and the exposure periods were short. As the toxicological potential of lower chlorinated 

PCBs have been revealed and inhalation is shown to be a significant route of exposure to 

these compounds, new biological endpoints for inhalation exposure to airborne PCBs are 

needed as well as chronic exposure studies to address the question of disease from 

inhaled PCB mixtures. 
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Table 2-1 Method detection limits (MDL) for all PCB congeners.  

PCB MDL PCB MDL PCB MDL PCB 
MD
L 

1 -- 51 0.41 106 0.74 162 -- 
2 -- 52 0.34 107/124 -- 164 -- 
3 -- 54 0.10 108 -- 165 -- 
4 0.23 55 0.38 110/115 0.46 167 0.38 
5 0.20 56 0.37 111 0.08 169 0.13 
6 0.13 57 0.38 112 0.36 170 0.05 
7 -- 58 0.56 114 0.31 171/173 0.08 
8 0.14 59 -- 118 0.17 172 0.13 
9 -- 60 -- 120 0.13 174 -- 
10 -- 61/70/74/76 0.71 121 -- 175 -- 
11 0.04 62/75 0.09 122 0.28 176 -- 
12/13 0.06 63 2.58 123 0.65 177 -- 
15 -- 64 0.15 126 0.13 178 -- 
16 0.41 66 0.81 127 -- 179 0.13 
17 1.83 67 -- 129/138/163 0.08 180/193 0.18 
18/30 2.27 68 0.31 130 -- 181 0.08 
19 -- 72 0.53 131 0.67 182 -- 
20/28 0.41 73 0.31 132 0.63 183 0.03 
21/33 0.41 77 0.48 133 0.21 184 -- 
22 0.88 78 0.17 134/143 0.37 185 0.03 
23 -- 79 0.51 135/151 -- 186 -- 
24 0.14 80 0.00 136 0.28 187 0.16 
25 -- 81 0.29 137 -- 188 -- 
26/29 0.18 82 0.30 139/140 -- 189 0.13 
27 0.06 83 0.59 141 -- 190 -- 
31 1.14 84 0.08 142 0.78 191 -- 
32 0.54 85/116/117 0.38 144 -- 192 -- 
34 0.00 86/87/97/109/119/125 0.21 145 -- 194 -- 
35 0.04 88/91 0.14 146 -- 195 -- 
36 0.34 89 -- 147/149 0.70 196 -- 
37 0.51 90/101/113 0.97 148 -- 197 0.53 
38 -- 92 -- 150 0.03 198/199 0.17 
39 -- 93/100 -- 152 0.05 200 -- 
40/41/7
1 

0.17 94 -- 153/168 0.31 201 -- 

42 0.89 95 0.56 154 0.40 202 0.66 
43 0.78 96 0.09 155 0.05 203 -- 
45 0.50 98/102 0.29 156/157 0.18 205 -- 
46 0.18 99 0.36 158 -- 206 0.14 
48 0.20 103 -- 159 -- 207 0.08 
49/69 0.52 104 -- 160 0.10 208 -- 
50/53 -- 105 0.23 161 -- 209 0.13 

Note: Values are expressed in ng. -- indicates that MDL ≤ 0.02 ng and was not 
determined. 
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Table 2-2 Recovery rate of spiked surrogate standards during PCB extraction process 
from rat liver, lung, blood, adipose tissue and brain after exposure to Aroclor 1242 
vapor mixture.  

 

 Liver Lung Blood Adipose Brain 

PCB 14
a
 77 ± 24% 66 ± 30% 86 ± 25% -- -- 

d-PCB 65
a
 86 ± 34% 82 ± 37% 87 ± 17% -- -- 

PCB 14
b
 30 ± 8% 20 ± 7% 31 ± 6% 21 ± 13% 40 ± 10% 

d-PCB 65
b
 41 ± 8% 29 ± 9% 60 ± 8% 38 ± 21% 53 ± 10% 

  Note: Surrogates are injected into every sample and each PCB mass is corrected for 
recovery. Values are expressed as mean ± standard deviation. 
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Table 2-3 Recovery rate of spiked ongoing precision and recovery standards during PCB 
extraction process from rat blood and tissue after exposure to Aroclor 1242 vapor 
mixture.  

Congener Average
a
 SD

a
 Average

b
 SD

b
 

3 46.15% 17.45% 72.24% 21.30% 

8 95.96% 2.57% 91.06% 18.84% 

18 81.86% 38.69% 106.85% 21.15% 

28 96.79% 28.04% 103.00% 14.38% 

44 80.23% 15.43% 82.52% 18.10% 

52 88.09% 8.42% 103.18% 8.54% 

66 85.63% 0.33% 104.24% 10.68% 

77 73.52% 10.83% 103.14% 20.51% 

81 77.60% 7.81% 105.17% 14.13% 

101 71.62% 2.81% 108.87% 12.62% 

105 68.18% 7.96% 107.21% 20.02% 

114 70.63% 7.37% 102.96% 16.00% 

118 69.75% 7.49% 103.28% 16.53% 

123 69.02% 6.94% 104.91% 17.70% 

126 59.28% 9.98% 116.99% 51.59% 

128 66.93% 14.20% 106.61% 20.27% 

137 68.96% 15.60% 107.93% 23.92% 

153 70.44% 13.25% 109.57% 20.72% 

156+157 63.83% 19.98% 106.66% 28.66% 

167 69.72% 19.95% 108.86% 49.68% 

169 69.34% 20.77% 114.36% 38.02% 

170 70.91% 21.00% 102.32% 24.37% 

180 70.50% 24.46% 103.49% 29.96% 

187 71.10% 18.06% 108.97% 22.35% 

189 86.85% 34.48% 110.76% 39.62% 

195 85.43% 32.27% 99.97% 42.30% 

206 93.09% 36.68% 114.27% 49.15% 

209 94.35% 38.02% 112.69% 50.99% 

Note: Values are corrected for surrogate recovery, expressed as mean recovery rate and 
standard deviation.  
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Table 2-4 Mean ± standard error of total PCB levels (ng/g lipid weight) in liver, lung and 
blood from rats after subacute inhalation exposure. 

Total PCBs Sham 
n = 9 

10-day Exposure 

n =7 

4-day Exposure 
n = 2 

Liver 44.1 ± 24.7 6681.3 ± 324.7*** 5965.2 

Lung 9.1 ± 2.4 6714.2 ± 1122.3** 1190.7 

Blood (0.21 ± 0.03)×103  (18.0 ± 2.5)×103*** 18.9×103 

Note: Levels in the 10-day exposed group were significantly greater than control group, 
**p < 0.01, ***p < 0.001 (t-test for unequal variances). 
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Table 2-5 Lipid-adjusted mass of prevailing PCB congeners found in liver, lung and 
blood from rats after 10-day subacute inhalation exposure.  

Tissue Liver Lung Blood 

Congener [ng/g 
lipid 
weight] 

% of 
total 

[ng/g 
lipid 
weight] 

% of 
total 

[µg/g 
lipid 
weight] 

% of 
total 

1 Mono 5.1 0.08 5.5 0.08 0.03 0.15 

2  3.6 0.05 1.4 0.02   

3  2.3 0.03 1.4 0.02 0.01 0.03 

4 Di 25.8 0.39 54.2 0.81 0.03 0.20 

8  44.7 0.67 117.3 1.75 0.10 0.57 

15  12.0 0.18 12.3 0.18 0.03 0.14 

16 Tri 10.7 0.16 37.2 0.55 0.03 0.15 

17  20.3 0.30 29.0 0.43 0.02 0.10 

20/28*  1387.7 20.77 2383.1 35.50 4.1 22.88 

21/33*  49.2 0.74 89.4 1.33 0.06 0.34 

31  68.4 1.02 112.5 1.68 0.16 0.88 

32  15.7 0.24 28.2 0.42 0.03 0.15 

49*/69 Tetra 1160.9 17.37 146.1 2.18 2.1 11.24 

52  158.1 2.37 158.6 2.36 0.5 2.87 

60  280.8 4.20 359.8 5.36 0.8 4.72 

61/70*/74*/76  403.4 6.04 542.5 8.08 1.4 7.81 

64  48.3 0.72 85.1 1.27 0.17 0.93 

66  703.0 10.52 865.8 12.90 2.4 13.61 

77  14.3 0.21   0.01 0.05 

82 Penta 10.3 0.15   0.06 0.33 

83*/99*/112  965.4 14.45 545.0 8.12 2.4 13.31 

85*/116/117  235.9 3.53 82.6 1.23 0.3 1.53 

86/87*/97*/109/119/125  56.6 0.85 45.6 0.68 0.2 0.98 

90/101*/113  165.0 2.47 120.8 1.80 0.40 2.22 

95  105.4 1.58 79.2 1.18 0.16 0.91 

105  119.8 1.79 104.6 1.56 0.5 2.73 

110*/115  49.4 0.74 45.5 0.67 0.4 2.36 

118  190.4 2.85 240.5 3.58 0.8 3.74 

129/138*/163 Hexa 29.5 0.44 11.8 0.18 0.07 0.41 

147/169  27.3 0.41 25.2 0.38 0.05 0.30 

153*/168  25.0 0.37 27.4 0.41 0.04 0.21 

Total PCBs 6681.3 100.00 6714.2 100.00 18.0 100.00 

Note: Bold indicates PCB mass percentage over 2% in any tissue. 
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translocation of [
14

C]PCB11 and products from liver, blood and muscle to skin and 

adipose tissue, yet the majority of [
14

C] was discharged via the large intestine and urine. 

Metabolic analysis revealed that the parent compound PCB11 and its hydroxylated 

metabolites were present at very low levels in liver, blood and the intestinal digestive 

matter, whereas the phase II metabolites were the major component, which dominated in 

the excreta as well. 

Future work should focus on the fate of inhaled congeners after long-term 

exposure. The human inhalation exposure to airborne PCBs is usually chronic and 

continuous, making it difficult to predict the resultant blood and tissue concentration. A 

development of a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) 

model may help address this issue. The [
14

C]PCB11 study has provided us a better 

understanding of  the tissue compartments perfused by the blood circulation following 

inhalation exposure. As illustrated in Figure 6-1, PCB11 is dissolved in the alveolar 

liquid and diffused into the epithelial cells, which determines the pulmonary absorption 

factor. The congener is input by blood circulation at different rates to rapidly perfused 

tissues (e.g. muscle, most organs etc) and slowly perfused tissues – skin and adipose 

tissue. Brain is defined as a compartment due to the possibility of direct olfactory input 

which bypasses the circulation. The toxicokinetics of the less lipophilic metabolites in 

brain may also differ from other compartments due to the blood-brain barrier. Liver plays 

a major role in the metabolism and clearance of PCB11 and its products as the biliary 

excretion to the intestines facilitates the fecal elimination of PCB11. Although minimal 

evidence was shown for PCB11, enterohepatic circulation is yet possible and has been 

shown significant for some congeners (Bakke et al. 1982).  Urinary excretion is also an 

important excretory pathway for PCB11 and probably affects the elimination of PCB11 

and its products in kidney. Taken together, the absorption, distribution and elimination of 

PCB11 are determined by many variables. The parameterization of the model will allow 

quantitative estimation of the body burden and a chronic inhalation exposure study may 
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also be needed to adjust for other potential effects such as redistribution of compounds 

from adipose tissue. 

On the other hand, it has been repeatedly shown that the metabolites of lower-

chlorinated congeners (especially the phase II metabolites) dominate in various body 

tissues, suggesting quantification of these products may provide better blood and urine 

biomarkers for inhalation exposure assessment. For that purpose and also the purpose of 

developing PBPK model, the toxicokinetics of the phase II metabolites need to be 

established.  

Biological Effects from Inhalation Exposure  

Minimal toxicity was found in our inhalation studies, either after subacute 

exposure to Aroclor 1242 vapor or after subchronic exposure to the CAM vapor. Our 

studies demonstrated that inhalation exposure to low-level Aroclor-contained PCBs do 

not cause any changes in the lung, as no pulmonary immune responses, alteration of the 

CYP activity or change of glutathione status were detected after the subchronic exposure. 

Future work should evaluate other markers of toxicological endpoints. The liver, an 

important dispostion of PCBs, was also negative for CYP1A induction, which is 

commonly associated with exposure to dioxin-like PCBs. This is not surprising as these 

types of congeners are present at very low levels in the atmosphere and the exposure 

vapor. However, the induction of CYP2B by ortho-substituted congeners was also absent 

indicating that the dosage in inhalation exposure was not sufficient for CYP induction. 

We found a more oxidized environment in the blood after subchronic exposure, featured 

by increase of glutathione disulfide and decrease of glutathione although no significant 

change was found in liver. Together with the elevation in hematocrit, it suggested that the 

exposure generated certain stress in the circulation yet whether it may lead to toxicity is 

currently unknown. 
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The findings in our study and the literature suggest that the vapor-phased PCBs 

are enriched with congeners that may cause neurotoxicity, endocrine and reproductive 

toxicity (Table 1-1). These effects may be most evident in susceptible populations of 

pregnant women and developing fetuses, as individuals at early life stages are particularly 

vulnerable to PCB toxicities because compared to adults, they generally have lower and 

distinct profiles of enzymes leading to different pharmacokinetics and metabolism. 

Exposure may occur via transfer of PCBs that were breathed in by mothers to the fetus 

across the placenta, by nursing infants through the breast milk and also via inhalation by 

the infants. It may be of particular interest in future perspectives to investigate in utero 

exposure to PCBs originated from inhalation by mother and early postnatal exposure to 

airborne PCBs.  

In order to accomplish this goal, an inhalation study exposing pregnant rats to 

PCB vapor may be performed (Figure 6-2). In the illustrated design, the fetus/infant rats 

are divided into three groups: the sham-exposed group, the in utero (prenatal) exposed 

group and the in utero and postnatally exposed group. The mothers of the prenatal-

exposed group are exposed to vapor-phase PCBs until delivery. The litters are 

investigated for prenatal toxicity at two time points: the weaning time and 6 weeks old. 

Evaluation of endpoints in offspring focuses on differentiation of immunological cell 

population, interference of thyroid hormone, growth of organ and tissues and behavior. A 

prolonged period of exposure is provided to the mothers of the prenatal- and postnatal-

exposed group, which last the entire gestation stage. The weanlings then continue to 

receive inhalation exposure until 9 weeks old. Several time points may be investigated to 

observe early developmental outcomes. This study design will allow us to evaluate the 

influence of PCB inhalation exposure on prenatal and early development phase, while 

adult exposure is not sufficient to address the special vulnerabilities. 

The risk assessment of inhaled PCBs is an urgent need yet the dose-response 

relationship for inhalation exposure is missing.  Considering the long-lasting duration of 
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human exposure, a chronic inhalation exposure regimen should be given priority in adult 

animal studies. Evaluation of biological endpoints may focus on endocrine, neurotoxic 

effects and accumulation of oxidative stress, as suggested by our subchronic study and 

the literature. In addition, the information on the toxic effect of PCB11 is very limited. Its 

prevalence in the atmosphere and the fact that it is still being produced make the need for 

more research urgent. Neurotoxicity may be of concern for this congener, which was 

suggested by various in vitro assays on intracellular signaling (Table 1-1). 

  



138 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1 Compartmental model of the PCB11 distribution after inhalation exposure. 

Note: Dotted lines indicate uncertain pathways. 
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Figure 6-2 Scheme of reproductive toxicity study design for prenatal and postnatal 
exposure to inhaled PCB vapor. 
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APPENDIX A  

LIST OF CHEMICALS 

PCBs and Metabolites 

IUPAC identities, numbered PCB1 (monochlorobiphenyl) through PCB209 

(decachlorobiphenyl) are used in this thesis for congener identification (U.S. 

Environmental Protection Agency 1999). 3,5-dichlorobiphenyl (PCB14) and 

2,2’,3,4,4’,5,6,6’-octachlorobiphenyl (PCB204) were purchased from Cambridge Isotope 

Laboratories, Inc. (Andover, MA). Deuterium labeled 2,3,5,6-tetrachlorobiphenyl (d-

PCB65) was purchased from CDN isotopes (Quebec, Canada). Ongoing precision and 

recovery (OPR) standard was purchased as a ready mixture (WHO / NIST/ NOAA 

congener list) from AccuStandard (New Haven, CT). 4-Monochlorobiphenyl (PCB3) was 

synthesized in the laboratory (with a purity of >99%, based on the relative peak) and 

added to the AccuStandard mixture to represent lower chlorinated PCBs. After dilution 

the mixture contained 410 ng/mL of PCB3 and 380 ng/mL each of the following in 

isooctane: PCBs 8, 18, 28, 44, 52, 66, 77, 81, 101, 105, 114, 118, 123, 126, 128, 137, 

153, 156, 157, 167, 169, 170, 180, 187, 189, 195, 206, and 209. For the OPR spike, 250 

µL was added for each set of samples.  

3,3’-Dichlorobiphenyl (PCB11), 3,3’-dichlorobiphenyl-4-ol (4-OH-CB11), 3,3’-

dichloro-2-methoxy-biphenyl (2-MeO-CB11), 3,3’-dichloro-5-methoxy-biphenyl (5-

MeO-CB11), 3,3’-dichloro-6-methoxy-biphenyl (6-MeO-CB11), 4,4’-dichlorobiphenyl 

(PCB15), 3,4-dichlorobiphenyl-4’-ol (4’-OH-CB12), 2,4’-dichlorobiphenyl-4-ol (4-OH-

CB8) were synthesized in the laboratory (Bauer et al. 1995; Lehmler and Robertson 

2001). 3,5-Dichlorobiphenyl (PCB14) was purchased from AccuStandard (New Haven, 

CT). 3,5,2’,3’,4’,5’-Hexachlorobiphneyl (4’-OH-CB159) and 2,3,4,2’,5’-pentachloro-4-

methanesulfonylgiphenyl (4’-MeSO2-CB87) were purchased from Accustandard (New 

Haven, CT). 
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Other Material 

All pesticide grade solvents including hexane, acetone, dichloromethane, 

methanol and chloroform were supplied by Fisher Scientific (Pittsburgh, PA). Florisil 

(60-100 mesh), tetrabutylammonium sulfite, absolute ethanol, potassium hydroxide, 

sulfuric acid (concentrated), Tween
®

 80 and hydrogen peroxide were supplied by Fisher 

Scientific (Pittsburgh, PA). Diazomethane was synthesized from N-methyl-N-nitroso-p-

toluenesulfonamide (Diazald) as described previously (Kania-Korwel et al. 2008).(U.S. 

Environmental Protection Agency 1999) Tetrabutylammonium hydrogen sulfate was 

purchased from JT Baker (Phillipsburg, NJ, US). Diatomaceous earth was obtained from 

Dionex (Sunnyvale, CA, US).  

Other chemicals were supplied as follows: glacial acetic acid (Research Products 

International Corp., Prospect, IL); sterile saline (Baxter Healthcare Corp., Deerfield, IL), 

tissue solubilizer and Ultima Gold scintillation cocktail (PerkinElmer, Waltham, MA), 

Dimethyl sulfoxide (Sigma-Aldrich, St. Louis, MO). 
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APPENDIX B 

VOLITILIZATION MODEL 

A model was established to predict the theoreteical concentration and distribution 

profile of the vapor mixture generated from volatilization. The solution of Aroclor 1242 

used for generation of airborne PCBs was analyzed. The mass fraction of the solution 

was used as an input to the volatilization model. The atmospheric concentration of each 

individual congener was assumed to be in equilibrium with the concentration in the 

solution. Vapor pressures for each congener were obtained from previously reported 

equations (Falconer and Bidleman 1994; Li et al. 2003). Partial pressure for each 

congener was calculated based on Raoult’s Law: 

         
 

Where                           

                                                    

   
                                 

The atmospheric concentration was calculated based on the Ideal Gas Law: 
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The total amount of PCBs that the animals were exposed to is: 
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The mass percentage of each congener in the vapor mixture was calculated to 

determine the profile distribution: 

                 
     

  
   

   
   
     

  
   

 

This model has been applied to predict the congener profiles of volatilized 

Aroclor 1242, Aroclor 1254 and the CAM. The predicted vapor profiles showed a high 

agreement with the measured vapor profiles in (Figure B-1, B-2 and B-3). 

  



144 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-1 Comparison of the measured Aroclor 1242 vapor profile to the volatilization 
model-predicted vapor profile. 
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Figure B-2 Comparison of the measured Aroclor 1245 vapor profile to the volatilization 
model-predicted vapor profile 
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Figure B-3 Comparison of the measured CAM vapor profile to the volatilization model-
predicted vapor profile 
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