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Figure A.3 Representative TEM images and average diameter for IE Au@SiO
2
 

nanospheres quenched after (A) 0 (d = 60.1 ± 6.8 nm), (B) 5 (d = 60.1 ± 5.9 nm), 

(C) 15 (d = 59.9 ± 5.5 nm), (D) 25 (d = 59.8 ± 5.9 nm), and (E) 35 (d = 59.8 ± 7.0 

nm) minutes etching. Over 100 particles were analyzed to determine the average 

mean diameter and the standard deviation for each composite nanostructure.  
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Figure A.4 (A) Synthesis steps of silica-coated gold nanospheres: (1) APTMS or 

APTES functionalized gold nanospheres to promote silica condensation, (2) 

addition of sodium silicate to thicken the silica shell to 4 nm to establish the 

stability of the gold nanoparticles in ethanol, and (3) addition of ethanol and TEOS 

at pH greater than 8 to thicken the external silica layer. (B) Chemical structures of 

the silica precursors used during the synthesis.  

 

1 2 3A

(3-Aminopropyl) trimethoxysilane (APTMS)

(3-Aminopropyl) triethoxysilane (APTES)
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particles observed during silica condensation on gold nanospheres, a parameter was 

evaluated in each synthesis step separately, and extinction spectroscopy and 

transmission electron microscopy (TEM) were used for analysis. A flow chart of the 

experimental plan is shown in Figure A.5, with all parameters, expectations, and 

objectives. 

A.5 Ethanol Implication on Silica Condensation on Gold Nanospheres 

Because ethanol is added in Step 3 (Figure A.4A) to increase the rate of silica 

condensation on gold nanospheres, it was hypothesized that decreasing the volume of 

added ethanol will reduce the rate of silica condensation, which should decrease the 

percent of free silica particles observed in Au@SiO2 nanosphere samples. To 

complete this study, the water-to-ethanol volume ratio was increased from 1:4 to 1:2, 

instead of 1:4.4, by decreasing the volume of ethanol added. Once the synthesis of 

Au@SiO2 nanospheres was completed, the samples were purified, and a LSPR 

spectrum and a TEM image were collected for each sample (Figure A.6). The 

extinction maximum wavelengths are 534.5, 533.8, and 533.5 nm for Au@SiO2 

nanospheres synthesized with 1:2, 1:3, and 1:4 water-to-ethanol volume ratio, 

respectively (Figure A.6A). These data indicate that a larger population of free silica 

particles than for those synthesized with the 1:4.4 ratio of water-to-ethanol volume 

(Figure A.6B). This result rejects the hypothesis because, as the volume of ethanol 

decreases, the rate of silica condensation also decreases, which increases silica 

nucleation and reduces silica growth according to Liz-Marzán.[303] Because silica 

solubility is drastically low in ethanol, polymerization of silica occurs. 
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Figure A.5 Experimental procedures for minimizing the percent of free silica 

particles observed on synthesized Au@SiO2 nanoparticles. 
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Figure A.6 Extinction and structural analysis of Au@SiO2 nanospheres 

synthesized using various water-to-ethanol volume ratios during step 3 in Figure 

A1.4. (A) LSPR spectra of Au@SiO2 nanoparticles synthesized using: (1) 1:2, (2) 

1:3, and (3) 1:4 water-to-ethanol ratio. The extinction maximum wavelength and 

full width half max are: 534.5 nm and 0.5379 eV, 533.8 nm and 0.5222 eV, and 

533.5 nm and 0.5196 eV, respectively. (B) Representative TEM image for 

Au@SiO2 nanospheres fabricated using (1) 1:2 and (2) 1:4 water-to-ethanol ratio. 
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A.6 APTMS Incubation Time Effect on Silica-Coated Gold Nanospheres 

The next step was to determine if the time used to make the gold surfaces 

vitreophilic is sufficient to allow all the APTMS molecules to bind to the gold 

nanoparticle. This is because any excess APTMS molecules present in the solution 

prior to the addition of sodium silicate can serve as nuclei for further silica growth. 

To investigate the impact of APTMS incubation time on the formation of free silica 

particles during silica condensation on gold nanospheres, the time was varied from 

15, 30, and 60 minutes. Figure A.7 shows the LSPR spectra for all three samples and 

the TEM images for Samples 1 and 3.  The extinction maximum wavelength for all 

three samples is centered at (1) 531.5 nm, (2) 531.9 nm, and (3) 549.5 nm, 

respectively (Figure A.7A). These data indicate no significant differences between 

Samples 1 and 2 other than a ~5 nm red-shift in the LSPR wavelength that is greater 

than uniform silica-coated sample reported in the literature,[167] which could be 

associated with the large percent of free silica particles observed. However, Sample 3 

shows a greater shift in the LSPR wavelength and a broad spectrum, which suggest 

metal nanoparticle coupling and/or aggregation.  

Representative TEM images are shown in Figure A.7B for Samples 1 and 3 only 

because Sample 2 possesses similar optical properties as Sample 1 and thereby should 

have similar structure. Both LSPR and structural data are correlated for all samples. 

Sample 3 on the other hand, shows very different structure as expected based on their 

LSPR wavelength. This observation can be explained as APTMS molecules 

polymerization instead of functionalization. This polymerization allows all silica 

precursors added to further growth and form a bed of silica. As gold nanospheres are 
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Figure A.7 Extinction and structural analysis of Au@SiO2 nanospheres 

synthesized using various incubation times for APTMS in Step 1. (A) LSPR 

spectra of Au@SiO2 nanoparticles after incubated for: (1) 15, (2) 30, and (3) 60 

minutes. Their extinction maximum wavelength and full width half max are: 531.5 

nm and 0.4986 eV, 531.9 nm and 0.5010 eV, and 549.5 nm and 0.6272 eV, 

respectively. (B) Representative TEM image for Au@SiO2 nanospheres incubated 

with APTMS for (1) 15 and (2) 60 minutes.  
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known to be attracted to such silica layer, therefore, the gold nanoparticles present in 

the solution attached on the silica bed, which is observed in Figure A.7B-3.  

A.7 APTMS vs. APTES Effect on Silica Condensation on Gold Nanoparticles 

APTES, and APTMS, were used to functionalize the gold nanoparticle surface 

prior to silica condensation. This study is performed to determine if the connecting 

agent is the reason for large population of free silica particles, since APTMS 

hydrolyzes much faster than APTES. The same protocol detailed earlier was used for 

both samples, where APTMS or APTES is used to make the gold surface vitreophilic 

for further silica growth. The APTES sample was incubated for 1 hour during 

functionalization while APTMS sample was incubated for only 15 minutes. 

Extinction spectra and TEM images are shown in Figure A1.8. As expected, the 

absorption band (531.1 nm (Figure A.8A-1)) and the structural image (Figure A.8B-

1) obtained for APTMS functionalized Au@SiO2 nanospheres (sample 1) are similar 

to data from Figure A.7A-1 (LSPR) and Figure A.7B-1 (TEM) because the same 

procedure is used.  

Sample 2 (Au@SiO2 nanospheres synthesized with APTES) on the other hand, 

possess a plasmon wavelength  at 524.3 nm (Figure A.8A-2), a number reported by 

Liz-Mazán in 1996[167] for fully coated nanoparticle with a low percent of free silica 

particles and silica shell from 4 to 15 nm thick. The TEM image in Figure A.8B-2 

shows Au@SiO2 nanospheres with no free silica, but the silica shell thickness is only 

~ 4 nm, which is too thin for future applications. These observations suggest that 

APTES incubation should be greater than 1 hour because APTES is less likely to 

hydrolyze in air and/or water, as it is less polar than APTMS. 
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Figure A.8 APTMS vs. APTES linking agent to functionalize the gold surface 

prior to silica condensation. (A) Extinction spectra of Au@SiO2 nanoparticles 

synthesis using (1) APTMS and (2) APTES to make the gold surface vitreophilic, 

with extinction maximum wavelength and full width half max equal to 531.1 nm 

and 0.4611 eV and 524.3 nm and 0.3696 eV, respectively. (B) Representative TEM 

images for Au@SiO2 nanospheres synthesis with (1) APTMS and (2) APTES.  
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Figure A.9 (A) LSPR spectra of Au@SiO2 nanoparticles synthesis with (1) 10 and 

(2) 2.7% sodium silicate (stock). The plasmon wavelength and full width half max 

are: 526.6 nm and 0.4009 eV and 525.7 nm and 0.3803 eV, respectively. (B) 

Representative TEM images for Au@SiO2 nanospheres synthesis using (1) 10 and 

(2) 2.7 % sodium silicate.  
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A.8 Sodium Silicate Viscosity and Concentration Effect on Silica Condensation 

Finally, the viscosity and the concentration of the stock sodium silicate solution 

are monitored prior to being used in silica condensation to uniform solution which 

should minimize silica nucleation while maximizing silica growth. In this study, the 

27 % stock sodium silicate is sonicated and diluted with water to 10 % and 2.7% 

weight. The final concentration of sodium silicate during silica condensation on gold 

nanospheres remains the same for both samples, as well as does the protocol. After 

purifying each of the Au@SiO2 nanospheres, a LSPR spectrum and a TEM 

micrograph is collected for both samples, which are shown in Figure A.9. The   

extinction maximum wavelength for both samples is 526.6 nm (Figure A.9A-1) and 

525.7 nm (Figure A.9A-2), respectively. According to literature, these samples should 

contain fully coated Au@SiO2 nanospheres with very few free silica particles.  

The representative TEM images show in Figure A.9B reveals structure with few 

free silica particles, after analyzed over 100 nanoparticles the percent of free silica 

particles is ~6 % and ~2 %, respectively. Following this protocol, fewer free silica 

particles should be observed, the extinction maximum wavelength should be similar 

to those above, and experimental silica shell thickness should be comparable to 

calculated. 

A.9 Conclusions 

In this report we synthesized and characterized stable and SERS-active IE 

Au@SiO2 nanoparticles in a stepwise process. We demonstrated that quantitative 

SERS signals of target molecules can be achieved by using solution-phase gold 

nanoparticles encapsulating in porous silica membrane. The magnitude of the SERS 
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intensity for 2-NT between 25 to 35 minutes IE Au@SiO2 nanoparticles were only 

different by 0.900 ADU. This suggests that the optimal gold nanostructures that are 

stabilized with a full silica membrane and produce large SERS signal lay between 25 

to 35 minutes internal silica etching and the entire gold surface should be available 

for molecular binding. During the troubleshooting of Au@SiO2 nanospheres, the 

results reveal that varying water to ethanol volume ratio, varying APTMS incubation 

times, and used APTES to functionalize the gold nanoparticle surface prior to silica 

condensation instead of APTMS do not improve the homogeneity of Au@SiO2 

nanospheres. However, sonicating and decreasing the concentration of the sodium 

silicate stock reduces silica nucleation and increases silica growth for more 

predictable silica shell thicknesses and LSPR wavelength. 
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APPENDIX B 

PRELIMINARY STUDIES OF SOLUTION CONDITIONS 

IMPLICATIONS ON PASSIVE MOLECULAR TRANSPORT THROUGH SILICA 

MEMBRANE AND MULTI-ANALYTES DETECTION USING SERS 

SPECTROSCOPY 

B.1 Introduction 

In this study, solvent ionic strength, pH, and polarity are varied stepwise to 

determine the optimal solution conditions that produce passive molecular diffusion 

through silica membrane toward the gold core for large and reproducible SERS 

measurements of target analytes. To start, IE Au@SiO2 nanospheres with a fixed 

internal silica etching are synthesized using the new silica dissolution protocol 

described in Chapter 4. The composite nanospheres sample is purified using 

hydrophobic interaction chromatographic column. Figure B.1 depicts a flow chart of 

the experimental design in a stepwise manner describing parameters, objectives and 

expected results or trends. The SERS-activity of 4-aminobenzenethiol (4-ABT) is 

monitored as a function of all parameters, including KCl concentration, pH, and 

percent ethanol. 4-Aminobenzenethiol was chosen because it is small, Raman-active, 

and contains a thiol group that can tightly bind to gold (bond strength = ~47 

kcal/mol). A SERS spectrum of 10 µM 4-ABT on 4 nM citrate stabilized gold 

nanospheres is shown in Figure B.2 where all observed vibrational modes are labeled 

and assigned in Table B.1.  
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Figure B.1 Experimental plan to determine the optimal solution conditions for 

passive molecular diffusion through the silica membrane on gold nanospheres for 

large, but reproducible and quantitative SERS response of small molecules.  
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Figure B.2 SERS spectra of 10 µM 4-aminobenzenethiol (4-ABT) adsorbed on 

the surface 4 nM citrate stabilized gold nanospheres. The observed vibrational 

bands are labeled. The inset illustrates the chemical structure of the analyte 4-

ABT. SERS collection parameters: power laser = 2 mW, λEx = 632.8 nm, and tint = 

60 seconds. 
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Table B.1 Raman shift assignments of 4-aminobenzenethiol (4-ABT) on citrate 

stabilized gold nanospheres.[1-3]  

 

Literature Raman Shift 

(cm
-1

) 

Experiment Raman 

Shift (cm
-1

) 

 

Assignments 

1587 1590 Ring stretching 

1485 1491 Ring stretching & CH 

bending 

1425   Ring stretching & CH 

bending 

1389   Ring stretching & CH 

bending 

1177 1173 CH bending 

1140   CH bending 

1078 1080 CS stretching 

1003 1000 CC & CCC bending 

819   CH waging 

636 637 CCC bending 

391 392 CS bending 
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B.2 Ionic Strength, pH, and Polarity Effect on Molecular Diffusion through IE 

Au@SiO2 Nanospheres 

To evaluate the electrostatic nature of internally etched silica-coated gold (IE 

Au@SiO2) nanoparticles, passive molecular transport of 4-ABT through the silica 

membrane is studied as a function of KCl concentration. All experiments are 

conducted in water using 5 nM IE Au@SiO2 nanospheres, 20 µM 4-ABT, and 0 to 

100 mM of KCl. Each sample is incubated for 1 hour prior to SERS measurements. 

Spectral noise, SERS intensity for both primary vibrational modes of 4-ABT (1078 

cm
-1

 C-H bending and 1590 cm
-1

 ring stretching) after subtracting the spectral noise, 

and peak ratio of 1078 cm
-1

/1590 cm
-1

 are reported in Table B.2A. The spectral noise 

is calculated by averaging a range in each spectrum where no target molecule signal 

is observed and is 1700 to 1900 ADU. One should expect the SERS response to 

increase then saturate with increasing ionic strength, according to Zharov. [175, 304] 

This is because, the electrolyte ions can decrease the Bjerrum length between two 

elementary charges within the micropores on the silica membrane and allow the pores 

to reach their original size (~1.5 - 2 nm) for increase passive molecular diffusion. 

This result should be observed because once all the available metal surface is 

occupied by the target molecule the signal should remain the same. For the 

preliminary data however, SERS signal intensity of 4-ABT increased with no 

saturation. To observe the complete reported trend, the ionic strength of the solution 

should be greater than 100 mM to reduce the Bjerrum length to its reported size of 0.7 

nm, or the sample incubation time prior to SERS measurement should be greater than 

1 hour to make sure of complete equilibrium. As for the peak ratio, no trend is 
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observed. This could be because at each KCl concentration, different numbers of 4-

ABT are transported through the silica membrane toward the core causing changes in 

molecular orientation for different polarization of each vibrational mode. 

To investigate the effect of pH on passive molecular diffusion through silica 

membrane encapsulated gold nanospheres, the SERS signal intensity of 4-ABT was 

used to measure changes the response.  All studies are completed in pH adjusted 

water 4.0, 5.5, 7.0 or 8.5 separately using 5 nM IE Au@SiO2 nanospheres, 20 µM 4-

ABT, and 100 mM KCl. At this pH range the surface of the stationary phase IE 

Au@SiO2 nanospheres should remain negatively charged because all the different 

pHs from this study are greater than the silica pKa ~2.[305-307]  Each sample is 

incubated for 1 hour followed by SERS measurements using 60 minutes integration 

time. Table B.2B shows the spectral noise, SERS intensity after subtracting spectral 

noise, and peak ratio of 1078 cm
-1

/1590 cm
-1

.  The SERS response is expected to 

follow a Gaussian curve distribution if the molecular charges dominate the transport 

of the target analyte through the silica membrane. One should observe no SERS 

signal at pH 4.0. This is because 4-ABT will be positively charged as the amine group 

is protonated at pH less than its pKa, which is 5.[175] Therefore, it should interact 

with the silica surface instead of being transported through the silica membrane 

toward the gold core for SERS detection. At a pH equal to 6.0, 4-ABT should be 

neutral because the number of positively and negatively charged molecules in the 

solution should be equal. Therefore, SERS signal should be observed because of 

passive molecular diffusion, and no interaction with the silica surface. At pH 7.0 or 

above, the SERS signal should decrease to noise because both the mobile phase (4- 
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Table B.2 Spectral noise, SERS intensities for both vibrational modes of 4-

aminobenzenethiol: 1078 cm
-1

 C-H bending and 1587 cm
-1

 ring stretching, and 

peak ratio (1078/1590).  

A 
[KCl] (mM) 0 5 20 50 100 

Noise (ADU) 0.420 0.472 0.398 0.415 0.209 

1078 cm
-1

 (ADU) 8.502 8.309 8.727 8.517 10.183 

1587 cm
-1

 (ADU) 3.387 2.666 2.348 3.760 5.393 

Peak Ratio 2.510 3.117 3.717 2.265 1.888 

 

B 
pH 4.0 5.5 7.0 8.5 

Noise (ADU) 0.260 0.242 0.236 0.289 

1078 cm
-1

 (ADU) 10.364 14.090 18.044 20.330 

1587 cm
-1

 (ADU) 3.892 7.757 12.816 16.483 

Peak Ratio 2.663 1.817 1.408 1.233 
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Table B.2 Continue here  

 

C 
Ethanol (%) 0 0.5 5.0 10.0 

Noise (ADU) 0.019 0.228 0.368 0.002 

1078 cm
-1

 (ADU) 11.052 13.359 21.280 30.239 

1587 cm
-1

 (ADU) 5.562 8.452 11.970 15.315 

Peak Ratio 1.987 1.581 1.778 1.975 

 

Note: 5 nM IE Au@SiO2 nanoparticles and 20 µM 4-aminobenzenethiol (4-ABT) 

are incubated for 1 hour  with (A) varying KCl concentrations (0 – 100 mM), (B) 

pH (4.0 -8.5), or (C) polarity (0 – 10 % EtOH) before collected the data reported 

above. Spectral noise is calculated as mention in Table A.1note. 
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Figure B.4 (A) Molecular structures and (B) SERS spectra of (1) 4-thiourical 

(4TU), (2) 1,2-bis(4 pyridyl)ethylene (4BPE), (3) 2-naphthalenethiol (2NT), and 

(4) 2-mercaptopyridine (2MPy). All measurements were collected using 5 nM 

citrate stabilized gold nanospheres incubated with 10 µM chromophore. 

Conditions:  λex = 632.8 nm, tint = 45 s, and P = 2 mW. The unique vibrational 

modes for 4TU (914 cm
-1

, N-H out-of-plane bending), 4BPE (1641 cm
-1

, C=C 

stretching), 2NT (1380 cm
-1

, ring stretching), and 2MPy (999 cm
-1

, ring breathing) 

are labeled. Each spectrum was normalized to the SERS intensity of the C=C 

stretching (1641 cm
-1

)
 
for 4BPE. 
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Table B.3 Raman shift assignments of 1,2-bis(4 pyridyl)ethylene (4BPE),[309] 2-

mercaptopyridine (2MPy),[310] 2-naphthalenethiol (2NT),[311] and 4-thiourical 

(4TU).[312]  

 

Raman Shift 

(∆cm
-1

) 

Assignments Molecule 

1641 vs C=C stretch 1,2-bis(4 pyridyl)ethylene  

1622 s Ring stretch 2-naphthalenethiol 

1607 vs C-N bend, C-C stretch 1,2-bis(4 pyridyl)ethylene  

1601 w C-C stretch 4-thiourical 

1580 w Ring stretch 2-naphthalenethiol 

1576 vw C=C stretch 2-mercaptopyridine 

1546 vw; w C-C stretch; C=C stretch 1,2-bis(4 pyridyl)ethylene ; 

2-mercaptopyridine 

1510 m C=C & C=N stretch 4-thiourical 

1451 m Ring stretch 2-naphthalenethiol 

1390 w C-H bend 4-thiourical 

1380 vs Ring stretch 2-naphthalenethiol 

1340 w C-H bend, C=C bend 1,2-bis(4 pyridyl)ethylene  

1337 vw Ring stretch 2-naphthalenethiol 

1315 w Ring stretch 4-thiourical 

1275 w C=C & C=N stretch 2-mercaptopyridine 

1243 vw N-H deformation 1,2-bis(4 pyridyl)ethylene  

1231 m C=H bend, N-H ring 

deformation 

2-mercaptopyridine 

1216 vs C-N stretch 4-thiourical 
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Table B.3 Continue here 

 

1202 vs C-C stretch, C-N bend 1,2-bis(4 pyridyl)ethylene  

1148 vw C-H bend 2-naphthalenethiol 

1117 w; m C-H wag;  Ring breathing, 

C-S stretch 

2-mercaptopyridine; 4-

thiourical 

1083 w C-H bend 2-mercaptopyridine 

1073 vw C-N stretch 4-thiourical 

1065 s C-H bend 2-naphthalenethiol 

1050 w C-H bend 2-mercaptopyridine 

1019 w Ring breathing 1,2-bis(4 pyridyl)ethylene  

1005 vw Ring deformation 4-thiourical 

999 vs Ring breathing 2-mercaptopyridine 

914 s N-C stretch 4-thiourical 

841 vw C-H twist 2-naphthalenethiol 

782 vw C-H wag, C=O bend 4-thiourical 

764 vw C-H wag 2-naphthalenethiol 

709 w N-H wag 4-thiourical 

660 vw N-H wag 4-thiourical 

633 vw C-C-C bend; Ring twist 2-mercaptopyridine; 2-

naphthalenethiol 

625 vw Ring deformation 4-thiourical 
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B.4 Conclusions 

These preliminary studies demonstrate that knowing the optimal solution 

conditions during SERS detection is a critical step because increased electrolyte ions 

will increase the micropores on the silica membrane from their original which should 

increase molecular diffusion. Whereas, increasing solvent pH and decreasing solution 

polarity should allow more accurate analyte concentration, the solubility of these 

molecules should not be affected. Therefore, more accurate conclusions can be made 

from individual and multi-analytes SERS studies because these will only have to 

focus on changes associated with molecular size, binding group, and/or orientation.  
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