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actual sites of neuronal activity. This is why some investigators apply small motion 

sensitizing gradients to the echo-planar gradient echo sequence commonly used to 

acquire BOLD data. Therefore, we speculate that the smaller T1ρ changes may represent 

an acidosis that is more localized to the area of brain activity as compared to the BOLD 

signal. However, we found that the signal change was half of the BOLD magnitude and 

may require additional temporal sampling to achieve the same power as BOLD imaging. 

Lactate is one of the potential sources of acid detected by T1ρ and 31P. Prichard et 

al. [149], Maddock et al. [120] and Magnotta et al. [139] observed that lactate 

concentration significantly increases during visual stimulation. Lin et al. [146] also 

observed that stimulation rate-dependent increase of CBF correlates with lactate 

production. These observations suggest that anaerobic glycolysis may help drive the pH 

and CBF responses detected here. Increased activity requires greater blood flow to supply 

glucose and oxygen and to remove metabolic waste including CO2. Prior studies have 

shown that local acidosis is a critical determinant of cerebrovascular tone [150]. 

Consequently, activity-evoked acidosis may be a key mechanism underlying 

neurovascular coupling. Nevertheless, current functional imaging paradigms remain 

dependent on blood flow, blood volume and the vascular anatomy, which limits their 

temporal and spatial resolution. If pH helps drive the vascular response, then T1ρ may be 

a more direct and precise method of imaging brain function. If so, one might expect the 

local pH changes detected by T1ρ to be more localized to the activated region. In addition, 

the T1ρ response might precede the hemodynamic response detected by BOLD and CBF 

measures. However, future work is needed to better understand the temporal dynamics of 

the T1ρ response relative to BOLD and CBF changes. 
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                            Table 5.2. Phosphate ratios and intracellular pH  

                            during different stimulus temporal frequencies. 
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CHAPTER 6 
 

T1ρ FUNCTIONAL IMAGING TEMPORAL DYNAMICS IN THE 

HUMAN VISUAL CORTEX 

 

 

6.1.   Background and Rationale 

   Local dynamic pH fluctuation in the brain occurs with neural activity and has 

been associated with several neurological and psychiatric disorders. There are a number 

of potential sources of pH change in the brain and several of these may combine to 

produce a localized acidosis. Neural activity generates lactate, CO2 and other metabolites 

as end products, which lower interstitial pH. In addition, the synaptic release of protons 

from neurotransmitter vesicles lower pH in the synaptic cleft to modulate pH sensitive 

channels and other receptors in the pre- and post-synaptic membrane. An increased 

metabolic activity also produces more CO2, which is rapidly hydrated to HCO3
- and H+. 

Such dynamic pH fluctuations have the potential to dramatically alter cognition and 

behavior through a number of pH-sensitive receptors and channels. An example is the 

acid-sensing ion channels (ASICs), which promote synaptic plasticity, learning, and 

memory [116,117]. In addition, there is an emerging recognition of the importance of pH 

and ASICs may play in neurological disease, including stroke, multiple sclerosis, and 

seizure [19,116]. Recently, increasing evidence suggests that pH may be abnormally 

regulated in panic disorder [122,154-158]. Furthermore, CO2 inhalation triggers panic 

attacks and patients with panic disorder are particularly sensitive [18] The resulting 

acidosis is thought to be responsible for most of the physiological effects of CO2. These 
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finding suggest a critical role for pH-dependent signaling in psychiatric and neurological 

disease. In addition, neural activity is accompanied by a complex sequence of vascular 

processes. A continuous supply of energy substrates such as glucose and oxygen is 

maintained by cerebral blood flow during the neural activity. Prior studies have shown 

that local acidosis is a critical determinant of cerebrovascular tone [150]. Local acidosis 

potently stimulates vasodilation and increases blood flow. Therefore brain tissue acidosis 

accounts for the vasodilation associated with increased neuronal activity.  

The ability to non-invasively measure pH dynamics may also offer a novel, more 

direct approach to map brain function. Brain acidosis is the end product of energy 

metabolism. Metabolically active cells lower local pH, the detection of which could help 

pinpoint regions activated by sensory stimuli, emotion, or cognitive tasks. Functional 

magnetic resonance imaging (fMRI) mostly relies on blood oxygenation-level dependent 

(BOLD) changes in the venous system while arterial spin labeling (ASL) enables changes 

in tissue perfusion resulting from local cerebral blood flow (CBF) changes. BOLD 

contrast can be significantly distant from the actual site of neuronal activity because it 

relies on changes of the local magnetic field within veins [43,159,160]. The venous 

contribution results in a loss of spatial specificity and spatial resolution of the BOLD 

response [161]. In addition, the hemodynamic response to brief periods of neural activity 

is delayed. Typically, the signal change is observed at 3-5 seconds after onset of neural 

activation and reaches maximum at 5-10 seconds [162,163]. However, ASL contrast 

originates predominantly from tissue and capillaries [54,60,164]. Even though functional 

signal changes detected by ASL have superior spatial and temporal resolution as 

compared to BOLD contrast, ASL contrast still suffers from poor temporal resolution due 
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to delays in the hemodynamic response resulting from neurovascular coupling. Therefore, 

the ability to measure pH dynamics may provide a more localized and direct measure of 

brain activity.  

Recently, we found that the T1ρ contrast can detect dynamic fluctuations in pH 

associated with brain activity resulting from a visual flashing checkerboard [139]. Both 

the T1ρ and 31P spectroscopy measurements revealed an acidosis in the visual cortex 

associated with brain activity. In addition, we found a significant increase in the lactate 

signal (lactate/creatine ratio) using 1H spectroscopy within the visual cortex. Blood 

phantoms revealed that T1ρ was sensitive to pH changes and not blood oxygenation while 

T2
* was sensitive to blood oxygenation and not pH. It suggests that T1ρ contrast 

dissociates from BOLD sensitivity. Consequently, functional T1ρ imaging may provide 

improve localization of brain activity and more direct approach to map brain function 

since acidic end product of metabolism, lactic acid, are likely more localized to the brain 

activity as compared to blood oxygenation. Currently, various magnetic resonance 

approaches have been developed to measure brain pH. 31P spectroscopy is most 

commonly used to measure brain pH with pH-dependent chemical shift changes, but it 

has relatively poor temporal and spatial resolution [135,136]. Recently, 1H MRI methods 

for measuring pH in vivo have exploited pH-dependent magnetization transfer between 

bulk water and amid protons in the peptide bonds [92,93,99]. This technique includes 

amid proton transfer (APT) imaging technique, a specific variant of chemical exchange 

saturation transfer (CEST). APT is pH-sensitive but has not yet been developed for 

functional imaging.  
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In this study, we hypothesized that pH-sensitive T1ρ response in the visual cortex 

will temporally precede the hemodynamic response measured by functional imaging 

including BOLD and ASL contrast since local acidosis evoked by neural activity may 

drive the hemodynamic response. To test this hypothesis, dynamic imaging was 

performed using T1ρ, BOLD, and ASL while viewing a phase-encoded expanding ring 

stimulus, which induces traveling waves of neural activity in the visual cortex. We 

calculated the phase maps for the eccentricity across their occipital cortices for each of 

functional signal and compared the T1ρ temporal resolution with the hemodynamic 

response. 

6.2.   Methods 

Five subjects (three men and two women, 29-33 years of age) underwent MRI (T1 

and T2-weighted imaging) and fMRI (BOLD, ASL, and T1ρ) study, all with normal or 

corrected-to-normal vision. Signed informed consent was obtained prior to beginning the 

study in accordance with the Institutional Review Board at the University of Iowa. 

MR images of the brain were obtained on a 3.0T Siemens TIM Trio scanner 

(Siemens Medical Solutions, Erlangen, Germany) using a 12 channel head-coil. For 

cortical surface reconstruction, high-resolution anatomical T1-weighted images were 

acquired using a 3D MP-RAGE sequence using the following parameters: TR=2530ms, 

TE=2.8ms, TI=909ms, flip angle=10°, FOV=256x256x256mm, matrix 

size=256x256x256, bandwidth= 180Hz/pixel. BOLD imaging was performed using a 

T2
*-weighted gradient-echo sequence with the following acquisition parameters: 

TR=2500ms, TE=30ms, flip angle=90°, FOV=220x220mm, matrix size=64x64, 
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bandwidth=2004Hz/pixel, 31 slices and slice thickness/gap=4.0/1.0mm. T1ρ imaging was 

performed using an echo-planar spin-echo sequence with an additional T1ρ spin-lock 

encoding pulse. The sequence parameters were TR=2500ms, TE=12ms, 

FOV=220x220mm, matrix size=64x64, bandwidth=1954Hz/pixel, 15 slices and slice 

thickness/gap=4.0/1.0mm. Two spin-lock pulses were used (10 and 40ms) with a spin-

lock frequency of 350Hz. Pulsed ASL (PICORE Q2T) images were collected by 

alternating between tag and control images using the following parameters: TR=2500ms, 

TE=15ms, TI1/TI2=700/1602ms, FOV=220x220ms, matrix size=64x64, 12 slices and 

slice thickness/gap=4/1mm. Two runs of the ASL and T1ρ measurements were obtained 

to increase signal to noise ratio. 3D shimming was performed for all functional scans 

using Siemens’s automatic shimming routine. 

Phase-encoded eccentric maps were presented using a standard expanding ring 

stimuli that induce travelling waves of neural activity in the visual cortex [165-167]. 

Eccentricity mapping was performed using expanding ring checkerboard presented in 6 

cycles with 50 second period (0.02Hz) for each of three functional modalities. When the 

ring reaches the maximum eccentricity, it wraps around to be replaced by a new one at 

minimum eccentricity. The temporal frequency of 50 seconds for eccentricity stimulation 

allowed the signal to return to baseline before subsequent activations. The stimulus 

patterns were based on a radial high-contrast black and white checkerboard flickering at 

8Hz. The stimulus was presented on a screen of width 40cm, height 30cm, and a distance 

of approximately 80cm form the subject’s eye. Subjects viewed the screen through a 

mirror attached to the head coil. A deep red colored circle was shown in the center of the 

stimulus. Subjects were asked to press a button on the fiber optic response system (Lumin 
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LP-400, Cedrus Corporation, San Pedro, USA) when the deep red colored circle changed 

to the bright red colored circle, which was appeared in random order. This was done to 

ensure that the subjects maintained fixation on the center throughout the stimulus 

presentation. Six dummy scans (6TR=15sec) were collected at the beginning of each run 

to reach steady state magnetization before initiating the eccentricity mapping stimulus. 

The stimuli were generated using MATLAB (The MathWorks, Inc., Natick, MA, USA) 

and the Psychophysics Toolbox [168,169]. 

The cortical surface of each subject was reconstructed from the high-resolution 

T1-weighted images transformed using Freesurfer [170-172]. The FreeSurfer pipeline is 

first performs tissue classification before separating the hemispheres and generating a 

separate surface for each hemisphere. The occipital lobe was flattened by cutting the 

inflated surface along the calcarine fissure.  

All functional imaging data were analyzed using a combination of AFNI [173], 

SUMA(http:/afni.nimh.nih.gov/afni/suma) and additional custom-written MATLAB and 

Linux shell scripts. Pre-processing for all functional data included slice timing correction, 

linear trend removal, and three dimensional motion correction. The functional data were 

detrended with components of no interest from time series volumes using a third order 

polynomial. For ASL data, we calculated control-tag difference images using surround 

subtraction to reduce BOLD signal contamination of the CBF time course [60]. For T1ρ 

data, T1ρ relaxation times were calculated from the images with TSL of 10ms and 40ms, 

by voxel-wise fitting to mono-exponential decay. In addition, time series of all functional 

data were high-pass filtered to remove low frequency drifts caused by subject motion and 

physiological noise. The voxel-wise phase and amplitude of neuronal responses for all 
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functional modalities was estimated by taking the Fourier transform of the time series at 

the stimulus frequency (0.02Hz=1/50sec). Functional activation maps (phase and 

coherence) were resampled into matrices with 1 mm resolution to match the source data 

for cortical surfaces. Image alignment between the functional activation maps and 3D 

anatomical MP-RAGE was performed, and then mapped to the cortical surface. The 

phase data were smoothed with a Gaussian kernel of 8mm FWHM along the cortical 

surface. The phase maps are represented in the color scale between 0 and 2π for the phase 

values.  

For each voxel, we calculated an F ratio and corresponding p-values by dividing 

the squared amplitude of the response at the fundamental stimulus frequency (0.02Hz) 

with the average squared amplitudes at all other frequencies except the signal at the DC 

component frequency. For each subject, the statistical map of BOLD eccentricity was 

thresholded (p<0.01) and an ROI was created including significantly activated voxels for 

eccentricity maps. The statistical maps of ASL and T1ρ eccentricity were masked with the 

same ROI created from the BOLD signal, and were threshold (p<0.05) because of the 

lower SNR of ASL and T1ρ images. 

Region of interest analysis was performed for BOLD, ASL, and T1ρ time courses. 

ROIs (2x2 pixels) enclosing the primary visual cortex (V1) were carefully drawn on the 

functional maps with reference to the flattened cortical surface. Normalized signal 

changes of individual functional signals in two representative subjects were obtained 

from the ROIs across all three functional imaging methods. The signal was normalized to 

±1.  
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For temporal resolution comparison of all three modalities, we subtracted the 

phase map between the BOLD and ASL, between the BOLD and T1ρ, and between the 

ASL and T1ρ. All subtraction images were masked with the ROI created from the BOLD 

signal thresholded (p<0.01), and converted to time scale.  

For each ROI, the phase values between the measured time-series and best-fit 

sinusoidal function were calculated, which measures temporal delay of the fMRI 

responses relative to the beginning of the time-series. The BOLD, ASL, and T1ρ time 

series were each individually averaged over one period relative to their peak activation. 

The first and last cycle of the time series were discarded before averaging.  

6.3.   Results  

Figure 6.1 shows eccentricity maps of BOLD, ASL, and T1ρ response to the 

expanding ring stimulus on the left and right inflated hemisphere, and the left flattened 

cortical surface for a single subject. The color scale indicates the raw phase value 

between 0 and 2π for eccentricity map. All eccentricity maps show a systematic increase 

in phase originating from the occipital pole towards more anterior regions. However, in 

the eccentricity maps, where the fovea is denoted in red/ yellow and the periphery in 

blue/ green, the phase lag for T1ρ was smaller than these for ASL and BOLD, implying an 

earlier T1ρ response. Figure 6.2 shows eccentricity maps of BOLD, ASL, and T1ρ 

response to the expanding ring stimulus on the left inflated cortical surface for the four 

other subjects (S2, S3, S4, and S5). Both the BOLD and ASL responses show strong 

eccentric patterns for the specified significance levels (0.01 and 0.05 respectively). The 

T1ρ imaging had a weaker response. Figure 6.3A and Figure 6.5A show the eccentricity 
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map of BOLD, ASL, and T1ρ response on their sagittal (upper) and axial (lower) 

functional data for two representative subjects (S1 and S2), showing the phase map 

between 0 and 2π. The phase-differences between BOLD, ASL, and T1ρ eccentricity 

maps are also apparent in the time courses as shown in Figure 6.3B and 6.5B. The 

average of the BOLD, ASL, T1ρ time course as shown in Figure 6.3B and 6.5B were 

obtained in the ROI (2x2) within visual cortex for the subject (S1 and S2) as shown by 

black color square in Figure 6.3A and 6.5A. The T1ρ signal (red) change appears to 

precede the ASL (blue) signal, followed by BOLD (black) signal. It would suggest that 

the T1ρ signal has a higher temporal resolution as compared to the BOLD and ASL 

response. Figure 6.3C and 6.5C shows the subtracted time delay maps between the 

BOLD and the ASL, and between the BOLD and the T1ρ, and between the ASL and the 

T1ρ. Figure 6.3D and 6.5D shows the averaged BOLD, ASL, and T1ρ across the entire 

time course. Although the BOLD and ASL temporal dynamics were quite similar, there 

was a trend towards ASL preceding the BOLD changes. T1ρ signal responded faster than 

ASL, which precedes the BOLD signal by 1-2 seconds. T1ρ signal peaked faster than the 

BOLD and ASL. However, the T1ρ did tend to decay slower than BOLD and ASL. All 

three modalities tended to reach settle back to the baseline at about the same time. Figure 

6.3E shows the best fit of sinusoidal function for the BOLD, ASL, and T1ρ. Figure 6.4 

and 6.6 show the hemodynamic response delay of BOLD and ASL relative to T1ρ 

response for the subject (S1 and S2). Red circles represent data thresholded by F ratio of 

5.29 (p-value<0.01). The phase lag for T1ρ was smaller than these for BOLD and ASL in 

the voxels with high statistically significance (red circles). The difference between BOLD 

and ASL delay times, between BOLD and T1ρ, and between ASL and T1ρ delay times 
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across all subjects is shown in Figure 6.7A. The mean difference between all imaging 

modalities is shown in Figure 6.7B. The corresponding difference of delay times are 

listed in Table 6.1.  

6.4.   Discussion and Conclusions 

In this study, we used the phase-encoded visual stimulation with a 50 sec period 

to compare the temporal resolution between T1ρ, BOLD, and ASL response. The occipital 

cortex was used as a model system for this study. Our data suggests that the T1ρ signal 

has a higher temporal resolution as compared to the hemodynamic response. Recently, 

we found that T1ρ contrast can used to detect dynamic fluctuations in pH associated with 

brain activity resulting from a visual flashing checkerboard [139]. These findings were 

supported using 31P spectroscopy. In addition, we have shown that the T1ρ changes are 

independent of blood oxygenation. Therefore we hypothesized that activity-evoked pH 

changes and pH-sensitive T1ρ signal in the visual cortex will precede the hemodynamic 

response. Based on our data, T1ρ may respond up to 4 seconds faster than ASL and 

BOLD. This study also found that dynamic T1ρ signal responds faster than ASL. The 

hemodynamic delay time between BOLD and ASL signal for distinct visual area are 

consistent with these reported in the literature [174]. 

Neural activity and cerebral blood flow are closely coupled, which is called 

neurovascular coupling [150]. Increases in oxygen and glucose consumption during 

neural activity are followed by an increase in CBF. In addition, the cerebral blood flow is 

controlled by feedback mechanisms, which are correlated with the concentration of 

metabolic by-products such as nitric oxide, adenosine, carbon dioxide, and arachidonic 
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acid metabolites. Prior studies have shown that local acidosis may alter blood flow by 

depolarizing the vascular smooth muscle cells which triggers vasodilation [150]. 

Consequently, activity-evoked acidosis may be a key mechanism underlying 

neurovascular coupling. Nevertheless, current functional imaging paradigms are limited 

by their dependence on blood flow, blood volume, and the vascular anatomy, which 

limits their temporal and spatial resolution. However, T1ρ could be a more direct and 

precise method of imaging brain functions because acidic end products of metabolism are 

a likely source of pH, driving the vascular response. Furthermore, T1ρ response might 

precede the hemodynamic response detected by BOLD and CBF, because pH may drive 

the hemodynamic response. 

We found significant differences in the eccentric patterns detected by T1ρ, BOLD, 

and ASL. It is well known that the BOLD signal is primarily caused by oxygenation and 

volume changes in veins, which can spread the fMRI-detected area to region where there 

are no neuronal activation whereas ASL is more closely associated with the capillary bed 

[54,60,164]. It has been suggested that the hemodynamic response is delayed in the more 

downstream and the larger the vasculature is, with delays ranging between 2 sec in the 

parenchyma to 14 sec in the large draining veins [162,163]. Therefore, these different 

spatial locations and hemodynamic response delay contribute to the observed discrepancy 

between ASL and BOLD phase maps. While the T1ρ activation area was contained mostly 

within the BOLD and ASL activation area, the T1ρ activation area was significantly 

smaller. This would be expected if the T1ρ signal is generated from pH changes 

associated with local brain activity. However, the significant activated region in the T1ρ 

eccentric map was found mostly in the primary visual area (V1). Other regions had a 
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lower signal to noise ratio. We found that the signal change was half of the BOLD 

magnitude and may require additional temporal sampling to achieve the same power as 

BOLD imaging.  

In conclusion, we performed the eccentric mapping of the human brain at 3T 

using the expanding ring stimulus to assess the temporal dynamic of T1ρ relative to 

BOLD and ASL. Our study suggests that T1ρ signal has a higher temporal resolution as 

compared to the hemodynamic response. This is further evidence that the T1ρ signal is not 

sensitive to blood oxygenation or other blood factors that might alter T1ρ. Therefore, our 

findings support the hypothesis that dynamic T1ρ imaging detects activity-evoked pH 

changes. T1ρ imaging could be used to map neural activation more precisely than blood 

flow dependent methods. Furthermore, a number of psychiatric and neurological 

disorders could potentially benefit from the ability to study dynamic pH changes. 

 

 

 

 

 

 

 

 



123 

 

 

 

 

Figure 6.1. Eccentricity maps of BOLD, ASL, and T1ρ response to the expanding 

ring stimulus on the left and right inflated hemisphere, and the left flattened brain 

surface for single subject (S1). The color scale indicates the raw phase value between 0 

and 2π for eccentricity map. The red color indicates regions corresponding to the center 

of field of view, while the green color regions correspond to the outer eccentric degrees.  
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Figure 6.2. Eccentricity maps of BOLD, ASL, and T1ρ response to the expanding 

ring stimulus on the left inflated hemisphere for four subjects (S2-S5). The color 

scale indicates the phase lag between 0 and 2π for eccentricity map. The red color 

indicates regions corresponding to the center of field of view, while the green color 

regions correspond to the outer eccentric degrees. 
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A      B  

C       D  

    E  

 

Figure 6.3. Eccentricity maps and normalized signal changes of BOLD, ASL, and 

T1ρ response. (A) Phase maps of BOLD, ASL, and T1ρ response on the sagittal (upper) 

and axial (lower) functional data for a representative subject (S1). (B) Averaged signal 

changes of the BOLD, ASL, and T1ρ time courses. (C) Time delay subtraction images 

between the BOLD, the ASL and the T1ρ. (D) Averaged signal changes of the BOLD, 

ASL, and T1ρ time courses for one period, which were shifted by calculated phase offset. 

(E) Best fit of sinusoidal function for the BOLD (black line), ASL (blue line), and T1ρ 

(red line) time courses for one period 
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A  

B  

Figure 6.4. Hemodynamic response delay of BOLD and ASL relative to T1ρ response. 

(A) Time lag between BOLD and T1ρ response. (B) Time lag between ASL and T1ρ 

response for a representative subject (S1). Red circles represent data thresholded by F 

ratio of 5.29. Note that F ratio of 5.29 corresponds to p-value of 0.01.   
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C      D  

 

Figure 6.5. Eccentricity maps and normalized signal changes of BOLD, ASL, and 

T1ρ response. (A) Phase maps of BOLD, ASL, and T1ρ response on the sagittal (upper) 

and axial (lower) functional data for a representative subject (S2). (B) shows averaged 

signal changes of the BOLD (black line), ASL (blue line), and T1ρ (red line) time courses 

obtained in the ROI (2x2) within the primary visual cortex in the subject (S1) as shown in 

black color square in figure 4A. (C) Time delay subtraction images between the BOLD 

and the ASL (left) and the BOLD and the T1ρ (middle) and the ASL and the T1ρ (right). 

(D) Averaged signal changes of the BOLD (black line), ASL (blue line), and T1ρ (red line) 

time courses for one period, which were shifted by calculated phase offset. Error bars 

depict standard deviation. 
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Figure 6.6. Hemodynamic response delay of BOLD and ASL relative to T1ρ response. 

(A) Time lag between BOLD and T1ρ response. (B) Time lag between ASL and T1ρ 

response for a representative subject (S2). Red circles represent data thresholded by F 

ratio of 5.29. Note that F ratio of 5.29 corresponds to p-value of 0.01.   
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B  

Figure 6.7. Difference of the response delay times between BOLD and ASL, between 

BOLD and T1ρ, between ASL and T1ρ. (A) The first bars represent the difference of the 

time lag between BOLD and ASL, the second bars represent the difference of the time 

lag between BOLD and T1ρ, and the third bars represent the difference of the time lag 

between ASL and T1ρ. Error bars depict standard error. (B) Mean difference of the 

response delay across all subjects. 
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Table 6.1. Difference and mean of the response delay times between BOLD and ASL, 

between BOLD and T1ρ, and between ASL and T1ρ. 
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CHAPTER 7 
 

DISCUSSION AND CONCLUSION 

 

The major findings of this study are: 1) T1ρ detects a localized acidosis in the 

human visual cortex induced by a flashing checkerboard task. 2) T1ρ depends on the 

degree of brain activity. 3) T1ρ response temporally precedes the hemodynamic response 

measured by BOLD and ASL. Firstly, we found that T1ρ contrast can detect dynamic 

fluctuations in pH associated with brain activity resulting from a visual flashing 

checkerboard. Both the T1ρ and 31P measurements revealed a local acidosis in the visual 

cortex associated with brain activity. In addition, a significant increase in lactate signal 

using 1H spectroscopy within the visual cortex was observed. BOLD signal originates in 

the venous system, which results in spatial displacement of the signal from the actual site 

of brain activity. Therefore functional T1ρ imaging may provide improved localization of 

brain activity since acidic end products of metabolism, lactic acid, are likely more 

localized to the brain activity as compared to blood oxygenation. In addition, it is 

observed that the magnitude and extent of the T1ρ response increased significantly with 

increasing frequency of the flashing checkerboard, which is consistent with a greater 

acidosis. Consistent with these T1ρ data, 31P spectroscopy also detected a greater acidosis 

during visual stimulation with the higher temporal frequencies. These observations 

suggest that the magnitude of the T1ρ and pH response depends on stimulation frequency 

and is thus likely to be activity-dependent. Lastly, we found that activity-evoked pH 

changes and pH-sensitive T1ρ signal in the visual cortex precede the hemodynamic 

response.  
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In conclusion, my findings support the hypothesis that dynamic T1ρ imaging 

detects activity-evoked pH changes. T1ρ MRI might provide a means for more precisely 

mapping brain activity. Furthermore, a number of psychiatric and neurological disorders 

could potentially benefit from the ability to study dynamic pH changes.  
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