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Figure 6.6: The Flp protein binds to the FRT site and creates a zero-tangle. Ini-

tial FRT: Image of the initial tangle conformation created in KnotPlot for the 48

base pair sequence of FRT. Minimized FRT: The Flp minimized tangle viewed

in KnotPlot with the FRT sequence. Initial mFRT: Image of the initial tangle

conformation created in KnotPlot for the (minimal) 34 base pair sequence of FRT.

Minimized mFRT: The Flp minimized tangle viewed in KnotPlot with the minimal

FRT sequence. The nodes represent the origin of each base pair of DNA while the

smooth curve represents the helical axis.
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Figure 6.7: The 121 base pair res binding sequence for Tn3 resolvase. This binding

sequence involves three subsites. Subsite 1 is highlighted in yellow. Subsite 2 is

highlighted in green. Subsite 3 is highlighted in blue.

Figure 6.8: The Tn3 protein binds to the res site and creates a three-crossing tangle.

Initial: Image of the initial tangle conformation created in KnotPlot showing subsite

1 (red), subsite 2 (green) and subsite 3 (blue) [8]. Minimized: The Tn3 minimized

tangle viewed in KnotPlot. The nodes represent the origin of each base pair of DNA

while the smooth curve represents the helical axis.
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Figure 6.9: The 240 base pair cer binding sequence for Xer resolvase. The ARG box

sequence is highlighted in yellow. The XerC sequence is highlighted in green. The

XerD sequence is highlighted in blue.

Figure 6.10: The Xer protein binds to the cer site and creates a three-crossing tangle.

Initial: Image of the initial tangle conformation created in KnotPlot showing the

ARG (yellow), XerC (green) and XerD (blue) sites. Minimized: The Xer minimized

tangle viewed in KnotPlot. The nodes represent the origin of each base pair of DNA

while the smooth curve represents the helical axis.



93

CHAPTER 7
FUTURE WORK

DNAT2G is exciting new software that will give scientists a better understand-

ing of the interactions between proteins and DNA by allowing them to create three-

dimensional visualizations of likely geometric structures of DNA for protein-bound

complexes whose topology is known. As we use the software on more complicated

protein-bound DNA tangles, we become aware of modifications that we can add to

the software to increase accuracy and improve usability. There are also several user

options we can add to allow scientists greater flexibility when defining constraints and

objective functions that better suit the needs of a particular protein-bound DNA com-

plex. Currently, one drawback of the software is its implementation using MATLAB.

Many laboratories do not have MATLAB software available, so we would like to con-

sider different freeware options for ease of availability and distribution of DNAT2G.

Finally, there are many factors involved when understanding how proteins bind and

act on DNA segments. We wish to understand how the protein-bound DNA segments

affect the unbound DNA segments and vice versa. Our collaborators at the University

of Texas at Dallas are working on a model for the unbound DNA segments. In the

near future we will combine our models to create a complete model for circular DNA

bound by protein. In the following subsections we described each of these ideas in

detail.
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7.1 Modifications

Now that the initial modeling package is completed, there are many modifica-

tions and improvements we will make in future versions for public distribution. As

new experimental data becomes available from the laboratory results, more and more

complexes will become available to analyze. Here is a list of some of the modifications

we wish to make in the future, each followed by a short description.

1. Make compatible for protein-bound DNA tangles with nicks. A nick

is a section of the DNA where a base on one strand is missing its pair on the

other strand. Often a protein-bound DNA segment may have a nick of one

to a few base pairs. This will change the energy for the dimers involved in

the nick. Since many enzymes, such as recombinases, resolvases and type I

topoisomerases, nick the DNA backbone, it will be beneficial to have software

that can model the nicked intermediate steps of these enzyme actions.

2. Make compatible with single stranded sections of DNA. Similar with

nicks, segments of single stranded DNA can change the energetics of the dimers.

Single stranded DNA can also be involved in intermediate steps of enzyme

action, such as the Holliday junction, so we wish to have software that considers

this situation.

3. Add a (protein) boundary that can vary in shape given knowledge

about the protein motif. Currently, DNAT2G does not create a boundary

representative of the protein closely binding the DNA. For small complexes, the



95

probability that the protein-bound DNA segments are flexible enough to move

outside the imaginary boundary and thus potentially change the topology of

the DNA tangle is minimal. However, for larger complexes the movement of

the DNA segments should be monitored and potentially restricted. Currently,

DNAT2G does not include a protein boundary because it is too computationally

expensive. In future versions we will want to take this into consideration.

4. Add base pair geometric parameters (propeller-twist, buckle, etc.).

The Olson energy our minimization program is based on (see Chapter 3) is in

terms of the six dimer parameters (twist, tilt, roll, shift, slide, rise). Currently,

our software assumes each base pair is a rectangle, but this is often geometrically

not the case. As mentioned in Chapter 2, there is flexibility between the bases

involved in each base pair. We would like to add these additional ten base pair

parameters (buckle, propeller twist, shear, etc. See Figure 2.2) to our model to

more accurately describe the geometry of the protein-bound DNA.

5. Allow dynamical representation of the tangle instead of static rep-

resentation. Currently, our software creates a static representation of the

minimized DNA tangle. Our energy function equilibrium parameters and force

matrices are based off protein-bound DNA crystal structure data, which is also

a static representation of the complex [55]. However, these complexes are very

dynamic in solution both in vitro and in vivo. We would like our minimized

tangle to have some dynamic properties that allow us to model the fluctuations
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of the complex in solution.

7.2 More User Options

1. Allow user to specify areas of greater flexibility or rigidity. There may

be portions of the protein-bound DNA that are trapped by the protein but not

bound by the protein. If the sequence of DNA in these areas is known the user

may wish to allow for more flexibility in their associated geometric parameters.

Conversely, there may be portions of the protein-bound DNA that are rigidly

fixed in a particular conformation by the protein. If the sequence of DNA in

these rigid areas is known the user may wish to not allow as much flexibility

in the associated dimer parameters, or may wish to fix them to their initial

conformation.

2. Allow user to specify different ε ball radii for the endpoints individu-

ally. Currently, if the user defines an ε-radius, Rad, then that epsilon radius of

fluctuation for the endpoints is applied to each endpoint. However, the user may

wish to only allow some, but not all, of the endpoints to move. Similarly, the

user may wish to allow each endpoint to move, but with different radii values.

As we can see by looking at either the Tn3 or Xer initial tangles, sometimes

DNA endpoints are close and should not be allowed to move within ε balls that

intersect as this could lead to changes in the topology. But within the same

tangle, other endpoints (such as the NW, SW endpoints of Tn3 or Xer) can be

granted more room to fluctuate.
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3. Allow user to redefine desired endpoint(s) location. Currently, the end-

points are allowed to fluctuate within an ε-ball of the initial origin location from

the starting tangle configuration. The user may wish to change the desired lo-

cation of the endpoints (i.e. changing the center of the ε-ball from the fixed

initial origin location to another center point). This option may even result in

a better minimum for the tangle. Since often the starting tangle is only created

from known topological data and not geometric data, it makes sense that the

user may wish to redefine the location of the endpoints during minimization.

7.3 Freeware

In order to make this software publicly available to a wider range of scientists

who may not have access to MATLAB, we are considering other freeware options.

There is also the added benefit that converting the software to another programming

language may increase the speed and perhaps even the accuracy of the current version.

One option we are considering is R, which is an interpreted language, like MATLAB.

The benefit of R is that it is freeware and many institutions have been implementing

software written in R. In addition, R is compatible with C++ and Fortran.

We are also considering converting the DNAT2G software package to either

C++ or Fortran. Fortran has the benefit of being closest to machine language and

thus most likely is the best option in terms of speed-up run time. On the other

hand, Fortran is not as friendly of a programming language as C++. C++ is an

excellent option as there are many packages written in C++ that we could use to
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help implement our code, but is it not matrix friendly as is MATLAB.

Finally, it is important to think about the current relationship our software

has with KnotPlot, as KnotPlot is the visualization program for viewing the initial

and minimized tangles. KnotPlot has some wonderful features, discussed in Chapter

5 Section 5.2, for viewing the DNA tangles at the atomic level, rigid body base pair

level, or as the smooth helical axis curve. We may want to include the software

directly as a KnotPlot application option. However, since KnotPlot is C-based, that

would require converting our software to C language, or perhaps R.

Before we can make a final decision on the language that will be best for our

software in terms of speed, accuracy, and distribution, we need to consider joining our

software package with the software package for modeling the unbound DNA segments.

This will be discussed in the following section.

7.4 Combining Routines

Our biophysicist collaborators, Dr. Stephen Levene and Stefan Giovan, have

been working on software for modeling the unbound DNA segments. They model the

DNA as a worm-like chain defined by thermodynamic energies. Since the unbound

DNA model is not sequence specific as our model is, they use a different energy

function and minimize over the geometric properties of the unbound DNA. We are

working on ways to combine the energetics of both software packages. The key to

combining these routines is to determine the best way to geometrically describe the

endpoints of the protein-bound DNA tangle. The geometry of the endpoints will be



99

affected by the energetics of both the unbound and bound DNA segments, but it is

unclear which (if any) has the greater influence.

After the software has been combined we can start analyzing entire complexes

for circular DNA, a portion of which is bound by protein. It will be interesting to

compare geometric results from the protein-bound DNA tangle with the geometric

results of the portion of circular DNA that was bound and see how closely they

relate. We look forward to combining the routines and polishing up a complete

model for public distribution and hope that scientists will find this software useful

and informative.

7.5 Conclusion

We have developed software for determining a geometric structure for protein-

bound DNA whose topology is known. The wonderful benefit our software will add to

the scientific community is the three-dimensional visualization option. Now scientists

will be able to determine potential geometric structures for bound DNA whose struc-

ture was previously unknown. Furthermore, they will be able to view these structures

from any angle via the manipulation capabilities of KnotPlot. We will address some

of the limitations and improvements mentioned in Chapter 6 Section 6.8 and above

to improve the current version of our software before public release.
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APPENDIX A
MATHEMATICAL DERIVATIONS

A.1 Roll Tilt Relation with “RollTilt”

Recall the six standard dimer parameters describing the geometry of a given

dimer are twist (Ω), tilt (τ), roll (ρ), shift (Dx), slide (Dy), and rise (Dz) [24].

Our minimization program minimizes over the energy function defined by Dr. Wilma

Olson in [55]. In order to calculate the dimer geometric parameters we follow the

mathematics as described in el Hassan and Calladine [22]. Instead of using roll and

tilt, they define two new angles that can be related to roll and tilt, but that help

simplify the mathematics [22]. These new angles are Γ and φ, where Γ is referred to

as the “roll-tilt” angle and φ is the angle to which the hinge vector is inclined toward

the y-axis of the mid-step triad (see Chapter 2 Section 2.3.1 for details).

The relationship between roll, tilt, Γ and φ given by [22] is as follows:

ρ ≈ Γ cos(φ)

τ ≈ Γ sin(φ).

We will provide a proof outline for this relationship.

To begin, we compare the standard rotations (rotating by τ about the x-axis,

then rotating by ρ about the y-axis) with the RollTilt rotations (rotation of Γ about

the hinge vector, which is inclined toward the y-axis by φ degrees), see Figure A.1

Let st represent the subscript for the standard rotations and rt represent the
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(A) Standard Order (B) RollTilt Order

Figure A.1: Two diagrams describing different ways to apply rotations to go from

the coordinate frame of base pair i to the coordinate frame of base pair i + 1. (A)

Diagram of the standard order of rotations. First a rotation about the x-axis by an

angle of τ . Then a rotation about the new y-axis by an angle of ρ. (B) Diagram of

the rolltilt order of rotations. First, a rotation about the z-axis by −φ is performed.

Then a rotation of Γ is applied about the new y-axis. Finally, a rotation of φ is

applied about the new z-axis. It can be shown that for rotations of small magnitude,

these two sets of rotations are equivalent.

subscript for the RollTilt rotations. Recall the standard rotation matrices and their

notation, which are given in Chapter 2, Section 2.5. We wish to compare the result

of rotating the z axis of a base pair through the standard series of rotations and the

new RollTilt series of rotations. Without loss of generality, we compare the effects of

each set of rotations on the z-axis. If these two sets of rotations are equivalent, the

resulting z-axis locations should be equivalent. Consider the following:
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~zst = [R ~y2(ρ)] [R ~x1(τ)] ~z1

=
[
R ~x1(τ)R ~y1(ρ)R ~x1(τ)T

]
[R ~x1(τ)] ~z1

= [R ~x1(τ)] [R ~y1(ρ)] ~z1, by a change of basis.

=


1 0 0

0 cos(τ) − sin(τ)

0 sin(τ) cos(τ)




cos(ρ) 0 sin(ρ)

0 1 0

− sin(ρ) 0 cos(ρ)




0

0

1



=


sin(ρ)

− cos(ρ) sin(τ)

cos(ρ) cos(τ)



= sin(ρ) ~x1 − cos(ρ) sin(τ)~y1 + cos(ρ) cos(τ)~z1.

Through a similar derivation we find:

~zrt = [R ~z3(φ)] [R ~y2(Γ)] [R ~z1(−φ)] ~z1

= [R ~z1(−φ)] [R ~y1(Γ)] [R ~z1(φ)] ~z1, by a change of basis.

= [R ~z1(−φ)] [R ~y1(Γ)]


cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0

0 0 1




0

0

1


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=


cos(−φ) − sin(−φ) 0

sin(−φ) cos(φ) 0

0 0 1




cos(Γ) 0 sin(Γ)

0 1 0

− sin(Γ) 0 cos(Γ)




0

0

1



=


cos(−φ) − sin(−φ) 0

sin(−φ) cos(φ) 0

0 0 1




sin(Γ)

0

cos(Γ)



=


cos(φ) sin(Γ)

− sin(φ) sin(Γ)

cos(Γ)



~zrt = sin(Γ) cos(φ) ~x1 − sin(Γ) sin(φ)~y1 + cos(Γ)~z1.

We claim that for appropriate choices of ρ, τ, Γ, and φ, these individual sets

of rotations yield the same final result. So, in order to find a relation between the

different sets of rotation angles we set ~zst = ~zrt. Comparing like terms we get the

following system of equations:

~x1 : sin(ρ) = sin(Γ) cos(φ)

~y1 : − cos(ρ) sin(τ) = − sin(Γ) sin(φ)

~z1 : cos(ρ) cos(τ) = cos(Γ)

From ~z1, we get cos(ρ) =
cos(Γ)

cos(τ)
, for τ 6= ±π/2. Substituting this into the ~y1

relation we find tan(τ) = tan(Γ) sin(φ).This yields the relations:

sin(ρ) = sin(Γ) cos(φ)
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tan(τ) = tan(Γ) sin(φ).

Proposition A.1. For the relations

ρ ≈ Γ cos(φ)

τ ≈ Γ sin(φ)

to hold, we claim the following:

(1) sin−1 [sin(Γ) cos(φ)] ≈ Γ cos(φ)

(2) tan−1 [tan(Γ) sin(φ)] ≈ Γ sin(φ)

Proof. Recall the Taylor Series approximation for two variables:

f(x, y) = f(a, b) + (x− a)fx(a, b) + (y − b)fy(a, b) +O(c1x
2 + c2xy + c3y

2)

Consider (1). Using the Taylor Series approximation we get:

sin(Γ) cos(φ) = sin(a) cos(b) + (Γ− a) cos(a) cos(b)

+ (φ− b) sin(a)[− sin(b)]

+ O(c1Γ
2 + c2Γφ+ c3φ

2)

sin (Γ cos(φ)) = sin (a cos(b)) + (Γ− a) cos (a cos(b)) cos(b)

+ (φ− b) cos (a cos(b)) [−a sin(b)]

+ O(c̃1Γ
2 + c̃2Γφ+ c̃3φ

2)

Subtracting, we get the following:

sin(Γ) cos(φ)− sin (Γ cos(φ)) = sin(a) cos(b)− sin (a cos(b))
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+ (Γ− a) cos(b) [cos(a)− cos (a cos(b))]

− (φ− b) sin(b) [sin(a) + a cos (a cos(b))]

+ O((c1 − c̃1)Γ2 + (c2 − c̃2)Γφ+ (c3 − c̃3)φ2).

Expanding about the point (a, b) = (0, 0), we get the following:

sin(Γ) cos(φ)− sin (Γ cos(φ)) = 0 +O((c1 − c̃1)Γ2 + (c2 − c̃2)Γφ+ (c3 − c̃3)φ2).

We can then show numerically that our error term is on the order of 1.2×10−5

and that ρ ≈ Γ cos(φ) is a good approximation for the following range of values:

−11.25◦ < Γ < 11.25◦

5.625◦ < φ < 5.625◦.

A similar argument yields τ ≈ Γ sin(φ). Using the same range of values for Γ

and φ, our error term is on the order of 2.48× 10−4.

A.2 Intrinsic and Extrinsic Euler Angles

Euler angles are a set of three angles that can be used to describe the spatial

orientation of a rigid body. There are two types of Euler angles once can consider:

intrinsic and extrinsic. In the mathematics of our software (see Chapter 5) we use

extrinsic Euler angles. The relationship between intrinsic and extrinsic Euler Angles

is described below.
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A.2.1 Intrinsic Euler Angles

Given ZYZ Euler angles (a, b, c), we can intrinsically apply the rotations to a

matrix, or coordinate frame, as follows:

1. Rotate about the z-axis by a, yielding the frame x′y′z′ (where z′ = z).

2. Rotate about the new y′-axis by b, yielding the frame x′′y′′z′′ (where y′′ = y′).

3. Rotate about the new z′′-axis by c, yielding the final rotated frame x′′′y′′′z′′′

(where z′′′ = z′′).

A.2.2 Extrinsic Euler Angles

Given ZYZ Euler angles of (a, b, c), we can extrinsically apply the rotations

to a matrix, or coordinate frame, as follows:

1. Rotate about the z-axis by c, yielding the frame x′y′z′ (where z′ = z).

2. Rotate about the original y-axis by b, yielding the frame x′′y′′z′′.

3. Rotate again about the original z-axis by a, yielding the final rotated frame

x′′′y′′′z′′′.

A.2.3 Relating Euler Angles

Usually, the intrinsic Euler angles are written as Z”Y’Z, to specify that each

rotation is with respect to the new axes, and extrinsic Euler angles are written as

ZYZ, to specify that each rotation is with respect to the original axes. Intrinsic and

extrinsic rotations are related by the following relationship (calculated by using the
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change of basis technique):

Let v be a vector which we will rotate through the intrinsic rotations. Then

we perform the following rotations:

v1 = [Rz(a)] v

v2 = [Ry′(b)] v1

v3 = [Rz′′(c)] v2

=⇒ v3 = Rz′′(c)Ry′(b)Rz(a)v

In order to write the rotation in terms of the original reference frame, we can

use the change-of-basis formula for matrices to get: Ry′(b) = Rz(a)Ry(b)Rz(a)T by

change-of-basis. Similarly, we can write Rz′′(c) = [Rz(a)Ry(b)]Rz(c) [Rz(a)Ry(b)]
T .

Using these change-of-basis relations we find:

v3 = [Rz′′(c)]v2

= [Rz(a)Ry(b)]Rz(c) [Rz(a)Ry(b)]
T v2

= [Rz(a)Ry(b)]Rz(c)
[
Ry(b)

TRz(a)T
]

[Ry′(b)]v1

= [Rz(a)Ry(b)]Rz(c)
[
Ry(b)

TRz(a)T
]
Rz(a)Ry(b)Rz(a)Tv1

= [Rz(a)Ry(b)]Rz(c)Rz(a)T [Rz(a)] v

= Rz(a)Ry(b)Rz(c)v,
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where we use the fact that since rotation matrices are orthonormal, Rα(β)T =

Rα(β)−1. Therefore, we find that intrinsic and extrinsic rotations are related as

follows:

Rz′′(c)Ry′(b)Rz(a) = Rz(a)Ry(b)Rz(c)
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APPENDIX B
DNAT2G SOFTWARE PACKAGE MANUAL

B.1 Introduction to DNAT2G

This manual explains the minimization code for protein-bound DNA tangles.

The software is explained subroutine by subroutine. For each subroutine, its general

description is followed by the list of parameters, variables and structures used in the

subroutine and their descriptions. Then each subroutine may be described through

flowcharts, equations, lines of code or any such combination. The names for each

subroutine are written as they are in the code, including proper (upper / lower)

casing. Names of all routines, parameters, variables and arrays in the text are written

in italics for ease of identification.

B.2 Definitions of all Variables

In this section, all input arguments as well as variables and internally calcu-

lated parameters are described. Each one will be given with a detailed definition,

variable type (global versus passed through), and structure. The parameters are

given in alphabetical order, rather than order of appearance in the code, for ease of

reference.

• ABCxyz: This is the name for the variable representing the global parameters.

It is a 6×(# of base pairs) matrix, where the columns represent the Euler angles

for each base pair reference frame and their origin location with respect to the

lab-fixed-frame (which is centered at (0,0,0)). ABCxyz is first determined from
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the tangle structure imported from the KnotPlot file.

• Bound: This is the name for the variable representing the bounds on searchable

theta values. It is only an option if the user is running a minimization routine

over the theta parameters (twist, tilt, roll, shift, slide, rise). It is a built in

bound by DNAT2G and applies for all dimers regardless of sequencing. It can

be changed manually by the user in the minimize theta m-file. The default

values are as follows:

Twist Tilt Roll Shift Slide Rise

upper bound 50 30 30 5 5 5

lower bound 20 -25 -25 -5 -5 -5

• ConHandle: This is the name for the function handle that calls the appropriate

constraint function. A handle is used in MATLAB to indirectly call a function,

and thus it can be passed as an argument through other functions. In order to

recognize the ConHandle function handle, the name of the constraint function

is given preceded by the ‘@’ symbol. A function handle should not be confused

with a string and does not need to be wrapped in quotes. The constraint

functions available in DNAT2G can be found in the function section.
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• D: This is the name for the variable representing the distance matrix entries

where the logic matrix (L) is true. D is a sparse, upper-right diagonal (# of

base pairs)×(# of base pairs) matrix. The distance from each origin to every

other origin is calculated and recorded in a matrix. Then, only those distances

that are relevant for the excluded volume property (determined by the logic

matrix, L) are considered.

• DeltaTheta: This is the name for the variable representing the difference

between the current theta values for each dimer and the equilibrium theta values

for each dimer. DeltaTheta is a long, 1× 6∗(# of base pairs) column vector. It

is internally calculated for each iteration of the chosen minimization algorithm.

• Dist: This is the name for the variable that defines the desired end-to-end

distance for the endpoints along a string of DNA. It is only an option if the

user is running a constraint for the end-to-end distance. It is recommended

that the user use a different constraint unless they know a preferred end-to-end

distance for the strings of a given protein-bound DNA tangle. The user should

also be cautioned that using an end-to-end distance that is very far away from

the end-to-end distance of the initial endpoint locations could result in a change

of topology.

• Endpts: This is the name for the variable that defines the indexing number for

the endpoints of the DNA tangle strings. The tangle information from Knot-

Plot exacts information individually for each string of the tangle. However, we
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concatenate this information into one matrix (ABCxyz). As such, the columns

of this matrix index the base pairs from each string consecutively. DNAT2G

needs a way to determine if a base pair is an endpoint and this is done refer-

encing the index value. Endpts is a 2∗(# of strings)×1 column matrix. For

example, if our DNA tangle consists of two strings, the first being 40 base pairs

long and the second being 50 base pairs long, then Endpts = [1 40 41 90]T .

• fixedEndptVal: This is the name of the variable that defines the desired fixed

location for the endpoints of each string. DNAT2G sets the initial location of

the endpoints as the desired location. The location of the endpoints is allowed

to fluctuate in an epsilon-ball of a defined radius (see Rad) centered at the

desired location.

• Fmat: This is the name of the variable that defines the block matrix of

force constraints for each dimer parameter. It is a large, sparse, 6*(# of base

pairs)×6*(# of base pairs) matrix. This matrix is sequence dependent and is

determined by the equilvals m-file.

• funcName: This is the name of the variable that defines the string associated

with the MinHandle. It is used to save data under the appropriate file name

so the user known which minimization function was used for a given tangle

minimization routine. If MinHandle = @objectiveFunc, then funcName is the

string ‘objectiveFunc.’



113

• kpfile: This is the name for the variable that defines the .k tangle file created

in KnotPlot. It is given as a user input in the prompt box section “Enter the

tangle file (with extension) to be minimized” and is already declared to be a

string, so single quotes are not needed. The .k file is written in ASCII and

converted to binary via the load kp m-file. Later, the name of this tangle file,

excluding the extension, will be used to identify the data folder where the results

are saved. Thus, it is recommended that the user choose a clearly descriptive

filename for the KnotPlot file. For example, if the user is analyzing the DNA

tangle bound by Cre recombinases, as good filename would be ‘Cre.k,’ and thus

all data run from this starting tangle would be stored under the Cre folder in

the Data directory.

• L: This is the name of the variable that defines a logical matrix for the DNA

tangle. This logical matrix is used to identify base pair origins that may be

within an unsafe distance given the excluded volume property. We consider

every base pair on different strings to have the potential to come in too close

of contact with one another. Furthermore, two base pairs on the same string

greater than ten base pairs apart in distance have the potential to come in too

close of contact with one another (perhaps by the string curving onto itself).

The logical matrix is a (# of base pairs)×(# of base pairs) matrix whose entries

are either 0 or 1. The Lij entry is 0 is the ith and jth base pairs do not have the

potential to come in too close of contact with one another, and 1 otherwise. The

purpose of L is to reduce the number of significant entries in the distance matrix,
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D, which is used to calculate an energy for the excluded volume property.

• MinHandle: This is the name for the function handle that calls the appropriate

objective function (or function to be minimized). A handle is used in MATLAB

to indirectly call a function, and thus it can be passed as an argument through

other functions. In order to recognize the MinHandle function handle, the

name of the objective function is given preceded by the ‘@’ symbol. A function

handle should not be confused with a string and does not need to be wrapped

in quotes. The objective functions available in DNAT2G can be found in the

function section.

• minparam: This is the name for the variable that defined whether the user will

be minimizing over the global parameters or the theta parameters. It is given as

a user input in the prompt box section “Enter parameter type to minimize over

(Theta or Global)” and is already declared to be a string, so single quotes are not

needed. If minparam = ‘Theta,’ then the minimize theta m-file is called for the

minimization routine. If minparam = ‘Global,’ then the minimize ABCxyz m-

file is called for the minimization routine. The user should note that minparam

is case sensitive and if lower-case is used an error will print.

• conName: This is the name of the variable that defines the string associated

with the ConHandle. It is used to save data under the appropriate file name

so the user known which minimization function was used for a given tangle

minimization routine. If ConHandle = @constraintFunc, then conName is the
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string ‘constraintFunc.’ If the user has chosen to identify all constraints as

penalty constraints (and hence minimize using MATLAB’s built-in fminunc

for unconstrained functions) then conName is programmed to be the string

‘PenaltyCon.’

• Niter: This is the name of the variable that defines the maximum number of

iterations for the minimization algorithm. It is given as a user input in the

prompt box section “Enter the maximum number of iterations” and is given as

a positive integer.

• ParamMin: This is the name of the variable that defines the minimum so-

lution determined for the objective function. It is given as the first output to

DNAT2G. It is a 6×(# of base pairs) matrix containing either the minimized

global parameters (if minparam was set to Global) or the theta parameters (if

minparam was set to Theta). Notice that this is the internal variable name for

the program, but the user can specify any name they would like by defining the

output appropriately. For example, if the user ran the following:

[minV arSolution,minTangSolution] = DNAT2G

Then minVarSolution is the output variable name for the internal variable

ParamMin.

• Rad: This is the name of the variable that defines the epsilon-radius for the

ball centered at fixedEndptVal in which the location of the endpoints during

minimization is allowed to fluctuate. It is given as a user input in the prompt
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box section “Enter the ε-radius value or end-to-end distance value” and is given

as a double. The user note that the epsilon balls around the fixedEndptVal

should not be so large that their intersection is nonempty, as this could lead to

changes in the topology.

• Nstring: This is the name of the variable that defines the number of strings the

of which the DNA tangle consists. This value is internally determined from the

tangle structure after the KnotPlot file has been input into the load kp m-file.

This value is an integer.

• Seq: This is the name of the variable that defines the sequence of bases (A,

T, C, G) along each string of the DNA tangle. Seq is internally determined

from the tangle structure after the KnotPlot file has been input into the load kp

m-file. Seq is a 1 × (# of strings) cell where each cell entry is the sequence

along the respective string. For example, if our tangle consists of two strings,

where the sequence of string one begins ATCG· · · and the sequence of string

two begins TTCA· · · , then we have:

Seq{1} = ‘ATCG · · · ’, Seq{2} = ‘TTCA · · · ’.

• TangleMin: This is the name of the variable that defines the tangle structure

associated with the minimum solution determined for the objective function. It

is given as the second output to DNAT2G. It is a structure array that contains

the information for the tangle including how many strings it consists on, the

sequence of DNA bases along each string, the global origin location with respect
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to the lab-fixed-frame for each base pair, and the reference frame triads for each

base pair. This variable can be used as the input for save kp in order to create

a .k file to view the DNA tangle’s minimized configuration in KnotPlot. Notice

that this is the internal variable name for the program, but the user can specify

any name they would like by defining the output appropriately. For example,

if the user ran the following:

[minV arSolution,minTangSolution] = DNAT2G

Then minTangSolution is the output variable name for the internal variable

TangleMin.

• Theta: This is the name for the variable representing the theta parameters. It is

a 6×(# of base pairs) matrix, where the columns represent the dimer parameters

twist, tilt, roll, shift, slide, rise. It should be noted by the user that there are

“bogus” theta values added since if there are n base pairs in a string there are

only n − 1 dimers. Thus, the first theta column is a bogus value created from

an imaginary base pair with origin at the lab-fixed-frame. Similarly, there are

bogus values created for the “endpoint dimers” (we calculate the six geometric

parameters for the dimer that could be created from two consecutively indexed

endpoints). Theta is first determined from the global variables extracted from

the tangle structure using the x2theta function. Suppose our tangle consists of

two strings, the first is 40 base pairs long and the second is 50 base pairs long.

Then Theta would be a 6× 90 matrix with the following bogus column values
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(denoted b∗):(b∗)T · · · · · · · · · · · · · · · · · · · · · · · · · · ·︸ ︷︷ ︸
39 columns of dimer parameters

(b∗)T · · · · · · · · · · · · · · · · · · · · · · · · · · ·︸ ︷︷ ︸
49 columns of dimer parameters

 .
• ThetaEq: This is the name for the variable representing the equilibrium theta

parameters for each dimer along each string. ThetaEq is a long, 1 × 6∗(# of

base pairs) column vector. It is internally calculated from Seq, the sequence

extracted from the initial tangle structure.

• Uendpt: This is the name of the variable representing the energy contribution

from the penalty endpoint constraint. Uendpt is only calculated if the user

has chosen to minimize using only penalty constraints (thereby leaving the

ConHandle input blank). Uendpt is a double, whose value is calculated at each

iteration of the minimization algorithm.

• Uexvol: This is the name of the variable representing the energy contribution

from the excluded volume property. Typically, is it calculated using the exvol

function, but it can also be calculated as a penalty constraint. Uexvol is a

double, whose value is calculated at each iteration of the minimization algo-

rithm. The user should note that this value should be zero at each iteration or

the tangle configuration is undesirable as the excluded volume property is thus

violated.

• Uolson: This is the name of the variable representing the energy contribution

from the energy function defined by Dr. Wilma Olson et al.. Uolson is a dou-

ble, whose value is calculated at each iteration of the minimization algorithm.
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Although the objective functions minimize over a total energy (either Uolson

+ Uexvol or Uolson + Uexvol + Uendpt), Uolson is the energy measure for a

given configuration that allows us to determine a geometric solution. Uolson is

calculated as follows:

Uolson =
1

2
∗DeltaThetaT ∗ Fmat ∗DeltaTheta.

B.3 Main Routine

The main routine is the routine called by the user to run a minimization for

a given protein-bound DNA tangle. It is called by running DNAT2G. This routine has

been built to accept specific user input or error messages will print out altering the

user. The prompt box along with input descriptions follow below:

1. Adding a Path: If the user wants to analyze a tangle that is not in the current

directory then the user must add this path so that MATLAB can search for the

desired tangle. The default assumes the tangle is in the current directory and

thus this category is blank for default.

2. Entering a Tangle: Currently, the filename given must be a .k file created in

KnotPlot so that the appropriate tangle structure can be read into MATLAB.

There is no default set for this input command since each file is named by the

user. If no tangle file is given an error will print to the screen.

3. Parameter type to Minimize Over: The user can choose to minimize over

the theta parameters (tilt, roll, twist, shift, slide, rise) or the global parameters
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(base pair origins and Euler angles describing each base pair triad). The default

is set to minimize over global parameters as we have seen an increase in speed

using these parameters.

4. Minimizing Function Handle: The user can choose the objective function

over which the parameters will be minimized. This input must be written as a

function handle (@functionName). The default value is @penaltyEnergyFunc,

which uses the fminunc minimization routine and adds our endpoint location

and excluded volume constraints as penalty constraints.

5. ConHandle: The user can choose the constraint function over which the energy

is constrained. This input must also be written as a function handle. If the
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user chooses to use a function handle that calls fminunc, they must leave this

option empty. Since our default minimizing function uses fminunc the default

value for the constraint handle is empty.

6. Number of Iterations: The user can choose the maximum number of iter-

ations the minimization algorithm will perform. If the maximum number of

iterations is reached before a minimum has been found, the algorithm will stop

running and will state ‘‘solver stopped prematurely.’’ The default value

is set to 500.

7. ε-Radius Value or End-to-end Distance: The user can choose the size of

the ε-ball size within which the endpoints are allowed to move, where the dis-

tance is measured in Å. The user must be careful to consider the initial location

of the endpoints when determining an appropriate ε. A larger ε ball allows the

minimization to put more weight on the geometric parameter values instead of

focusing on fixing the endpoints. However, if the ε ball is too large it could allow

the DNA to change topology, as we discussed in Chapter 4. An ε-ball is centered

at each end point location (where the end point location has been fixed to the

initial location given in the tangle file). The default assumes an ε-radius value

is desired and sets it to 5Å. If the user chooses to use a constraint of end-to-end

distance for each DNA strand then this parameter defines this distance instead

of an ε-radius. If using an end-to-end distance constraint, it is important the

user remembers to change this value so the distance isn’t set to 5Å by default.
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8. Applying Bounds: The user can choose to set biologically relevant bounds for

the space of searchable theta values. This option does not apply if the user is

minimizing over the global parameters. The user is asked if they would like to

apply bounds and the default is set to ‘No.’

The main routine calls the main solver which is chosen based upon the user

inputs for the minimization function handle and the constraint function handle. Af-

ter the minimization routine has finished running, all data is saved. The flowchart

describing the pathway for the main solver can be found in Figure B.1.

Figure B.1: The flowchart for the main routine, DNAT2G.
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Along with saving the appropriate data (see the save data section), DNAT2G

returns the minimized parameter values (either global or theta) and the minimized

tangle. The minimized parameter values are returned as a 6× (number of base pairs)

matrix. The minimized tangle is returned as a structure array containing the number

of strings of the tangle, the base pair sequence for each string of the DNA tangle,

the global origins for each base pair, and the reference triads for each base pair with

respect to the lab-fixed-frame (which is centered at (0,0,0)).

B.4 Main Solvers

There are two main solvers, one that minimizes over global variables and one

that minimizes directly over theta parameters. The choice of which solver will be used

for minimization is determined by the user via the third prompt box entry (“parameter

type to minimize over”). It is recommended that the user minimize over global

variables as that solver tends to reach a minimum quicker than minimizing over theta

parameters. This is due largely to the computing-time expensive conversion from

theta parameters to global variables necessary if minimizing over theta parameters,

since the global parameters are needed to calculate the excluded volume energy. The

two main solvers are called minimize ABCxyz and minimize theta. The flowchart

for the main solvers can be seen in Figure B.2.

B.4.1 minimize ABCxyz

The minimize ABCxyz main routine takes as input the following parameters,

which have either been defined by the user or calculated in the main routine. These
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Figure B.2: The flowchart for the main solvers.

inputs are summarized below:

Minimize ABCxyz sets all options for the minimization and then calls one of

two MATLAB built-in minimization solvers: fminunc, for unconstrained minimiza-

tion problems, or fmincon, for constrained minimization problems. The presence of a

ConHandle input variable results in a constraint function being applied by the user,

and thus fmincon is called. In the absence of a ConHandle input variable, the fmin-

unc solver is called. The minimization algorithm is set to “interior-point” by default,

which is a minimization algorithm that works for both constrained and unconstrained

problems. The interior point method is a technique for minimization using a barrier

function and is based on Newton’s method. It is a built-in constraint algorithm, and

information can be found in MATLAB documentation.
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Name Definition Structure

MinHandle solver for minimization handle (@solverName)

ConHandle constraint function handle (@constraintFunc)

ABCxyz global variables 6×(# bps) matrix

Seq sequence of bases 1×(# strings) cell

newfile filename for the tangle string

Niter max number of iterations integer

If desired, the user can manually change the minimization algorithm. If using

a constrained problem, the other three built-in minimization algorithms are “sqp,”

“active-set,” or “trust-region.” It is recommended that the user try sqp, a built-

in sequential quadratic programming algorithm, first, as it has been found to yield

comparable results to the interior-point algorithm. Active-set is not recommended, as

it has not been found to improve upon a minimization done with either interior-point

or sqp. Trust-region should not be used since it requires a gradient function input;

the algorithm was included for completeness. If using an unconstrained problem the

user may manually change the minimization algorithm to a BFGS method, which is

a gradient-descent method.
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B.4.2 minimize theta

The minimize theta main routine takes as input the following parameters,

which have either been defined by the user or calculated in the main routine. These

inputs are summarized below:

Name Definition Structure

MinHandle solver for minimization handle (@solverName)

ConHandle constraint function handle (@constraintFunc)

Theta dimer geometric parameters 6×(# bps) matrix

Seq sequence of bases 1×(# strings) cell

newfile filename for the tangle string

Niter max number of iterations integer

Bound states whether to include

bounds

logical

First, minimize theta determines whether to include bounds on the possible

theta parameters or not. If Bound is set to zero then no bounds are applied. If

Bound is set to one then the following bounds are applied to the six theta geometric

parameters, regardless of dimer type (sequence):

Then emphminimize theta sets all other options for the minimization and then
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Twist Tilt Roll Shift Slide Rise

upper bound 50 30 30 5 5 5

lower bound 20 -25 -25 -5 -5 -5

calls one of two MATLAB built-in minimization solvers: fminunc, for unconstrained

minimization problems, or fmincon, for constrained minimization problems. The

presence of a ConHandle input variable results in a constraint function being applied

by the user, and thus fmincon is called. In the absence of a ConHandle input variable,

the fminunc solver is called. The minimization algorithm is set to “interior-point”

by default, which is a minimization algorithm that works for both constrained and

unconstrained problems. The interior point method is a technique for minimization

using a barrier function and is based on Newton’s method. It is a built-in constraint

algorithm, and information can be found in MATLAB documentation.

If desired, the user can manually change the minimization algorithm. If using

a constrained problem, the other three built-in minimization algorithms are “sqp,”

“active-set,” or “trust-region.” It is recommended that the user try sqp, a built-

in sequential quadratic programming algorithm, first, as it has been found to yield

comparable results to the interior-point algorithm. Active-set is not recommended, as

it has not been found to improve upon a minimization done with either interior-point

or sqp. Trust-region should not be used since it requires a gradient function input;

the algorithm was included for completeness. If using an unconstrained problem the
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user may manually change the minimization algorithm to a BFGS method, which is

a gradient-descent method.

B.5 Objective and Constraint Functions

The objective function is the function over which the main solver minimizes.

The constraint function gives the constraint or list of constraints that the objective

function is subject to. Recall that the objective function is given as an input by the

user to the prompt “enter the minimizing function handle,” and its internal variable

name is MinHandle. The constraint function is given as an input by the user to the

prompt “enter the constraint function handle, if necessary,” and its internal variable

name is ConHandle. If the user chooses not to add a constraint function, then the

constraints are added as penalty functions to the objective function. This situation

is also described in this section.

B.5.1 Objective Functions

There are three major objective functions. They are listed below including

their the parameter over which they minimize (either ABCxyz or theta) and whether

they require a constraint function or a penalty function in order to help keep the

topology consistent during minimization.

Each objective function returns the sum of given energies. It is this total

energy over which the main solver minimizes. For both energyfunc and gParamFunc

the total energy is given by U = Uolson+ Uexvol. For penaltyEnergyFunc the total

energy is given by U = Uolson + Uexvol + Uendpt. Pseudo code for each objective
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Objective Function Input Variable Type How Constraint Included

energyfunc Theta ConHandle

gParamFunc ABCxyz ConHandle

penaltyEnergyFunc ABCxyz Penalty function

function is included in the pseudo code section.

B.5.2 Constraint Functions

There are two major types of constraint functions for each parameter type.

They are listed below including the parameter over which they minimize (either

ABCxyz or theta) along with the objective function to which they may be applied.

Constraint Function Input Variable Type Objective Functions Used With

pinCon Theta energyfunc

end2endCon Theta energyfunc

gPinCon ABCxyz gEnergyFunc

gEnd2endCon ABCxyz gEnergyFunc

Since these constraint functions are simple in construction, no pseudo code is

included. Instead, we will briefly discuss their construction here. Recall that is the
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user leaves the ConHandle input blank then the penaltyEnergyFunc must be used. If

this is not the case an error will print to suggest the user check their input arguments.

B.5.3 pinCon or gPinCon

This constraint is used if the end points are being fixed. The endpoints are

fixed to their initial location, but recall that some flexibility in this desired location can

be added by using a positive value for the Rad variable. The format for writing this

constraint is given in MATLAB document center under fmincon properties. Following

this documentation, we use the inequality constraint formation. Let xki , y
k
i , z

k
i be the

location of the kth endpoint at the ith iterative minimization step, and let xk0, y
k
0 , z

k
0

be the initial location for the kth endpoint. Then for each endpoint, the constraint

is set to:

(xki − xk0)2 + (yki − yk0)2 + (zki − zk0 )2 ≤ Rad2.

The minimization algorithm ensures that this constraint is satisfied at each

iteration of the minimization process.

B.5.4 end2endCon or gEnd2endCon

This constraint is used if the end-to-end distance between the endpoint base

pairs along each DNA string, respectively, is desired to be fixed. The desired distance

at which the endpoints of DNA string lie apart is defined by the user input Dist

variable. The format for writing this constraint is given in MATLAB document

center under fmincon properties. Following this documentation, we use the equality
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constraint formation. Let xki , y
k
i , z

k
i be the location of the kth endpoint at the ith

iterative minimization step. Then for each pair of endpoints belonging to the same

DNA string (or segment), the constraint is set to:

(xki − x1i )2 + (yki − y1i )2 + (zki − z1i )2 = Dist2.

The minimization algorithm ensures that this constraint is satisfied at each

iteration of the minimization process.

B.6 Finding a Minimum Solution

After the minimization algorithm has finished running, one of three results

will print to the screen: no feasible solution, local minimum possible, local

minimum found. If the algorithm yields no feasible solution the user can try changing

the input variables such as the MinHandle, ConHandle, Rad or Dist; the user can also

use a different starting tangle configuration. If the algorithm yields local minimum

possible the user should consult the display to identify the stopping criteria (which

should be directly under the local minimum possible result). If the algorithm stopped

due to reaching a maximum number of iterations the user should rerun DNAT2G

with a higher Niter input variable. If the algorithm stopped due to too small of a

step size or direction, the user should rerun DNAT2G with the TangleMin output

variable as its new tangle input. In order to do this the user can simply apply the

save kp function to create a .k input file for the tangle or the user can go into the folder

created for the minimization and use the .k file created by from the saveData function
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called by DNAT2G after minimization. If the algorithm yields local minimum found

then the minimization routine succeeding in finding a minimum and the associated

parameters and tangle are given as the outputs: ParamMin and TangleMin.

It should be noted that sometimes a solver never reaches the local minimum

found criteria. Local minimum found is based on the size of the “first-order optimal-

ity” term, which is a measure of the gradient. Gradient-descent methods find mini-

mums by using the negative gradient as the search direction and iteratively following

in that direction (newly calculated after each iteration) for a calculated step-size. For

a given function, a minimum has been found when the magnitude of the gradient

is zero. Given the complexity of a particular problem, the algorithm may be very

close (or even at a minimum) but not have a first-order optimality term within the

tolerance for the local minimum found criteria.

B.7 Subroutines

In this section, all subroutines that are used by either the main routine, ob-

jective functions or constraint functions are described. Each one will be given with

a detailed description and a list of input and output variables. The subroutines are

given in alphabetical order, rather than order of appearance in the code, for ease of

reference.

• angleVal: This subroutine is called from the x2theta subroutine. It takes as

input two vectors and the normal to those vectors and it returns the angle

(direction and magnitude) between the two vectors.
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• ang2triads: This subroutine is used in the main routine to convert the Euler

angles of each base pair’s reference frame into their triad representation. It

takes as input the Euler of each base pair and returns the triads. This is used

in the creation of the minimized KnotPlot tangle file after the minimization

routine has finished.

• DistPt2Pt: This subroutine is used in the main routine and in the exvol routine

to determine the distance matrix. It takes as input the global location of all

base pair origins and returns a matrix of distance values, where the distance

has been calculated from each base pair to every other base pair (including

itself). Notice that the diagonal is zeros since the distance between an origin

and itself is zero. This distance matrix is later reduced in size by the logic

matrix subroutine (logicMat) described below.

• equilvals: This subroutine is called independently in the main routine to de-

termine the values for Fmat and ThetaEq. It takes as input the sequence of

each DNA string. It returns a large block matrix, Fmat, of force constant values

for each dimer (as described in the variable section above) and a large column

vector, ThetaEq, of equilibrium values for each dimer’s six geometric parame-

ters. The returned values of Fmat and ThetaEq are later used by the objective

functions to determine the Olson energy, Uolson, for the current tangle step.

• exVol or exVolG: This subroutine is used during the minimization routine,

called by the specified objective function, to calculate the energy contributed
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by the excluded volume property at each iterative step. The only difference

between exVol and exVolG is that the former takes in the Theta parameters

while the later takes in the ABCxyz parameters as input. Each subroutine

then calculates the excluded volume energy contribution and returns that value.

Additionally, it calls the makeFrames subroutine that creates a tangle image.

• logicMat: This subroutine is used independently in the main routine to deter-

mine a logical matrix that will be applied to the distance matrix (determined

by DistPt2Pt) in order to recognized the endpoints that are in potential danger

of violating the excluded volume constraint. Endpoints along difference DNA

strings have the potential to become physically too close to each other dur-

ing minimization. Additionally, endpoints along the same DNA string that are

separated by at least 10 base pairs along the string have the potential become

physically too close to each other during minimization if the string were to curve

toward itself. So, the logicMat routine creates a logical matrix that calculates

whether any two given endpoints should be measured during minimization to

ensure they remain at least 20Å apart. The matrix is made up of zeros and

ones, and is created to be an upper-diagonal matrix (since if base pair i is too

close to base pair j it is understood that base pair j is too close to base pair

i and thus this distance violation does not need to be considered twice). If

the distance between two base pairs, i and j, needs to be considered the logic

matrix, call it L, will have a 1 for it’s ijth entry. Else there will be a 0.
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• makeFrames: This subroutine is used in the exVol or exVolG subroutines to

create and save image files of the current DNA tangle during minimization. It

takes as input the ABCxyz parameters. The files are both visually presented in

a figure window to the user when created, but also saved as frames for a movie

that is saved at the end of minimization. Later the user can view the movie in

MATLAB, showing the minimization process of the tangle.

• plottangle: This subroutine is used to create the tangle images before, during

and after minimization. It takes as input the ABCxyz parameter and returns

the tangle image in a figure window. It creates the helical axis by connecting

the base pair origins for each DNA string. Then it adds the helical backbone

twists using the reference frames of each base pair.

• theta2x: This subroutine is used to convert Theta parameters to global, ABCxyz,

parameters. This is one of the most important routines in the program. It fol-

lows the mathematics given in El Hassan and Calladine [22] by the recursive

relation of the triads and origins. It takes as input the Theta parameters and

returns the associated ABCxyz parameters.

• triads2ang: This subroutine is used in the main routine to convert the refer-

ence triads of each base pair into their Euler angle representation. It takes as

input the triads of each base pair and returns the Euler angles. This is used in

the creation of the ABCxyz parameter from the KnotPlot tangle input.
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• x2theta: This subroutine is used to convert global, ABCxyz, parameters to

Theta parameters. This is one of the most important routines in the program.

It follows the mathematics given in El Hassan and Calladine [22] by the analysis

problem of finding the mid-step triad for each dimer from their respective base

pair triads. In doing so, the Theta values of twist, tilt, roll, shift, slide and rise,

are determined for each dimer. The subroutine follows a recursive construction

and takes as input the ABCxyz parameters and returns the associated Theta

parameters.

For more details on any of the subroutines, type the subroutine name into the

MATLAB command window preceded by the word help.

B.8 Saving the Data

After the objection function has been successfully minimized, or minimization

has ended due to another stopping criteria, the data is saved. There are multiple

ways the data is saved for the convenience of the user and also to help in the analysis

of results. First, it should be noted that all commands and displays from the mini-

mization routine that were printed to the MATLAB command window are saved in

a diary. Everything saved for a given protein-bound DNA tangle run is saved under

the ‘newfile’ variable named folder (see the variable section) in the ‘Data’ directory.

Along with the diary, a .fig file of the minimized tangle, a .k file of the minimized

tangle, a movie file, and .xls spreadsheets for the Theta values and the global ori-

gins are all saved. There are two versions of the save data function: saveData and
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gSaveData. Their only difference is that the former is used for routines run with the

ABCxyz parameters, and later is used for routines run with the Theta parameters.

Suppose the user is minimizing the DNA tangle trapped by the Cre recom-

binase protein and the initial tangle file was named Cre.k. Then the newfile string

would become ‘Cre.’ Then the data would all be saved under the Cre folder in the

Data directory. In order to distinguish solutions run under different initial parame-

ters, each file is saved under a long name distinguishing the tangle, objective function,

constraint function, maximum number of iterations set, and the radius set. Thus, as-

suming the Cre.k tangle was run in DNAT2G with the energyfunc objective function

and pinCon constrain function for 200 iterations with a radius of 5, then the following

data files would be saved:

1. Diary: Diary Cre energyfunc pinCon 200 5.txt

2. Minimized Tangle Figure: Figure Cre energyfunc pinCon 200 5.fig

3. Minimized KnotPlot Tangle: KP Cre energyfunc pinCon 200 5.k

4. Movie of Tangle Minimization: Movie Cre energyfunc pinCon 200 5.mat

5. Minimized Theta Values: ThetaMin Cre energyfunc pinCon 200 5.xls

6. Final Base Pair Origin Locations: Origins Cre energyfunc pinCon 200 5.xls

Finally, the workspace is also saved as a .mat file so that the user can open

the ThetaMin (or ABCxyzMin) parameters and TangleMin structure is necessary.

B.9 Some Pseudo Code Included
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energyfunc

% calculate the current olson energy value:

Uolson =
1

2
[DeltaTheta]T*Fmat*DeltaTheta;

% calculate the excluded volume energy contribution:

Uexvol = 0; % initialized

for (each combination of two base pair origins)

ratio =

(
20Å

distance between base pair origins

)12

;

if ( ratio > 1)

% bad position, add ratio to Uexvol value

Uexvol = Uexvol + ratio;

end

end

U = Uolson + Uexvol;
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gParamFunc

% convert global parameters to theta values

Theta = x2theta(ABCxyz);

% calculate the current olson energy value:

Uolson =
1

2
[DeltaTheta]T*Fmat*DeltaTheta;

% calculate the excluded volume energy contribution:

Uexvol = 0; % initialized

for (each combination of two base pair origins)

ratio =

(
20Å

distance between base pair origins

)12

;

if ( ratio > 1)

% bad position, add ratio to Uexvol value

Uexvol = Uexvol + ratio;

end

end

U = Uolson + Uexvol;
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penaltyEnergyFunc

Theta = x2theta(ABCxyz); % convert global parameters to theta

Uolson =
1

2
[DeltaTheta]T*Fmat*DeltaTheta;

Uexvol = 0; % initialized

for (each combination of two base pair origins)

ratio =

(
20Å

distance between base pair origins

)12

;

if ( ratio > 1)

% bad position, add ratio to Uexvol value

Uexvol = Uexvol + ratio;

end

end

Uendpt= 0; % initialized

for (each endpoint)

Distance = distance between current and desired endpoint locations;

Uendpt = Uendpt + Distance;

end

% If Uexvol > 0, Uendpt > 0 apply a weighted penalty value for each

Uexvol = penalty(weight, Uexvol);

Uendpt = penalty(weight, Uexvol);

% calculate total energy

U = Uolson + Uexvol + Uendpt;



141

REFERENCES

[1] Colin Adams. The Knot Book. American Mathematical Society, Providence, RI,
1994.

[2] C Alén, D J Sherratt, and S D Colloms. Direct interaction of aminopeptidase
A with recombination site DNA in Xer site-specific recombination. EMBO J,
16(17):5188–97, 1997.

[3] Frank H. Allen. The Cambridge Structural Database: a quarter of a million
crystal structures and rising. Acta Crystallographica Section B, 58(3 Part 1):380–
388, Jun 2002.

[4] P. Argos, A. Landy, K. Abremski, J. B. Egan, E. Haggard-Ljungquist, R. H.
Hoess, M. L. Kahn, B. Kalionis, S. V. Narayana, and L. S. Pierson. The integrase
family of site-specific recombinases: regional similarities and global diversity. The
EMBO journal, 5(2):433–440, 1986.

[5] Javier Arsuaga, Mariel Vazquez, Paul McGuirk, Sonia Trigueros, De Witt Sum-
ners, and Joaquim Roca. DNA knots reveal a chiral organization of DNA in
phage capsids. Proc Natl Acad Sci U S A, 102(26):9165–9, 2005.

[6] Marla S. Babcock, Edwin P.D. Pednault, and Wilma K. Olson. Nucleic Acid
Structure Analysis: Mathematics for Local Cartesian and Helical Structure Pa-
rameters That Are Truly Comparable Between Structures. Journal of Molecular
Biology, 237(1):125 – 156, 1994.

[7] Andrew D. Bates and Anthony Maxwell. DNA Topology. Oxford University
Press, New York, 2005.

[8] A L Bednarz, M R Boocock, and D J Sherratt. Determinants of correct res site
alignment in site-specific recombination by Tn3 resolvase. Genes & Development,
4(12b):2366–2375, 1990.

[9] Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat,
Helge Weissig, Ilya N. Shindyalov, and Philip E. Bourne. The Protein Data
Bank. Nucleic Acids Research, 28(1):235–242, January 2000.

[10] R.H. Byrd, J. C. Gilbert, and J. Nocedal. A Trust Region Method Based on Inte-
rior Point Techniques for Nonlinear Programming. Mathematical Programming,
89(1):149–185, 2000.



142

[11] R.H. Byrd, M. E. Hribar, and J Nocedal. An Interior Point Algorithm for Large-
Scale Nonlinear Programming. SIAM Journal on Optimization, 9(4):877–900,
1999.

[12] Chris R. Calladine, Horace R. Drew, Ben F. Luisi, and Andrew A. Travers.
Understanding DNA. Elsevier, San Diego, California, 2004.

[13] Keng-Ming Chan, Yen-Ting Liu, Chien-Hui Ma, Makkuni Jayaram, and Soumi-
tra Sau. The 2 micron plasmid of saccharomyces cerevisiae: A miniaturized
selfish genome with optimized functional competence. Plasmid, 70(1):2 – 17,
2013.

[14] Y Chen, U Narendra, L E Iype, M M Cox, and P A Rice. Crystal structure of a
Flp recombinase-Holliday junction complex: assembly of an active oligomer by
helix swapping. Mol Cell, 6(4), 2000.

[15] Citizendium. Protein Structure. http://en.citizendium.org/wiki/Protein
structure, 2013. [Online; accessed 23-July-2010].

[16] Lester Clowney, Shri C. Jain, A. R. Srinivasan, John Westbrook, Wilma K. Ol-
son, and Helen M. Berman. Geometric Parameters in Nucleic Acids: Nitrogenous
Bases. Journal of the American Chemical Society, 118(3):509–518, 1996.

[17] Andrew V. Colasanti. Conformational States of Double Helical DNA. PhD thesis,
2006.

[18] S. D. Colloms, J. Bath, and D. J. Sherratt. Topological selectivity in Xer site-
specific recombination. Cell, 88:855–864, 1997.

[19] J. H. Conway. Computational Problems in Abstract Algebra (Proc. Conf., Oxford,
1967). Pergamon, Oxford, 1970.

[20] I.K. Darcy and M. Vazquez. Determining the topology of stable protein-DNA
complexes. Biochemical Society Transactions, 41(2):601–605, 2013.

[21] Andrew M. Davis, Simon J. Teague, and Gerard J. Kleywegt. Application and
Limitations of X-ray Crystallographic Data in Structure-Based Ligand and Drug
Design. Angewandte Chemie International Edition, 42(24):2718–2736, June 2003.

[22] M. A. el Hassan and C. R. Calladine. The assessment of the geometry of dinu-
cleotide steps in double-helical DNA; a new local calculation scheme. Journal of
Molecular Biology, 251(5):648–664, 1995.

[23] Adrian Elcock and Todd Washington. Biophysical chemistry class notes.

http://en.citizendium.org/wiki/Protein_structure
http://en.citizendium.org/wiki/Protein_structure


143

[24] Dickerson et al. Definitions and nomenclature of nucleic acid structure parame-
ters. Journal of Molecular Biology, 205(4):787–791, 1989.

[25] Isabel K. Darcy et al. Coloring the Mu transpososome. BMC Bioinformatics, 7,
2006.

[26] M. Tateno et al. DNA recognition by β-sheets. Biopolymers, 44(4):335–359,
1997.

[27] Paul J. Flory. The Configuration of Real Polymer Chains. The Journal of
Chemical Physics, 17(3):303–310, 1949.

[28] Rosalind E. Franklin and Raymond G. Gosling. Molecular configuration in
sodium thymonucleate. Nature, 171, 1953.
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